1
|
Mayer R, Desai K, Aguiar RSDT, McClure JJ, Kato N, Kalman C, Pilitsis JG. Evolution of Deep Brain Stimulation Techniques for Complication Mitigation. Oper Neurosurg (Hagerstown) 2024; 27:148-157. [PMID: 38315020 DOI: 10.1227/ons.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024] Open
Abstract
Complication mitigation in deep brain stimulation has been a topic matter of much discussion in the literature. In this article, we examine how neurosurgeons as individuals and as a field generated and adapted techniques to prevent infection, lead fracture/lead migration, and suboptimal outcomes in both the acute period and longitudinally. The authors performed a MEDLINE search inclusive of articles from 1987 to June 2023 including human studies written in English. Using the Rayyan platform, two reviewers (J.P. and R.M.) performed a title screen. Of the 776 articles, 252 were selected by title screen and 172 from abstract review for full-text evaluation. Ultimately, 124 publications were evaluated. We describe the initial complications and inefficiencies at the advent of deep brain stimulation and detail changes instituted by surgeons that reduced them. Furthermore, we discuss the trend in both undesired short-term and long-term outcomes with emphasis on how surgeons recognized and modified their practice to provide safer and better procedures. This scoping review adds to the literature as a guide to both new neurosurgeons and seasoned neurosurgeons alike to understand better what innovations have been trialed over time as we embark on novel targets and neuromodulatory technologies.
Collapse
Affiliation(s)
- Ryan Mayer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Roethe AL, Beer L, Schulz M, Schaumann A, Thomale UW. Tailored Concept for Accurate Neuroendoscopy: A Comparative Retrospective Single-Center Study on Image-Guided Neuroendoscopic Procedures. World Neurosurg 2024; 185:60-70. [PMID: 38325702 DOI: 10.1016/j.wneu.2024.01.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/09/2024]
Abstract
OBJECTIVE Precise planning and execution is key for neuroendoscopic interventions, which can be based on different available aiding technologies. The aim of this retrospective study is to report a case-based use of guided neuroendoscopy and to develop a stratification algorithm for the available technologies. METHODS We reviewed consecutive neuroendoscopic cases performed at our center from 2016 to 2018. We distinguished between patients receiving a new burr hole (group A) and those with a preexisting burr hole (group B). Case-specific technical requirements for procedure planning and execution, complication rate, surgical outcome, and possible subsequent surgery were evaluated. From this experience, a stratification system was developed to tailor the available guiding technologies. RESULTS A total of 309 neuroendoscopic interventions in 243 patients were included in the present study. The cases included hydrocephalic (81.6%) and nonhydrocephalic (18.4%) conditions. The interventions were supported by coordinate-based (group A, n = 49; group B, n = 67), guide-based (group A, n = 42; group B, n = 0), ultrasound-guided (group A, n = 50; group B, n = 7), or navigated augmented reality-guided (group A, n = 85; group B, n = 9) techniques. The overall complication rate was 4.5%. Stratified by the surgical indication, fontanel status, entry point localization, presence of a preexisting burr hole, ventricular size, and number of targets, an approach toward image-guided neuroendoscopy is suggested. CONCLUSIONS Planning and technical guidance is essential in neuroendoscopic procedures. The stratified decision-making algorithm for different available technologies aims to achieve lower cost and time consumption, which was found to be safe and efficient. Further investigations are warranted to deliver solid data on procedure efficiency.
Collapse
Affiliation(s)
- Anna L Roethe
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lilian Beer
- Pediatric Neurosurgery, Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Schulz
- Pediatric Neurosurgery, Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Schaumann
- Pediatric Neurosurgery, Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich-Wilhelm Thomale
- Pediatric Neurosurgery, Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Srinvasan HL, Raslan A, Tambirajoo K, Selway R, Ashkan K, Hasegawa H. Neuromate ® robot-assisted ventricular catheter insertion. Br J Neurosurg 2023; 37:1689-1692. [PMID: 34187266 DOI: 10.1080/02688697.2021.1941762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/07/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND IMPORTANCE Insertion of ventricular catheters into small ventricles may require image guidance. Several options exist, including ultrasound guidance, frameless, and frame-based stereotactic approaches. There is no literature on management options when conventional image guidance fails to cannulate the ventricle. The accuracy of the robotic arm is well established in functional and epilepsy surgery. We report the first case using the Neuromate® robot for the placement of a shunt ventricular catheter into the lateral ventricle after a failed attempt with a more commonly used frameless electromagnetic navigation system. CLINICAL PRESENTATION A 30-year-old man had twice previously undergone foramen magnum decompression for a Chiari 1 malformation. He subsequently developed a significant cervical syrinx with clinical deterioration and a decision was made to place a ventriculoperitoneal shunt. As the ventricles were small, frameless electromagnetic navigation was used but the ventricle could not be cannulated. The Neuromate® robot was subsequently used to place the ventricular catheter successfully. CONCLUSION Neuromate® robot-assisted ventricular catheter placement may be considered when difficulty is experienced with more commonly used image guidance techniques.
Collapse
Affiliation(s)
| | - Ahmed Raslan
- King's College Hospital, Neurosurgery, London, United Kingdom of Great Britain and Northern Ireland
| | - Kantharuby Tambirajoo
- King's College Hospital, Neurosurgery, London, United Kingdom of Great Britain and Northern Ireland
| | - Richard Selway
- King's College Hospital, Neurosurgery, London, United Kingdom of Great Britain and Northern Ireland
| | - Keyoumars Ashkan
- King's College Hospital, Neurosurgery, London, United Kingdom of Great Britain and Northern Ireland
| | - Harutomo Hasegawa
- King's College Hospital, Neurosurgery, London, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
4
|
Wu Z, Chen D, Pan C, Zhang G, Chen S, Shi J, Meng C, Zhao X, Tao B, Chen D, Liu W, Ding H, Tang Z. Surgical Robotics for Intracerebral Hemorrhage Treatment: State of the Art and Future Directions. Ann Biomed Eng 2023; 51:1933-1941. [PMID: 37405558 PMCID: PMC10409846 DOI: 10.1007/s10439-023-03295-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/17/2023] [Indexed: 07/06/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype with high mortality and disability, and there are no proven medical treatments that can improve the functional outcome of ICH patients. Robot-assisted neurosurgery is a significant advancement in the development of minimally invasive surgery for ICH. This review encompasses the latest advances and future directions of surgical robots for ICH. First, three robotic systems for neurosurgery applied to ICH are illustrated. Second, the key technologies of robot-assisted surgery for ICH are introduced in aspects of stereotactic technique and navigation, the puncture instrument, and hematoma evacuation. Finally, the limitations of current surgical robots are summarized, and the possible development direction is discussed, which is named "multisensor fusion and intelligent aspiration control of minimally invasive surgical robot for ICH". It is expected that the new generation of surgical robots for ICH will facilitate quantitative, precise, individualized, standardized treatment strategies for ICH.
Collapse
Affiliation(s)
- Zhuojin Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ge Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Shi
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Cai Meng
- School of Mechanical Engineering & Automation-BUAA, Beihang University, Beijing, 100083, China
| | - Xingwei Zhao
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bo Tao
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Diansheng Chen
- School of Mechanical Engineering & Automation-BUAA, Beihang University, Beijing, 100083, China
| | - Wenjie Liu
- Beijing WanTeFu Medical Instrument Co., Ltd, Beijing, 102299, China
| | - Han Ding
- School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
5
|
Devisetty R, MB A, Jyothirmai S, Ajai R, Pillai A, Kumar A, Gopinath S, Parasuram H. Localizing epileptogenic network from SEEG using non-linear correlation, mutual information and graph theory analysis. Proc Inst Mech Eng H 2022; 236:1783-1796. [DOI: 10.1177/09544119221134991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The key challenge in epilepsy surgery is precise localization and removal of the epileptogenic zone (EZ) from the brain. Localization of the epileptogenic network by visual analysis of intracranial EEG is extremely difficult. In this retrospective study, we used interictal connectivity and graph theory analysis on intracranial EEG to better delineate the epileptogenic zone. Patients who underwent surgery for drug-refractory mesial temporal and neocortical epilepsy were included. Computational measures, such as h2 nonlinear correlation and mutual information, were used to estimate the interdependency of intracranial EEGs. We observed that the Out-Degree, Out-Strength, and Betweenness centrality (graph properties) were the best predictors of EZ. From the results, we also found that graph properties with a normalized value above 0.75 were found to be a useful measure to localize the EZ with a sensitivity of 87.88 and a specificity of 87.13. Our results also validate that frequently occurring types of interictal fast discharges (IFD) with connectivity measures and graph properties can better localize the EZ. We foresee graph theory analysis of interictal intracranial EEG data can help precise localization of EZ for cortical resection as well as in minimally invasive radiofrequency ablation of epileptogenic hubs. Further, prospective validation is required for clinical use.
Collapse
Affiliation(s)
- Rohith Devisetty
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Amsitha MB
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Sasi Jyothirmai
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Remya Ajai
- Department of Electronics and Communication Engineering, Amrita Vishwa Vidyapeetham, Amritapuri, India
| | - Ashok Pillai
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurosurgery, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Anand Kumar
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| | - Siby Gopinath
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| | - Harilal Parasuram
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Department of Neurology, Amrita Institute of Medical Sciences, Kochi, Kerala, India
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Kollam, Kerala, India
| |
Collapse
|
6
|
Frameless robot-assisted stereotactic biopsies for lesions of the brainstem-a series of 103 consecutive biopsies. J Neurooncol 2022; 157:109-119. [PMID: 35083580 DOI: 10.1007/s11060-022-03952-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE Targeted treatment for brainstem lesions requires above all a precise histopathological and molecular diagnosis. In the current technological era, robot-assisted stereotactic biopsies represent an accurate and safe procedure for tissue diagnosis. We present our center's experience in frameless robot-assisted biopsies for brainstem lesions. METHODS We performed a retrospective analysis of all patients benefitting from a frameless robot-guided stereotactic biopsy at our University Hospital, from 2001 to 2017. Patients consented to the use of data and/or images. The NeuroMate® robot (Renishaw™, UK) was used. We report on lesion location, trajectory strategy, histopathological diagnosis and procedure safety. RESULTS Our series encompasses 96 patients (103 biopsies) treated during a 17 years period. Mean age at biopsy: 34.0 years (range 1-78). Most common location: pons (62.1%). Transcerebellar approach: 61 procedures (59.2%). Most common diagnoses: diffuse glioma (67.0%), metastases (7.8%) and lymphoma (6.8%). Non conclusive diagnosis: 10 cases (9.7%). After second biopsy this decreased to 4 cases (4.1%). Overall biopsy diagnostic yield: 95.8%. Permanent disability was recorded in 3 patients (2.9%, all adults), while transient complications in 17 patients (17.7%). Four cases of intra-tumoral hematoma were recorded (one case with rapid decline and fatal issue). Adjuvant targeted treatment was performed in 72.9% of patients. Mean follow-up (in the Neurosurgery Department): 2.2 years. CONCLUSION Frameless robot-assisted stereotactic biopsies can provide the initial platform towards a safe and accurate management for brainstem lesions, offering a high diagnostic yield with low permanent morbidity.
Collapse
|
7
|
Udayakumaran S, Krishnadas A, Subash P. Robot-assisted frontofacial correction in very young children with craniofacial dysostosis syndromes: a technical note and early functional outcome. Neurosurg Focus 2022; 52:E16. [PMID: 34973669 DOI: 10.3171/2021.10.focus21515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 10/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In this study, the authors aimed to 1) retrospectively analyze the early functional outcomes in a cohort of very young children with craniofacial dysostoses who underwent robot-assisted frontofacial advancement (RAFFA) or robot-assisted midface distraction (RAMD), and 2) analyze the utility of robotic assistance in improving the accuracy and safety of performing transfacial pin insertion for RAFFA or RAMD. METHODS A retrospective analysis of a cohort of 18 children (age range 1-42 months at presentation), who underwent RAFFA or RAMD from February 2015 to February 2021 in the craniofacial unit at Amrita Institute of Medical Sciences and Research Centre in Kochi, India, was performed. Inclusion criteria were patients who had undergone RAFFA in a single stage or RAMD where the cranial vault had been addressed earlier, had been addressed on follow-up, or had not been addressed and had follow-up of at least 6 months. RESULTS Overall, 18 children with syndromic craniosynostosis underwent LeFort level III midface distraction, with or without RAFFA, from February 2015 to February 2021 at a single center in India. The patients' ages ranged from 6 to 47 months at the time of the procedure. All patients had significant obstructive sleep apnea (OSA), significant ocular issues, and disturbed sleep as determined by the authors' preoperative protocol. Clinically significant intracranial pressure issues were present in 17 patients. None of the patients had injury due to the transfacial pin trajectory such as globe injury, damage to the tooth buds, or the loss of purchase during the active distraction phase. The mean distraction achieved was 23 mm (range 18-30 mm) (n = 16/18). Of the 18 patients, 10 (56%) had an excellent outcome and 6 (33%) had a satisfactory outcome. In all cases, the degree of OSA had significantly reduced after surgery. Eye closure improved in all patients, and complete closure was seen in 11 patients. On follow-up, the functional gain remained in 14 of 16 patients at the final follow-up visit. The distraction results were stable during the follow-up period (mean 36 months [range 6-72 months]). CONCLUSIONS The early RAFFA and RAMD protocols investigated in this study gave a significant functional advantage in very young patients with craniofacial dysostoses. The results have demonstrated the accuracy and safety of robotic assistance in performing transfacial pin insertion for RAFFA or RAMD.
Collapse
Affiliation(s)
- Suhas Udayakumaran
- 1Division of Paediatric Neurosurgery and Craniofacial Surgery, Department of Neurosurgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Viswa Vidyapeetham, Kochi, Kerala; and
| | - Arjun Krishnadas
- 2Division of Craniomaxillofacial Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Viswa Vidyapeetham, Kochi, Kerala, India
| | - Pramod Subash
- 2Division of Craniomaxillofacial Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Viswa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
8
|
Parasuram H, Gopinath S, Pillai A, Diwakar S, Kumar A. Quantification of Epileptogenic Network From Stereo EEG Recordings Using Epileptogenicity Ranking Method. Front Neurol 2021; 12:738111. [PMID: 34803883 PMCID: PMC8595106 DOI: 10.3389/fneur.2021.738111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Precise localization of the epileptogenic zone is very essential for the success of epilepsy surgery. Epileptogenicity index (EI) computationally estimates epileptogenicity of brain structures based on the temporal domain parameters and magnitude of ictal discharges. This method works well in cases of mesial temporal lobe epilepsy but it showed reduced accuracy in neocortical epilepsy. To overcome this scenario, in this study, we propose Epileptogenicity Rank (ER), a modified method of EI for quantifying epileptogenicity, that is based on spatio-temporal properties of Stereo EEG (SEEG). Methods: Energy ratio during ictal discharges, the time of involvement and Euclidean distance between brain structures were used to compute the ER. Retrospectively, we localized the EZ for 33 patients (9 for mesial-temporal lobe epilepsy and 24 for neocortical epilepsy) using post op MRI and Engel 1 surgical outcome at a mean of 40.9 months and then optimized the ER in this group. Results: Epileptic network estimation based on ER successfully differentiated brain regions involved in the seizure onset from the propagation network. ER was calculated at multiple thresholds leading to an optimum value that differentiated the seizure onset from the propagation network. We observed that ER < 7.1 could localize the EZ in neocortical epilepsy with a sensitivity of 94.6% and specificity of 98.3% and ER < 7.3 in mesial temporal lobe epilepsy with a sensitivity of 95% and specificity of 98%. In non-seizure-free patients, the EZ localization based on ER pointed to brain area beyond the cortical resections. Significance: Methods like ER can improve the accuracy of EZ localization for brain resection and increase the precision of minimally invasive surgery techniques (radio-frequency or laser ablation) by identifying the epileptic hubs where the lesion is extensive or in nonlesional cases. For inclusivity with other clinical applications, this ER method has to be studied in more patients.
Collapse
Affiliation(s)
- Harilal Parasuram
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Siby Gopinath
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Ashok Pillai
- Amrita Advanced Centre for Epilepsy (AACE), Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Department of Neurosurgery, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India
| | - Shyam Diwakar
- Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Anand Kumar
- Department of Neurology, Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, India.,Amrita Mind Brain Center, Amrita Vishwa Vidyapeetham, Kollam, India
| |
Collapse
|
9
|
Stumpo V, Staartjes VE, Klukowska AM, Golahmadi AK, Gadjradj PS, Schröder ML, Veeravagu A, Stienen MN, Serra C, Regli L. Global adoption of robotic technology into neurosurgical practice and research. Neurosurg Rev 2021; 44:2675-2687. [PMID: 33252717 PMCID: PMC8490223 DOI: 10.1007/s10143-020-01445-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Recent technological advancements have led to the development and implementation of robotic surgery in several specialties, including neurosurgery. Our aim was to carry out a worldwide survey among neurosurgeons to assess the adoption of and attitude toward robotic technology in the neurosurgical operating room and to identify factors associated with use of robotic technology. The online survey was made up of nine or ten compulsory questions and was distributed via the European Association of the Neurosurgical Societies (EANS) and the Congress of Neurological Surgeons (CNS) in February and March 2018. From a total of 7280 neurosurgeons who were sent the survey, we received 406 answers, corresponding to a response rate of 5.6%, mostly from Europe and North America. Overall, 197 neurosurgeons (48.5%) reported having used robotic technology in clinical practice. The highest rates of adoption of robotics were observed for Europe (54%) and North America (51%). Apart from geographical region, only age under 30, female gender, and absence of a non-academic setting were significantly associated with clinical use of robotics. The Mazor family (32%) and ROSA (26%) robots were most commonly reported among robot users. Our study provides a worldwide overview of neurosurgical adoption of robotic technology. Almost half of the surveyed neurosurgeons reported having clinical experience with at least one robotic system. Ongoing and future trials should aim to clarify superiority or non-inferiority of neurosurgical robotic applications and balance these potential benefits with considerations on acquisition and maintenance costs.
Collapse
Affiliation(s)
- Vittorio Stumpo
- Machine Intelligence in Clinical Neuroscience (MICN) Lab, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
- School of Medicine, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience (MICN) Lab, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
- Amsterdam UMC, Neurosurgery, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.
| | | | - Aida Kafai Golahmadi
- HARMS (Human-centered Automation, Robotics and Monitoring for Surgery) Laboratory, Faculty of Medicine, Department of Surgery & Cancer, Imperial College London, London, UK
| | - Pravesh S Gadjradj
- Department of Neurosurgery, Leiden University Medical Centre, Leiden, The Netherlands
- Department of Neurosurgery, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Marc L Schröder
- Department of Neurosurgery, Bergman Clinics, Amsterdam, The Netherlands
| | - Anand Veeravagu
- Neurosurgery AI Lab, Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Martin N Stienen
- Machine Intelligence in Clinical Neuroscience (MICN) Lab, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Carlo Serra
- Machine Intelligence in Clinical Neuroscience (MICN) Lab, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| | - Luca Regli
- Machine Intelligence in Clinical Neuroscience (MICN) Lab, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland
| |
Collapse
|
10
|
Jayapaul P, Aslam S, Rajamma BM, Gopinath S, Pillai A. Contralateral insular epileptogenic hub causing seizure relapse after opercular focal cortical dysplasia surgery and response to radiofrequency thermocoagulation: illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2021; 2:CASE21251. [PMID: 36131579 PMCID: PMC9563649 DOI: 10.3171/case21251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/27/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The reevaluation and management of seizure relapse following resective surgery in magnetic resonance imaging (MRI)-negative pharmacoresistant epilepsy remains a significant challenge. OBSERVATIONS A 25-year-old right-handed male with medically refractory epilepsy presented with nonlocalizing electroencephalography (EEG) and MRI. Stereo-EEG (SEEG) implantation based on semiology and positron emission tomography imaging revealed a left frontal opercular focus with rapid bilateral insular ictal synchrony. The initial epileptogenic zone was resected and pathologically proven to be type 2A focal cortical dysplasia (FCD). Seizure relapse after 9 months was eventually reinvestigated, and repeat SEEG revealed a secondary epileptogenic focus in the contralateral insula. A novel technique of volumetric stereotactic radiofrequency ablation (vRFA) was utilized for the right insular focus, following which, the patient remains seizure-free for 20 months. He suffered a transient bilateral opercular syndrome following the second intervention that eventually resolved. LESSONS The authors present clinical evidence to suggest epileptogenic nodes distant from the primary focus as a mechanism for seizure relapse following FCD surgery and the importance of bilateral insular SEEG coverage. The authors also describe a novel technique of minimally invasive vRFA that allows ablation of a larger volume of cerebral cortex when compared to conventional bedside SEEG electrode thermocoagulation.
Collapse
Affiliation(s)
| | - Shameer Aslam
- Neurology, Amrita Advanced Center for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, India; and
| | - Bindhu Mangalath Rajamma
- Department of Clinical Pathology, Amrita Institute of Medical Sciences & Research Center, Kochi, India
| | - Siby Gopinath
- Neurology, Amrita Advanced Center for Epilepsy, Amrita Institute of Medical Sciences & Research Center, Kochi, India; and
| | | |
Collapse
|
11
|
Naros G, Machetanz K, Grimm F, Roser F, Gharabaghi A, Tatagiba M. Framed and non-framed robotics in neurosurgery: A 10-year single-center experience. Int J Med Robot 2021; 17:e2282. [PMID: 34030218 DOI: 10.1002/rcs.2282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Safety, efficacy and efficiency of neurosurgical robots are defined by their design (i.e., framed and non-framed) and procedural workflow (PW) (from image to surgery). The present study describes the quality indicators of three different robots in brain and spine surgery. METHODS This single-centre study enrolled 252 patients over a 10-year period. Safety (complication rate) and efficacy (diagnostic yield, pedicle screw placement) were determined. Predictors of workflow efficiency (e.g., skin-to-skin) were evaluated and compared to conventional techniques (neuronavigation, stereotaxy). RESULTS All robots showed excellent reliability (97.5%-100%) with low complication rates (4.5%-5.3%) and high efficacy (94.7%-97.7%). Robotics demonstrated a better time-efficiency than neuronavigation. However, there was no shortening of surgery time compared to conventional stereotaxy. Time-efficiency differed significantly between framed and non-framed workflows. CONCLUSION While all neurosurgical robots were reliable, safe and efficacious, there were significant differences in time-efficiency. PWs should be improved to increase the acceptance of robotics in neurosurgery.
Collapse
Affiliation(s)
- Georgios Naros
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Kathrin Machetanz
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Florian Grimm
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Florian Roser
- Department of Neurosurgery, Cleveland Clinic, Abu Dhabi, United Arab Emirates
| | - Alireza Gharabaghi
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany.,Department of Neurosurgery and Neurotechnology, Institute for Neuromodulation and Neurotechnology, Eberhard Karls University Tuebingen, Germany
| | - Marcos Tatagiba
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
12
|
Furlanetti L, Ellenbogen J, Gimeno H, Ainaga L, Narbad V, Hasegawa H, Lin JP, Ashkan K, Selway R. Targeting accuracy of robot-assisted deep brain stimulation surgery in childhood-onset dystonia: a single-center prospective cohort analysis of 45 consecutive cases. J Neurosurg Pediatr 2021; 27:677-687. [PMID: 33862592 DOI: 10.3171/2020.10.peds20633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) is an established treatment for pediatric dystonia. The accuracy of electrode implantation is multifactorial and remains a challenge in this age group, mainly due to smaller anatomical targets in very young patients compared to adults, and also due to anatomical abnormalities frequently associated with some etiologies of dystonia. Data on the accuracy of robot-assisted DBS surgery in children are limited. The aim of the current paper was to assess the accuracy of robot-assisted implantation of DBS leads in a series of patients with childhood-onset dystonia. METHODS Forty-five children with dystonia undergoing implantation of DBS leads under general anesthesia between 2017 and 2019 were included. Robot-assisted stereotactic implantation of the DBS leads was performed. The final position of the electrodes was verified with an intraoperative 3D scanner (O-arm). Coordinates of the planned electrode target and actual electrode position were obtained and compared, looking at the radial error, depth error, absolute error, and directional error, as well as the euclidean distance. Functional assessment data prospectively collected by a multidisciplinary pediatric complex motor disorders team were analyzed with regard to motor skills, individualized goal achievement, and patients' and caregivers' expectations. RESULTS A total of 90 DBS electrodes were implanted and 48.5% of the patients were female. The mean age was 11.0 ± 0.6 years (range 3-18 years). All patients received bilateral DBS electrodes into the globus pallidus internus. The median absolute errors in x-, y-, and z-axes were 0.85 mm (range 0.00-3.25 mm), 0.75 mm (range 0.05-2.45 mm), and 0.75 mm (range 0.00-3.50 mm), respectively. The median euclidean distance from the target to the actual electrode position was 1.69 ± 0.92 mm, and the median radial error was 1.21 ± 0.79. The robot-assisted technique was easily integrated into the authors' surgical practice, improving accuracy and efficiency, and reducing surgical time significantly along the learning curve. No major perioperative complications occurred. CONCLUSIONS Robot-assisted stereotactic implantation of DBS electrodes in the pediatric age group is a safe and accurate surgical method. Greater accuracy was present in this cohort in comparison to previous studies in which conventional stereotactic frame-based techniques were used. Robotic DBS surgery and neuroradiological advances may result in further improvement in surgical targeting and, consequently, in better clinical outcome in the pediatric population.
Collapse
Affiliation(s)
- Luciano Furlanetti
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | | | - Hortensia Gimeno
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Laura Ainaga
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Vijay Narbad
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
| | - Harutomo Hasegawa
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Jean-Pierre Lin
- 2Complex Motor Disorders Service, Evelina London Children's Hospital, Guy's and St. Thomas' NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Keyoumars Ashkan
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| | - Richard Selway
- 1Department of Neurosurgery, King's College Hospital NHS Foundation Trust, London
- 4King's Health Partners Academic Health Sciences Centre, London, United Kingdom
| |
Collapse
|