1
|
Geetha D, Skaria T. Cathepsin S: A key drug target and signalling hub in immune system diseases. Int Immunopharmacol 2025; 155:114622. [PMID: 40220622 DOI: 10.1016/j.intimp.2025.114622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025]
Abstract
The lysosomal cysteine protease cathepsin S supports host defence by promoting the maturation of MHC class-II proteins. In contrast, increased cathepsin S activity mediates tissue destructive immune responses in autoimmune and inflammatory diseases. Therefore, cathepsin S is a key target in drug discovery programs. Here, we critically reviewed the specific mechanisms by which cathepsin S mediates autoimmune and hyperinflammatory responses to identify new targets for therapeutic immunomodulation. To this end, we performed literature review utilizing PubMed, drug database of US FDA, European Medicines Agency and the Drug-Gene Interaction Database. Cathepsin S destroys T cell epitopes and reduces endogenous antigen diversity, impairing negative selection of autoreactive T cells that could recognize these epitopes. Moreover, cathepsin S critically regulates inflammatory disease severity by generating proinflammatory molecules (PAR-1, PAR-2, IL-36γ, Fractalkine, Endostatin, Ephrin-B2), inactivating anti-inflammatory mediators (SLPI) and degrading molecules involved in antimicrobial and immunomodulatory responses (surfactant protein-A, LL-37, beta-defensins), inter-endothelial/-epithelial barrier function, gene repair and energy homeostasis. These pathways could be targeted by repositioning of existing drugs. These findings suggest that inhibiting cathepsin S or a specific downstream target of cathepsin S by repositioning of existing drugs could be a promising strategy for treating autoimmune and inflammatory diseases. Current cathepsin S inhibitors in clinical trials face challenges, highlighting the need for innovative inhibitors that function effectively in various cellular compartments with differing pH levels, without targeting the shared catalytic site of cysteine cathepsins.
Collapse
Affiliation(s)
- Durga Geetha
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India
| | - Tom Skaria
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, Kerala, India.
| |
Collapse
|
2
|
Hisada R, Kono M. Recent advances in immunometabolism in rheumatic diseases. Curr Opin Rheumatol 2025; 37:142-148. [PMID: 39513377 DOI: 10.1097/bor.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
PURPOSE OF REVIEW Aberrant autoreactive innate and adaptive immune responses cause systemic autoimmune diseases. Autoimmunity has been linked to abnormal metabolic states, and immunometabolism has emerged as a critical field in understanding the pathogenesis of rheumatic diseases. We aimed to explore the latest research on metabolic reprogramming in various immune cell types, including T cells, B cells, neutrophils, dendritic cells, monocytes, and macrophages, in the context of rheumatic diseases. RECENT FINDINGS Each immune cell utilizes preferred metabolic pathways, and the cell activation dramatically modifies metabolic status. The inhibition of these pathways alters cell survival, differentiation, proliferation, and cytokine production - all of which contribute to rheumatic disease progression. SUMMARY Targeting metabolic pathways or introducing anti-inflammatory metabolites, such as itaconate, could be novel therapeutic strategies for rheumatic diseases. Further research should focus on strategies for translating basic research findings to bedside applications.
Collapse
Affiliation(s)
- Ryo Hisada
- Department of Rheumatology, Endocrinology and Nephrology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
3
|
Chen Y, Lin Q, Cheng H, Xiang Q, Zhou W, Wu J, Wang X. Immunometabolic shifts in autoimmune disease: Mechanisms and pathophysiological implications. Autoimmun Rev 2025; 24:103738. [PMID: 39743123 DOI: 10.1016/j.autrev.2024.103738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/04/2025]
Abstract
Autoimmune diseases occur when the immune system abnormally attacks the body's normal tissues, causing inflammation and damage. Each disease has unique immune and metabolic dysfunctions during pathogenesis. In rheumatoid arthritis (RA), immune cells have different metabolic patterns and mitochondrial/lysosomal dysfunctions at different disease stages. In systemic lupus erythematosus (SLE), type I interferon (IFN) causes immune cell metabolic dysregulation, linking activation to metabolic shifts that may worsen the disease. In systemic sclerosis (SSc), mitochondrial changes affect fibroblast metabolism and the immune response. Idiopathic inflammatory myopathies (IIMs) patients have mitochondrial and metabolic issues. In primary Sjögren's syndrome (pSS), immune cell metabolism is imbalanced and mitochondrial damage can lead to cell/tissue damage. Metabolic reprogramming links cellular energy needs and immune dysfunctions, causing inflammation, damage, and symptoms in these diseases. It also affects immune cell functions like differentiation, proliferation, and secretion. This review discusses the potential of targeting metabolic pathways to restore immune balance, offering directions for future autoimmune disease research and treatment.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingqing Lin
- Department of Rheumatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Hui Cheng
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qiyu Xiang
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wenxian Zhou
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinyu Wu
- Institute of Genomic Medicine, Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaobing Wang
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China.
| |
Collapse
|
4
|
Tan YN, Jiang GG, Meng XW, Lu ZY, Yan-Ma, Li J, Nan-Xiang, Sun XG, Wang Q, Wang X, Jia XY, Zhang M. CMPK2 Promotes CD4 + T Cell Activation and Apoptosis through Modulation of Mitochondrial Dysfunction in Systemic Lupus Erythematosus. Cell Biochem Biophys 2024; 82:3547-3557. [PMID: 39078538 DOI: 10.1007/s12013-024-01443-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Systemic lupus erythematosus (SLE) is a classic autoimmune disease characterized by abnormal autoantibodies, immune complex deposition, and tissue inflammation. Despite extensive research, the exact etiology and progression of SLE remain elusive. Cytidine/uridine monophosphate kinase 2 (CMPK2), a mitochondrial nucleoside monophosphate kinase, has garnered attention for its potential involvement in the development of various diseases, including SLE, where it has been observed to be dysregulated in affected individuals. However, the specific involvement of CMPK2 in the pathogenesis of SLE remains unclear. This study aims to clarify the expression level of CMPK2 in SLE CD4+ T cells and explore its impact on CD4+ T cells. The expression levels of the CMPK2 gene and the corresponding CMPK2 protein in CD4+ T cells of SLE patients were quantified using RT-qPCR and Western blot, respectively. Immunofluorescence and RT-qPCR were used to assess the mitochondrial function of SLE CD4+ T cells. Flow cytometry was used to assess CD4+ T cell activation and apoptosis levels. The impact of CMPK2 on CD4+ T cells was investigated by gene transfection experiment. We found that CMPK2 was significantly upregulated in SLE CD4+ T cells at both gene and protein levels. These cells demonstrated aberrant mitochondrial function, as evidenced by elevated mitochondrial reactive oxygen species (mtROS) levels, mitochondrial membrane potential, and mitochondrial DNA (mtDNA) copy number. Flow cytometry revealed a notable increase in both apoptosis and activation levels of CD4+ T cells in SLE patients. Gene transfection experiments showed that suppressing CMPK2 led to a significant improvement in these conditions. These findings suggest that CMPK2 may be involved in the pathogenesis of SLE by regulating mitochondrial dysfunction in CD4+ T cells and thus affecting CD4+ T cell activation and apoptosis. Our study may provide a new target for the treatment of SLE.
Collapse
Affiliation(s)
- Ya-Nan Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Ge-Ge Jiang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Xiang-Wen Meng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Zhi-Yuan Lu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Yan-Ma
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Jin Li
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Nan-Xiang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xiao-Ge Sun
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Qian Wang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xue Wang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China
| | - Xiao-Yi Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Research & Development of Chinese Medicine, Hefei, PR China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, PR China
| | - Min Zhang
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
5
|
Xia L, Yang F, Hayashi N, Ma Y, Yan B, Du Y, Chen S, Xia Y, Feng F, Ma Z. Investigation of Nutritional Factors and Malnutrition Risk Prediction Model in Hospitalized Patients with Systemic Lupus Erythematosus in China. J Inflamm Res 2024; 17:8891-8904. [PMID: 39575346 PMCID: PMC11579133 DOI: 10.2147/jir.s486792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/07/2024] [Indexed: 11/24/2024] Open
Abstract
Introduction Nutritional status is a critical indicator of overall health and immune function, significantly influencing treatment outcomes. Despite its importance, the nutritional status of patients with systemic lupus erythematosus (SLE) often receives insufficient attention. This study aims to evaluate the nutritional status of patients with SLE, identify factors associated with malnutrition, and develop a risk prediction model for malnutrition in this population. Methods We collected clinical data from a convenience sample of SLE patients at a general hospital in Ningxia Province, China, between January and December 2022. Univariate and multivariate logistic regression analyses were performed to determine the independent risk factors for malnutrition. A risk prediction model was constructed and evaluated using the receiver operating characteristic (ROC) curve. Results This study included 420 patients with SLE (mean age: 41.43 years, 91.7% women), of whom 46.2% were malnourished based on their serum albumin levels. Multivariate logistic regression analysis identified monthly income (OR=0.192, P<0.05), sleep quality (OR=2.559, P<0.05), kidney involvement (OR=4.269, P<0.05), disease activity (OR=2.743, P<0.05), leukocyte count (OR=1.576, P<0.05), lymphocyte count (OR=0.393, P<0.05), hemoglobin (OR=0.972, P<0.05), complement C3 (OR=0.802, P<0.05), and complement C4 (OR=0.493, P<0.05) as independent risk factors for malnutrition. The prediction model showed good predictive value with an area under the ROC curve of 0.895 (95% CI: 0.823-0.840), sensitivity of 0.907, and specificity of 0.827. The Hosmer-Lemeshow test indicated a good model fit (χ²=10.779, P=0.215). Discussion Malnutrition is a significant concern among SLE patients, influenced by a range of socioeconomic and clinical factors. Our risk prediction model, with its high sensitivity and specificity, provides a robust tool for early identification of malnutrition in this population. Implementing this model in clinical practice can guide healthcare providers in prioritizing at-risk patients, enabling proactive nutritional interventions that could potentially improve clinical outcomes, enhance quality of life, and reduce healthcare costs associated with SLE.
Collapse
Affiliation(s)
- Lijuan Xia
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
- Department of Oncology Nursing and Palliative Care/ Chronic Illness and Conditions Nursing, St. Luke’s International University, Tokyo, Japan
| | - Fanxing Yang
- Department of Labor Delivery Recovery Postpartum, People’s Hospital of Zhengzhou, Zhengzhou, Henan, People’s Republic of China
| | - Naoko Hayashi
- Department of Oncology Nursing and Palliative Care/ Chronic Illness and Conditions Nursing, St. Luke’s International University, Tokyo, Japan
| | - Yuan Ma
- Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Bin Yan
- Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Yingxin Du
- Department of Clinical Nutrition, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Sujuan Chen
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Yuke Xia
- Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Fang Feng
- Department of Rheumatology and Immunology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| | - Zhifang Ma
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China
| |
Collapse
|
6
|
Söth R, Hoffmann ALC, Deeg CA. Enhanced ROS Production and Mitochondrial Metabolic Shifts in CD4 + T Cells of an Autoimmune Uveitis Model. Int J Mol Sci 2024; 25:11513. [PMID: 39519064 PMCID: PMC11545935 DOI: 10.3390/ijms252111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Equine recurrent uveitis (ERU) is a spontaneously occurring autoimmune disease and one of the leading causes of blindness in horses worldwide. Its similarities to autoimmune-mediated uveitis in humans make it a unique spontaneous animal model for this disease. Although many aspects of ERU pathogenesis have been elucidated, it remains not fully understood and requires further research. CD4+ T cells have been a particular focus of research. In a previous study, we showed metabolic alterations in CD4+ T cells from ERU cases, including an increased basal oxygen consumption rate (OCR) and elevated compensatory glycolysis. To further investigate the underlying reasons for and consequences of these metabolic changes, we quantified reactive oxygen species (ROS) production in CD4+ T cells from ERU cases and compared it to healthy controls, revealing significantly higher ROS production in ERU-affected horses. Additionally, we aimed to define mitochondrial fuel oxidation of glucose, glutamine, and long-chain fatty acids (LCFAs) and identified significant differences between CD4+ T cells from ERU cases and controls. CD4+ T cells from ERU cases showed a lower dependency on mitochondrial glucose oxidation and greater metabolic flexibility for the mitochondrial oxidation of glucose and LCFAs, indicating an enhanced ability to switch to alternative fuels when necessary.
Collapse
Affiliation(s)
| | | | - Cornelia A. Deeg
- Chair of Physiology, Department of Veterinary Sciences, Ludwig Maximilian University of Munich, D-82152 Martinsried, Germany
| |
Collapse
|
7
|
Carter LM, Md Yusof MY, Wigston Z, Plant D, Wenlock S, Alase A, Psarras A, Vital EM. Blood RNA-sequencing across the continuum of ANA-positive autoimmunity reveals insights into initiating immunopathology. Ann Rheum Dis 2024; 83:1322-1334. [PMID: 38740438 DOI: 10.1136/ard-2023-225349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Mechanisms underpinning clinical evolution to systemic lupus erythematosus (SLE) from preceding antinuclear antibodies (ANA) positivity are poorly understood. This study aimed to understand blood immune cell transcriptional signatures associated with subclinical ANA positivity, and progression or non-progression to SLE. METHODS Bulk RNA-sequencing of peripheral blood mononuclear cells isolated at baseline from 35 ANA positive (ANA+) subjects with non-diagnostic symptoms was analysed using differential gene expression, weighted gene co-expression network analysis, deconvolution of cell subsets and functional enrichment analyses. ANA+ subjects, including those progressing to classifiable SLE at 12 months (n=15) and those with stable subclinical ANA positivity (n=20), were compared with 15 healthy subjects and 18 patients with SLE. RESULTS ANA+ subjects demonstrated extensive transcriptomic dysregulation compared with healthy controls with reduced CD4+naïve T-cells and resting NK cells, but higher activated dendritic cells. B-cell lymphopenia was evident in SLE but not ANA+ subjects. Two-thirds of dysregulated genes were common to ANA+ progressors and non-progressors. ANA+ progressors showed elevated modular interferon signature in which constituent genes were inducible by both type I interferon (IFN-I) and type II interferon (IFN-II) in vitro. Baseline downregulation of mitochondrial oxidative phosphorylation complex I components significantly associated with progression to SLE but did not directly correlate with IFN modular activity. Non-progressors demonstrated more diverse cytokine profiles. CONCLUSIONS ANA positivity, irrespective of clinical trajectory, is profoundly dysregulated and transcriptomically closer to SLE than to healthy immune function. Metabolic derangements and IFN-I activation occur early in the ANA+ preclinical phase and associated with diverging transcriptomic profiles which distinguish subsequent clinical evolution.
Collapse
Affiliation(s)
- Lucy Marie Carter
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Md Yuzaiful Md Yusof
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Zoe Wigston
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Darren Plant
- Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | | | - Adewonuola Alase
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Antonios Psarras
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Edward M Vital
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Musculoskeletal Biomedical Research Unit, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
8
|
Yazicioglu YF, Mitchell RJ, Clarke AJ. Mitochondrial control of lymphocyte homeostasis. Semin Cell Dev Biol 2024; 161-162:42-53. [PMID: 38608498 DOI: 10.1016/j.semcdb.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Mitochondria play a multitude of essential roles within mammalian cells, and understanding how they control immunity is an emerging area of study. Lymphocytes, as integral cellular components of the adaptive immune system, rely on mitochondria for their function, and mitochondria can dynamically instruct their differentiation and activation by undergoing rapid and profound remodelling. Energy homeostasis and ATP production are often considered the primary functions of mitochondria in immune cells; however, their importance extends across a spectrum of other molecular processes, including regulation of redox balance, signalling pathways, and biosynthesis. In this review, we explore the dynamic landscape of mitochondrial homeostasis in T and B cells, and discuss how mitochondrial disorders compromise adaptive immunity.
Collapse
|
9
|
Patiño-Martinez E, Nakabo S, Jiang K, Carmona-Rivera C, Li Tsai W, Claybaugh D, Yu ZX, Romero A, Bohrnsen E, Schwarz B, Solís-Barbosa MA, Blanco LP, Naqi M, Temesgen-Oyelakim Y, Davis M, Manna Z, Gupta S, Mehta N, Naz F, dell’Orso S, Hasni S, Kaplan MJ. The Aconitate Decarboxylase 1/Itaconate Pathway Modulates Immune Dysregulation and Associates with Cardiovascular Disease Markers and Disease Activity in Systemic Lupus Erythematosus. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:419-434. [PMID: 38949522 PMCID: PMC11817569 DOI: 10.4049/jimmunol.2400241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/10/2024] [Indexed: 07/02/2024]
Abstract
The Krebs cycle enzyme aconitate decarboxylase 1 (ACOD1) mediates itaconate synthesis in monocytes and macrophages. Previously, we reported that administration of 4-octyl itaconate to lupus-prone mice abrogated immune dysregulation and clinical features. In this study, we explore the role of the endogenous ACOD1/itaconate pathway in the development of TLR7-induced lupus (imiquimod [IMQ] model). We found that, in vitro, ACOD1 was induced in mouse bone marrow-derived macrophages and human monocyte-derived macrophages following TLR7 stimulation. This induction was partially dependent on type I IFN receptor signaling and on specific intracellular pathways. In the IMQ-induced mouse model of lupus, ACOD1 knockout (Acod1-/-) displayed disruptions of the splenic architecture, increased serum levels of anti-dsDNA and proinflammatory cytokines, and enhanced kidney immune complex deposition and proteinuria, when compared with the IMQ-treated wild-type mice. Consistent with these results, Acod1-/- bone marrow-derived macrophages treated in vitro with IMQ showed higher proinflammatory features. Furthermore, itaconate serum levels in systemic lupus erythematosus patients were decreased compared with healthy individuals, in association with disease activity and specific perturbed cardiometabolic parameters. These findings suggest that the ACOD1/itaconate pathway plays important immunomodulatory and vasculoprotective roles in systemic lupus erythematosus, supporting the potential therapeutic role of itaconate analogs in autoimmune diseases.
Collapse
Affiliation(s)
- Eduardo Patiño-Martinez
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Shuichiro Nakabo
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS/NIH
| | - Carmelo Carmona-Rivera
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | - Dillon Claybaugh
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Zu-Xi Yu
- National Heart, Lung, and Blood Institute (NHLBI), NIH
| | - Aracely Romero
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Eric Bohrnsen
- Protein & Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, MT, USA
| | - Benjamin Schwarz
- Protein & Chemistry Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Hamilton, MT, USA
| | - Miguel A. Solís-Barbosa
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del I.P.N, 07360 Mexico City, Mexico
| | - Luz P. Blanco
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | | | | | | | | | - Faiza Naz
- Office of Science and Technology, NIAMS/NIH
| | | | | | - Mariana J. Kaplan
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| |
Collapse
|
10
|
Li L, Zhang M, Gu M, Li J, Li Z, Zhang R, Du C, Lv Y. The causal relationship between autoimmune diseases and age-related macular degeneration: A two-sample mendelian randomization study. PLoS One 2024; 19:e0303170. [PMID: 38857222 PMCID: PMC11164335 DOI: 10.1371/journal.pone.0303170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
OBJECTIVE The aim of this study is to investigate the potential causal relationship between autoimmune diseases, including systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, multiple sclerosis, and Type 1 diabetes, and age-related macular degeneration (AMD). By utilizing the two-sample Mendelian Randomization (MR) approach, we endeavor to address this complex medical issue. METHODS Genome-wide association study (GWAS) data for autoimmune diseases and AMD were obtained from the IEU Open GWAS database and the FinnGen consortium. A series of stringent SNP filtering steps was applied to ensure the reliability of the genetic instruments. MR analyses were conducted using the TwoSampleMR and MR-PRESSO packages in R. The inverse-variance weighted (IVW) method served as the primary analysis, complemented by multiple supplementary analyses and sensitivity tests. RESULTS Within the discovery sample, only a statistically significant inverse causal relationship between multiple sclerosis (MS) and AMD was observed (OR = 0.92, 95% CI: 0.88-0.97, P = 0.003). This finding was confirmed in the replication sample (OR = 0.85, 95% CI: 0.80-0.89, P = 3.32×10-12). No statistically significant associations were detected between systemic lupus erythematosus, rheumatoid arthritis, inflammatory bowel disease, and Type 1 diabetes and AMD. CONCLUSION Strong evidence is provided by this study to support the existence of an inverse causal relationship between multiple sclerosis and age-related macular degeneration. However, no causal evidence was found linking other autoimmune diseases with AMD. These findings not only offer novel insights into the potential etiological mechanisms underlying AMD but also suggest possible directions for future clinical interventions.
Collapse
Affiliation(s)
- Linrui Li
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Mingyue Zhang
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Moxiu Gu
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Jun Li
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Zhiyuan Li
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Rong Zhang
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Chuanwang Du
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| | - Yun Lv
- Department of Ophthalmology, Fushun People’s Hospital, Fushun, China. Sichuan Province, P.R. China
| |
Collapse
|