1
|
Iverson R, Taljaard M, Geraghty MT, Pugliese M, Tingley K, Coyle D, Kronick JB, Wilson K, Austin V, Brunel-Guitton C, Buhas D, Butcher NJ, Chan AKJ, Dyack S, Goobie S, Greenberg CR, Jain-Ghai S, Inbar-Feigenberg M, Karp N, Kozenko M, Langley E, Lines M, Little J, MacKenzie J, Maranda B, Mercimek-Andrews S, Mhanni A, Mitchell JJ, Nagy L, Offringa M, Pender A, Potter M, Prasad C, Ratko S, Salvarinova R, Schulze A, Siriwardena K, Sondheimer N, Sparkes R, Stockler-Ipsiroglu S, Tapscott K, Trakadis Y, Turner L, Van Karnebeek C, Vandersteen A, Walia JS, Wilson BJ, Yu AC, Potter BK, Chakraborty P. Assessing the quality and value of metabolic chart data for capturing core outcomes for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency. BMC Pediatr 2024; 24:37. [PMID: 38216926 PMCID: PMC10787451 DOI: 10.1186/s12887-023-04393-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Generating rigorous evidence to inform care for rare diseases requires reliable, sustainable, and longitudinal measurement of priority outcomes. Having developed a core outcome set for pediatric medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, we aimed to assess the feasibility of prospective measurement of these core outcomes during routine metabolic clinic visits. METHODS We used existing cohort data abstracted from charts of 124 children diagnosed with MCAD deficiency who participated in a Canadian study which collected data from birth to a maximum of 11 years of age to investigate the frequency of clinic visits and quality of metabolic chart data for selected outcomes. We recorded all opportunities to collect outcomes from the medical chart as a function of visit rate to the metabolic clinic, by treatment centre and by child age. We applied a data quality framework to evaluate data based on completeness, conformance, and plausibility for four core MCAD outcomes: emergency department use, fasting time, metabolic decompensation, and death. RESULTS The frequency of metabolic clinic visits decreased with increasing age, from a rate of 2.8 visits per child per year (95% confidence interval, 2.3-3.3) among infants 2 to 6 months, to 1.0 visit per child per year (95% confidence interval, 0.9-1.2) among those ≥ 5 years of age. Rates of emergency department visits followed anticipated trends by child age. Supplemental findings suggested that some emergency visits occur outside of the metabolic care treatment centre but are not captured. Recommended fasting times were updated relatively infrequently in patients' metabolic charts. Episodes of metabolic decompensation were identifiable but required an operational definition based on acute manifestations most commonly recorded in the metabolic chart. Deaths occurred rarely in these patients and quality of mortality data was not evaluated. CONCLUSIONS Opportunities to record core outcomes at the metabolic clinic occur at least annually for children with MCAD deficiency. Methods to comprehensively capture emergency care received at outside institutions are needed. To reduce substantial heterogeneous recording of core outcome across treatment centres, improved documentation standards are required for recording of recommended fasting times and a consensus definition for metabolic decompensations needs to be developed and implemented.
Collapse
Affiliation(s)
- Ryan Iverson
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Monica Taljaard
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Michael T Geraghty
- Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Michael Pugliese
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Kylie Tingley
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Doug Coyle
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | | | - Kumanan Wilson
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, Canada
- Bruyère Research Institute, Ottawa, Canada
- Department of Medicine, University of Ottawa, Ottawa, Canada
| | - Valerie Austin
- The Hospital for Sick Children/University of Toronto, Toronto, Canada
| | | | | | - Nancy J Butcher
- The Hospital for Sick Children Research Institute/University of Toronto, Toronto, Canada
| | - Alicia K J Chan
- Department of Medical Genetics, University of Alberta/Stollery Children's Hospital, Edmonton, Canada
| | - Sarah Dyack
- IWK Health Centre/Dalhousie University, Halifax, Canada
| | - Sharan Goobie
- IWK Health Centre/Dalhousie University, Halifax, Canada
| | - Cheryl R Greenberg
- Health Sciences Centre Winnipeg/University of Manitoba, Winnipeg, Canada
| | - Shailly Jain-Ghai
- Department of Medical Genetics, University of Alberta/Stollery Children's Hospital, Edmonton, Canada
| | | | - Natalya Karp
- London Health Sciences Centre/Western University, London, Canada
| | | | - Erica Langley
- Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Matthew Lines
- Hamilton Health Sciences Centre/McMaster University, Hamilton, Canada
| | - Julian Little
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Jennifer MacKenzie
- McMaster Children's Hospital, Hamilton, Canada
- Janeway Children's Hospital/Memorial University, St John's, Canada
| | - Bruno Maranda
- CIUSSSE-CHUS, Université de Sherbrooke, Sherbrooke, Canada, Sherbrooke, Canada
| | | | - Aizeddin Mhanni
- Health Sciences Centre Winnipeg/University of Manitoba, Winnipeg, Canada
| | | | - Laura Nagy
- The Hospital for Sick Children/University of Toronto, Toronto, Canada
| | - Martin Offringa
- The Hospital for Sick Children Research Institute/University of Toronto, Toronto, Canada
| | - Amy Pender
- McMaster Children's Hospital, Hamilton, Canada
| | | | - Chitra Prasad
- London Health Sciences Centre/Western University, London, Canada
| | - Suzanne Ratko
- London Health Sciences Centre/Western University, London, Canada
| | - Ramona Salvarinova
- BC Children's Hospital/University of British Columbia, Vancouver, Canada
| | - Andreas Schulze
- The Hospital for Sick Children/University of Toronto, Toronto, Canada
| | - Komudi Siriwardena
- Department of Medical Genetics, University of Alberta/Stollery Children's Hospital, Edmonton, Canada
| | - Neal Sondheimer
- The Hospital for Sick Children/University of Toronto, Toronto, Canada
| | - Rebecca Sparkes
- Alberta Children's Hospital/University of Calgary, Calgary, Canada
| | | | - Kendra Tapscott
- BC Children's Hospital/University of British Columbia, Vancouver, Canada
| | | | - Lesley Turner
- Janeway Children's Hospital/Memorial University, St John's, Canada
| | - Clara Van Karnebeek
- BC Children's Hospital/University of British Columbia, Vancouver, Canada
- Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | | | - Jagdeep S Walia
- Kingston Health Sciences/Queen's University, Kingston, Canada
| | - Brenda J Wilson
- Janeway Children's Hospital/Memorial University, St John's, Canada
| | - Andrea C Yu
- Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada
| | - Beth K Potter
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada
| | - Pranesh Chakraborty
- Department of Pediatrics, Children's Hospital of Eastern Ontario and University of Ottawa, 401 Smyth Road, Ottawa, ON, K1H 8L1, Canada.
- Newborn Screening Ontario, Ottawa, Canada.
| |
Collapse
|
2
|
Lefèvre CR, Labarthe F, Dufour D, Moreau C, Faoucher M, Rollier P, Arnoux JB, Tardieu M, Damaj L, Bendavid C, Dessein AF, Acquaviva-Bourdain C, Cheillan D. Newborn Screening of Primary Carnitine Deficiency: An Overview of Worldwide Practices and Pitfalls to Define an Algorithm before Expansion of Newborn Screening in France. Int J Neonatal Screen 2023; 9:6. [PMID: 36810318 PMCID: PMC9944086 DOI: 10.3390/ijns9010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Primary Carnitine Deficiency (PCD) is a fatty acid oxidation disorder that will be included in the expansion of the French newborn screening (NBS) program at the beginning of 2023. This disease is of high complexity to screen, due to its pathophysiology and wide clinical spectrum. To date, few countries screen newborns for PCD and struggle with high false positive rates. Some have even removed PCD from their screening programs. To understand the risks and pitfalls of implementing PCD to the newborn screening program, we reviewed and analyzed the literature to identify hurdles and benefits from the experiences of countries already screening this inborn error of metabolism. In this study, we therefore, present the main pitfalls encountered and a worldwide overview of current practices in PCD newborn screening. In addition, we address the optimized screening algorithm that has been determined in France for the implementation of this new condition.
Collapse
Affiliation(s)
| | - François Labarthe
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | - Diane Dufour
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | | | | | - Paul Rollier
- Rennes University Hospital Center, 35033 Rennes, France
| | - Jean-Baptiste Arnoux
- Reference Center for Inborn Error of Metabolism, Department of Pediatrics, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France
| | - Marine Tardieu
- Reference Center of Inherited Metabolic Disorders, Clocheville Hospital, 37000 Tours, France
| | - Léna Damaj
- Rennes University Hospital Center, 35033 Rennes, France
| | | | - Anne-Frédérique Dessein
- Metabolism and Rare Disease Unit, Department of Biochemistry and Molecular Biology, Center of Biology and Pathology, Lille University Hospital Center, 59000 Lille, France
| | - Cécile Acquaviva-Bourdain
- Center for Inherited Metabolic Disorders and Neonatal Screening, East Biology and Pathology Department, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, 69500 Bron, France
| | - David Cheillan
- Center for Inherited Metabolic Disorders and Neonatal Screening, East Biology and Pathology Department, Groupement Hospitalier Est (GHE), Hospices Civils de Lyon, 69500 Bron, France
| |
Collapse
|
3
|
Mansour C, Ouarezki Y, Jones J, Fitch M, Smith S, Mason A, Donaldson M. Trends in Scottish newborn screening programme for congenital hypothyroidism 1980-2014: strategies for reducing age at notification after initial and repeat sampling. Arch Dis Child 2017; 102:936-941. [PMID: 28600385 PMCID: PMC5739820 DOI: 10.1136/archdischild-2016-312156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 05/03/2017] [Accepted: 05/09/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES To determine ages at first capillary sampling and notification and age at notification after second sampling in Scottish newborns referred with elevated thyroid-stimulating hormone (TSH). SUBJECTS AND METHODS Referrals between 1980 and 2014 inclusive were grouped into seven 5-year blocks and analysed according to agreed standards. RESULTS Of 2 116 132 newborn infants screened, 919 were referred with capillary TSH elevation ≥8 mU/L of whom 624 had definite (606) or probable (18) congenital hypothyroidism. Median age at first sampling fell from 7 to 5 days between 1980 and 2014 (standard 4-7 days), with 22, 8 and 3 infants sampled >7 days during 2000-2004, 2005-2009 and 2010-2014. Median age at notification was consistently ≤14 days, range falling during 2000-2004, 2005-2009 and 2010-2014 from 6 to 78, 7-52 and 7-32 days with 12 (14.6%), 6 (5.6%) and 5 (4.3%) infants notified >14 days. However 18/123 (14.6%) of infants undergoing second sampling from 2000 onwards breached the ≤26-day standard for notification. By 2010-2014, the 91 infants with confirmed congenital hypothyroidism had shown favourable median age at first sample (5 days) with start of treatment (10.5 days) approaching age at notification. CONCLUSION Most standards for newborn thyroid screening are being met by the Scottish programme, but there is a need to reduce age range at notification, particularly following second sampling. Strategies to improve screening performance include carrying out initial capillary sampling as close to 96 hours as possible; introducing 6-day laboratory reporting and use of electronic transmission for communicating repeat requests.
Collapse
Affiliation(s)
- Chourouk Mansour
- Hôpital Universitaire d’Enfants Abderrahim Harouchi, Casablanca, Morocco
| | - Yasmine Ouarezki
- Etablissement Public Hospitalier Hassen-Badi, El-Harrach, Algiers, Algeria
| | - Jeremy Jones
- NHS Greater Glasgow and Clyde, Royal Hospital for Children, Queen Elizabeth University Hospital, Glasgow, UK
| | - Moira Fitch
- Newborn Screening Laboratory, Queen Elizabeth University Hospital, Glasgow, UK
| | - Sarah Smith
- Newborn Screening Laboratory, Queen Elizabeth University Hospital, Glasgow, UK
| | - Avril Mason
- NHS Greater Glasgow and Clyde, Royal Hospital for Children, Queen Elizabeth University Hospital, Glasgow, UK
| | - Malcolm Donaldson
- Section of Child Health, Glasgow University School of Medicine, c/o Royal Hospital for Children, Glasgow, UK
| |
Collapse
|
4
|
Morbidity and mortality among exclusively breastfed neonates with medium-chain acyl-CoA dehydrogenase deficiency. Genet Med 2016; 18:1315-1319. [PMID: 27148938 DOI: 10.1038/gim.2016.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/11/2016] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Despite greatly improved morbidity and mortality among infants with medium-chain acyl-CoA dehydrogenase deficiency (MCAD) since the implementation of universal newborn screening (NBS), a population of neonates still becomes ill before their positive screen results are available. Exclusive breastfeeding is a proposed risk factor in this group. Since initial studies of MCAD NBS, breastfeeding rates have increased substantially. In this study, we quantify the current risk of early decompensation in neonates with MCAD and identify factors associated with poor outcomes. METHODS We completed a retrospective analysis of neonates with MCAD referred to our center between 2010 and 2015. RESULTS Of 46 infants with MCAD, 11 (23.9%) were symptomatic before the return of the NBS results. Four died or had cardiac arrest; the remaining seven had lethargy and hypoglycemia. All symptomatic patients were exclusively breastfed; only 40.6% of asymptomatic patients were exclusively breastfed. Breastfeeding rates increased from 45.5% in 2010-2011 to 64.7% in 2012-2013 and 87.5% in 2014-2015. Over these same periods, rates of early decompensation increased from 9.09% to 23.5% and 75%, respectively. CONCLUSIONS Exclusively breastfed neonates with MCAD are at risk for early metabolic decompensation. As breastfeeding rates increase, close management of feeding difficulties is essential for all neonates awaiting NBS results.Genet Med 18 12, 1315-1319.
Collapse
|
5
|
Prasad C, Speechley KN, Dyack S, Rupar CA, Chakraborty P, Kronick JB. Incidence of medium-chain acyl-CoA dehydrogenase deficiency in Canada using the Canadian Paediatric Surveillance Program: Role of newborn screening. Paediatr Child Health 2012; 17:185-9. [PMID: 23543005 PMCID: PMC3381659 DOI: 10.1093/pch/17.4.185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The incidence of medium-chain acyl-CoA dehydrogenase deficiency (MCADD) was estimated using the Canadian Paediatric Surveillance Program (CPSP) in Canada over a three-year period. Data regarding mutations associated with MCADD cases were collected wherever available. METHODS Data were collected over a 36-month period using a monthly mailed questionnaire distributed through the CPSP to more than 2500 Canadian paediatricians, medical geneticists and paediatric pathologists. RESULTS AND CONCLUSIONS During the three years of MCADD surveillance, 46 confirmed cases out of a total of 71 reported cases were found - an average of approximately 15 cases per year. This rate is lower than the initial estimate of approximately 30 cases per year of MCADD in Canada, based on the reported incidence of MCADD in the literature of approximately one in 10,000 to one in 20,000. All cases ascertained by newborn screening were asymptomatic. There were two deaths, both in jurisdictions without newborn screening for MCADD. The data support population-based newborn screening for MCADD.
Collapse
Affiliation(s)
- Chitra Prasad
- Department of Paediatrics
- Children’s Health Research Institute
| | - Kathy N Speechley
- Department of Paediatrics
- Children’s Health Research Institute
- Department of Epidemiology & Biostatistics, The University of Western Ontario, London, Ontario
| | - Sarah Dyack
- Department of Paediatrics, Dalhousie University, Halifax, Nova Scotia
| | - Charles A Rupar
- Department of Paediatrics
- Children’s Health Research Institute
- Biochemistry, The University of Western Ontario, London
| | - Pranesh Chakraborty
- Newborn Screening Ontario, Children’s Hospital of Eastern Ontario
- Department of Paediatrics, University of Ottawa, Ottawa
| | - Jonathan B Kronick
- Department of Paediatrics, Dalhousie University, Halifax, Nova Scotia
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario
| |
Collapse
|