1
|
Zhou X, Xiang X, Cao D, Zhang L, Hu J. Selective sweep and GWAS provide insights into adaptive variation of Populus cathayana leaves. FORESTRY RESEARCH 2024; 4:e012. [PMID: 39524419 PMCID: PMC11524237 DOI: 10.48130/forres-0024-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/25/2024] [Accepted: 03/19/2024] [Indexed: 11/16/2024]
Abstract
Leaf morphology plays a crucial role in predicting the productivity and environmental adaptability of forest trees, making it essential to understand the genetic mechanisms behind leaf variation. In natural populations of Populus cathayana, leaf morphology exhibits rich intraspecific variation due to long-term selection. However, there have been no studies that systematically reveal the genetic mechanisms of leaf variation in P. cathayana. To fill this gap and enhance our understanding of leaf variation in P. cathayana, we collected nine leaf traits from the P. cathayana natural population, consisting of 416 accessions, and conducted the preliminary classification of leaf types with four categories. Subsequently, we conducted an analysis of selective sweep and genome-wide association studies (GWAS) to uncover the genetic basis of leaf traits variation. Most of the leaf traits displayed significant correlations, with broad-sense trait heritability ranging from 0.38 to 0.74. In total, three selective sweep methods ultimately identified 278 positively selected candidate regions and 493 genes associated with leaf size. Single-trait and multi-trait GWAS methods detected 13 and 59 genes, respectively. By integrating the results of selective sweep and GWAS, we further identified a total of nine overlapping genes. These genes may play a role in the leaf development process and are closely associated with leaf size. In particular, the gene CBSCBSPB3 (Pca07G009100) located on chromosome 7, was associated with the response to light stimulation. This study will deepen our understanding of the genetic mechanism of leaf adaptive variation in P. cathayana and provide valuable gene resources.
Collapse
Affiliation(s)
- Xinglu Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaodong Xiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Demei Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
2
|
Malekmohammadi L, Sheidai M, Ghahremaninejad F, Danehkar A, Koohdar F. Putative Local Adaptive SNPs in the Genus Avicennia. Biochem Genet 2023; 61:2260-2275. [PMID: 37010715 DOI: 10.1007/s10528-023-10362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 03/03/2023] [Indexed: 04/04/2023]
Abstract
The genus Avicennia with eight species grow in intertidal zones of tropical and temperate regions, ranging in distribution from West Asia, to Australia, and Latin America. These mangroves have several medicinal applications for mankind. Many genetic and phylogenetic studies have been carried out on mangroves, but none is concerned with geographical adaptation of SNPs. We therefore, used ITS sequences of about 120 Avicennia taxa growing in different parts of the world and undertook computational analyses to identify discriminating SNPs among these species and to study their association with geographical variables. A combination of multivariate and Bayesian approaches such as CCA, RDA, and LFMM were conducted to identify the SNPs with potential adaptation to geographical and ecological variables. Manhattan plot revealed that many of these SNPs are significantly associated with these variables. The genetic changes accompanied by local and geographical adaptation were illustrated by skyline plot. These genetic changes occurred not under a molecular clock model of evolution and probably under a positive selection pressure imposed in different geographical regions in which these plants grow.
Collapse
Affiliation(s)
- Laleh Malekmohammadi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Sheidai
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Afshin Danehkar
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fahimeh Koohdar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
3
|
Malekmohammadi L, Sheidai M, Ghahremaninejad F, Danehkar A, Koohdar F. Studies on genetic diversity, gene flow and landscape genetic in Avicennia marina: Spatial PCA, Random Forest, and phylogeography approaches. BMC PLANT BIOLOGY 2023; 23:459. [PMID: 37789283 PMCID: PMC10546741 DOI: 10.1186/s12870-023-04475-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Mangrove forests grow in coastal areas, lagoons, estuaries, and deltas and form the main vegetation in tidal and saline wetlands. Due to the mankind activities and also changes in climate, these forests face degradations and probably extinction in some areas. Avicennia marina is one of the most distributed mangrove species throughout the world. The populations of A. marina occur in a limited region in southern parts of Iran. Very few genetic and spatial analyses are available on these plants from our country. Therefore, the present study was planned to provide detailed information on Avicennia marina populations with regard to genetic diversity, gene flow versus genetic isolation, effects of spatial variables on connectivity and structuring the genetic content of trees populations and also identifying adaptive genetic regions in respond too spatial variables. We used SCoT molecular markers for genetic analyses and utilized different computational approaches for population genetics and landscapes analyses. The results of present study showed a low to moderate genetic diversity in the studied populations and presence of significant Fst values among them. Genetic fragmentation was also observed within each province studied. A limited gene flow was noticed among neighboring populations within a particular province. One population was almost completely isolated from the gene flow with other populations and had peculiar genetic content.Spatial PCA analysis revealed both significant global and local genetic structuring in the studied populations. Spatial variables like humidity, longitude and altitude were the most important spatial features affecting genetic structure in these populations.
Collapse
Affiliation(s)
- Laleh Malekmohammadi
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Masoud Sheidai
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Farrokh Ghahremaninejad
- Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Afshin Danehkar
- Department of Environmental Sciences, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Fahimeh Koohdar
- Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
4
|
Fan M, Zhang Y, Li X, Wu S, Yang M, Yin H, Liu W, Fan Z, Li J. Multi-Approach Analysis Reveals Pathways of Cold Tolerance Divergence in Camellia japonica. FRONTIERS IN PLANT SCIENCE 2022; 13:811791. [PMID: 35283896 PMCID: PMC8914472 DOI: 10.3389/fpls.2022.811791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Understanding the molecular mechanism of the cold response is critical to improve horticultural plant cold tolerance. Here, we documented the physiological, transcriptome, proteome, and hormonal dynamics to cold stress in temperate genotype (Tg) and subtropical genotype (Sg) populations of Camellia japonica. Tg C. japonica suffered minimal osmotic and oxidative damage compared to Sg C. japonica under the same cold treatment. Transcriptional and translational differences increased under the cold treatment, indicating that Tg C. japonica was affected by the environment and displayed both conserved and divergent mechanisms. About 60% of the genes responding to cold had similar dynamics in the two populations, but 1,896 transcripts and 455 proteins differentially accumulated in response to the cold between Tg and Sg C. japonica. Co-expression analysis showed that the ribosomal protein and genes related to photosynthesis were upregulated in Tg C. japonica, and tryptophan, phenylpropanoid, and flavonoid metabolism were regulated differently between the two populations under cold stress. The divergence of these genes reflected a difference in cold responsiveness. In addition, the decrease in the abscisic acid (ABA)/gibberellic acid (GA) ratio regulated by biosynthetic signal transduction pathway enhanced cold resistance in Tg C. japonica, suggesting that hormones may regulate the difference in cold responsiveness. These results provide a new understanding of the molecular mechanism of cold stress and will improve cold tolerance in horticultural plants.
Collapse
Affiliation(s)
| | | | - XinLei Li
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Yoshida K, Sakamoto S, Mitsuda N. In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls. PLANT & CELL PHYSIOLOGY 2021; 62:1813-1827. [PMID: 34718770 DOI: 10.1093/pcp/pcab157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
To mitigate the effects of global warming and to preserve the limited fossil fuel resources, an increased exploitation of plant-based materials and fuels is required, which would be one of the most important innovations related to sustainable development. Cell walls account for the majority of plant dry biomass and so is the target of such innovations. In this review, we discuss recent advances in in planta cell wall engineering through genetic manipulations, with a focus on wild-type-based and mutant-based approaches. The long history of using a wild-type-based approach has resulted in the development of many strategies for manipulating lignin, hemicellulose and pectin to decrease cell wall recalcitrance. In addition to enzyme-encoding genes, many transcription factor genes important for changing relevant cell wall characteristics have been identified. Although mutant-based cell wall engineering is relatively new, it has become feasible due to the rapid development of genome-editing technologies and systems biology-related research; we will soon enter an age of designed artificial wood production via complex genetic manipulations of many industrially important trees and crops.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei Corporation, Nase-cho 344-1, Totsuka-ku, Yokohama, Kanagawa, 245-0051 Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| |
Collapse
|