1
|
Liu Q, Zhang Z, Bai C, Li Y, Yin X, Lin W, Yao L. Disturbed nutrient accumulation and cell wall metabolism in panicles are responsible for rice straighthead disease. PHYSIOLOGIA PLANTARUM 2024; 176:e14214. [PMID: 38366694 DOI: 10.1111/ppl.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/26/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024]
Abstract
Rice straighthead disease substantially reduces crop yield, posing a significant threat to global food security. Dimethylarsinic acid (DMA) is the causal agent of straighthead disease and is highly toxic to the reproductive tissue of rice. However, the precise physiological mechanism underlying DMA toxicity remains unknown. In this study, six rice varieties with varying susceptibility to straighthead were utilized to investigate the growth performance and element distribution in rice panicles under DMA stress through pot experiments, as well as to explore the physiological response to DMA using transcriptomic methods. The findings demonstrate significant variations in both DMA accumulation and straighthead sensitivity among cultivars. The susceptible varieties exhibited higher DMA accumulation indices and displayed typical symptoms of straighthead disease, including erect panicles, deformed rachides and husks, and reduced seed setting rate and grain yield when compared to the resistant varieties. Moreover, DMA addition promoted mineral nutrients to accumulate in rachides and husks but less in grains. DMA showed preferential accumulation in rice grains with a distribution pattern similar to that of Copper (Cu) and zinc (Zn) within the panicle. Transcriptome analyses underscored the substantial impact of DMA on gene expression related to mineral metabolism. Notably, DMA addition significantly up-regulated the expression of pectin methylesterase, pectin lyase, polygalacturonase, and exogalacturonase genes in Nanjingxiangzhan, while these genes were down-regulated or weakly expressed in Ruanhuayou 1179. The alteration of pectin metabolic pathways induced by DMA may lead to abnormality of cell wall assembly and modification, thereby resulting in deformed rice panicles.
Collapse
Affiliation(s)
- Qinghui Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Zhijun Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Cuihua Bai
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| | - Yi Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Xueying Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Wanting Lin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Lixian Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| |
Collapse
|
2
|
Lian W, Geng A, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of Potassium Absorption, Transport, and Utilization in Rice. Int J Mol Sci 2023; 24:16682. [PMID: 38069005 PMCID: PMC10705939 DOI: 10.3390/ijms242316682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Potassium is essential for plant growth and development and stress adaptation. The maintenance of potassium homeostasis involves a series of potassium channels and transporters, which promote the movement of potassium ions (K+) across cell membranes and exhibit complex expression patterns and regulatory mechanisms. Rice is a major food crop in China. The low utilization rate of potassium fertilizer limits the yield and quality of rice. Elucidating the molecular mechanisms of potassium absorption, transport, and utilization is critical in improving potassium utilization efficiency in rice. Although some K+ transporter genes have been identified from rice, research on the regulatory network is still in its infancy. Therefore, this review summarizes the relevant information on K+ channels and transporters in rice, covering the absorption of K+ in the roots, transport to the shoots, the regulation pathways, the relationship between K+ and the salt tolerance of rice, and the synergistic regulation of potassium, nitrogen, and phosphorus signals. The related research on rice potassium nutrition has been comprehensively reviewed, the existing research foundation and the bottleneck problems to be solved in this field have been clarified, and the follow-up key research directions have been pointed out to provide a theoretical framework for the cultivation of potassium-efficient rice.
Collapse
Affiliation(s)
- Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
3
|
Shen L, Fan W, Li N, Wu Q, Chen D, Luan J, Zhang G, Tian Q, Jing W, Zhang Q, Zhang W. Rice potassium transporter OsHAK18 mediates phloem K + loading and redistribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:201-216. [PMID: 37381632 DOI: 10.1111/tpj.16371] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
High-affinity K+ transporters/K+ uptake permeases/K+ transporters (HAK/KUP/KT) are important pathways mediating K+ transport across cell membranes, which function in maintaining K+ homeostasis during plant growth and stress response. An increasing number of studies have shown that HAK/KUP/KT transporters play crucial roles in root K+ uptake and root-to-shoot translocation. However, whether HAK/KUP/KT transporters also function in phloem K+ translocation remain unclear. In this study, we revealed that a phloem-localized rice HAK/KUP/KT transporter, OsHAK18, mediated cell K+ uptake when expressed in yeast, Escherichia coli and Arabidopsis. It was localized at the plasma membrane. Disruption of OsHAK18 rendered rice seedlings insensitive to low-K+ (LK) stress. After LK stress, some WT leaves showed severe wilting and chlorosis, whereas the corresponding leaves of oshak18 mutant lines (a Tos17 insertion line and two CRISPR lines) remained green and unwilted. Compared with WT, the oshak18 mutants accumulated more K+ in shoots but less K+ in roots after LK stress, leading to a higher shoot/root ratio of K+ per plant. Disruption of OsHAK18 does not affect root K+ uptake and K+ level in xylem sap, but it significantly decreases phloem K+ concentration and inhibits root-to-shoot-to-root K+ (Rb+ ) translocation in split-root assay. These results reveal that OsHAK18 mediates phloem K+ loading and redistribution, whose disruption is in favor of shoot K+ retention under LK stress. Our findings expand the understanding of HAK/KUP/KT transporters' functions and provide a promising strategy for improving rice tolerance to K+ deficiency.
Collapse
Affiliation(s)
- Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenxia Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Na Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qi Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Di Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junxia Luan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gangao Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Quanxiang Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wen Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Robinson R, Sprott D, Couroux P, Routly E, Labbé N, Xing T, Robert LS. The triticale mature pollen and stigma proteomes - assembling the proteins for a productive encounter. J Proteomics 2023; 278:104867. [PMID: 36870675 DOI: 10.1016/j.jprot.2023.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Triticeae crops are major contributors to global food production and ensuring their capacity to reproduce and generate seeds is critical. However, despite their importance our knowledge of the proteins underlying Triticeae reproduction is severely lacking and this is not only true of pollen and stigma development, but also of their pivotal interaction. When the pollen grain and stigma are brought together they have each accumulated the proteins required for their intended meeting and accordingly studying their mature proteomes is bound to reveal proteins involved in their diverse and complex interactions. Using triticale as a Triticeae representative, gel-free shotgun proteomics was used to identify 11,533 and 2977 mature stigma and pollen proteins respectively. These datasets, by far the largest to date, provide unprecedented insights into the proteins participating in Triticeae pollen and stigma development and interactions. The study of the Triticeae stigma has been particularly neglected. To begin filling this knowledge gap, a developmental iTRAQ analysis was performed revealing 647 proteins displaying differential abundance as the stigma matures in preparation for pollination. An in-depth comparison to an equivalent Brassicaceae analysis divulged both conservation and diversification in the makeup and function of proteins involved in the pollen and stigma encounter. SIGNIFICANCE: Successful pollination brings together the mature pollen and stigma thus initiating an intricate series of molecular processes vital to crop reproduction. In the Triticeae crops (e.g. wheat, barley, rye, triticale) there persists a vast deficit in our knowledge of the proteins involved which needs to be addressed if we are to face the many upcoming challenges to crop production such as those associated with climate change. At maturity, both the pollen and stigma have acquired the protein complement necessary for their forthcoming encounter and investigating their proteomes will inevitably provide unprecedented insights into the proteins enabling their interactions. By combining the analysis of the most comprehensive Triticeae pollen and stigma global proteome datasets to date with developmental iTRAQ investigations, proteins implicated in the different phases of pollen-stigma interaction enabling pollen adhesion, recognition, hydration, germination and tube growth, as well as those underlying stigma development were revealed. Extensive comparisons between equivalent Triticeae and Brassiceae datasets highlighted both the conservation of biological processes in line with the shared goal of activating the pollen grain and promoting pollen tube invasion of the pistil to effect fertilization, as well as the significant distinctions in their proteomes consistent with the considerable differences in their biochemistry, physiology and morphology.
Collapse
Affiliation(s)
- Reneé Robinson
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada; Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - David Sprott
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Philippe Couroux
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Elizabeth Routly
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Natalie Labbé
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada
| | - Tim Xing
- Carleton University, Department of Biology, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada
| | - Laurian S Robert
- Ottawa Research and Development Centre, 960 Carling Ave., Ottawa, Ontario K1A 0C6, Canada.
| |
Collapse
|