1
|
Djurhuus DLE, Song Z, Andersen AG, Gargiulo S, Casolo V, Ismail AM, Nchimbi-Msolla S, de la Cruz Jiménez J, Pedersen O. The Relationship between Anaerobic Germination Capacity and Submergence Tolerance in Rice Seedlings. RICE (NEW YORK, N.Y.) 2025; 18:45. [PMID: 40434522 PMCID: PMC12119433 DOI: 10.1186/s12284-025-00806-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 05/23/2025] [Indexed: 05/29/2025]
Abstract
Direct-seeded rice offers multiple advantages, including lower labour costs and a reduced CO2 footprint. However, the risk of flooding during germination and at the early seedling and vegetative stages is high. Therefore, the capacity for anaerobic germination in waterlogged soils, as well as tolerance to partial and complete submergence, are both essential. It remains unclear whether anaerobic germination and flood tolerance are linked or if they act independently in the environment. Therefore, it is timely to investigate the relationship between these two traits in the context of progressing climate change. We investigated the submergence tolerance of 4-week-old plants of three African landraces, which had previously been shown to possess anaerobic germination capacity. Additionally, we included one submergence-sensitive check and two tolerant checks. These six genotypes were evaluated at three time points: initially (prior to submergence), after three days of submergence, and at the time of desubmergence following 29 days of submergence. We measured survival, key photosynthetic traits (leaf gas films, underwater net photosynthesis, chlorophyll concentration), and carbohydrate reserves. We found that the African landraces tolerant to anaerobic germination all outlived the submergence-sensitive check, 'IR42,' during 29 days of complete submergence. Moreover, all tested genotypes exhibited significant declines over the 29 days of submergence in gas film thickness, underwater net photosynthesis, leaf chlorophyll concentration, and leaf water-soluble carbohydrates and starch. However, no significant differences were observed among the genotypes. The underlying mechanisms of anaerobic germination tolerance in the three African landraces remain unknown, as they do not possess the gene Anaerobic Germination 1 (AG1). Furthermore, it is unclear whether the three genotypes contain the gene Submergence 1 (SUB1); however, SUB1 confers submergence tolerance only and does not provide tolerance to anaerobic germination. Based on the present study, we cannot rule out the possibility that the novel anaerobic germination tolerance observed in the three African landraces is somehow linked to submergence tolerance as well. A thorough bioinformatic analysis is therefore needed to further characterize these landraces.
Collapse
Affiliation(s)
| | - Zhiwei Song
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark
| | - Albert Guldborg Andersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark
| | - Sara Gargiulo
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle scienze 99, Udine, 33100, Italy
| | - Valentino Casolo
- Department of Agriculture, Food, Environmental and Animal Sciences, University of Udine, Via delle scienze 99, Udine, 33100, Italy
| | - Abdelbagi M Ismail
- International Rice Research Institute, c/o ILRI, Old Nivasha Road, Nairobi, 00100, Kenya
| | - Susan Nchimbi-Msolla
- Department of Crop Science and Horticulture, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Juan de la Cruz Jiménez
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark
| | - Ole Pedersen
- Department of Biology, University of Copenhagen, Universitetsparken 4, 3rd floor, Copenhagen, 2100, Denmark.
- School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia.
| |
Collapse
|
2
|
Tricerri N, Tomasella M, Cavalletto S, Petruzzellis F, Natale S, Crivellaro A, Gamba R, Piermattei A, D'Amico L, Tromba G, Nardini A, Zwieniecki MA, Secchi F. Fibers beyond structure: do they contribute to embolism reversal after drought relief in poplar? THE NEW PHYTOLOGIST 2025. [PMID: 40313028 DOI: 10.1111/nph.70179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
Short-term recovery from drought-induced vessel embolism is an energy-dependent biological process that requires a water source and solutes, both likely supplied by parenchyma cells. Despite fibers primarily providing structural support, their functional role as a reservoir of unbound water during and after stress remains unclear. In this study, Populus nigra plants were exposed to two drying regimes (slow and fast developing stress). At the end of the drought treatments and after stress relief, nondestructive structural observations were performed in vivo using synchrotron X-ray microCT. Different drought progression rates did not affect the final extent of vessel embolism, but poplars subjected to slower drought development exhibited higher levels of air-filled fibers. Following stress relief, faster hydraulic recovery was observed in plants exposed to rapid drought, which displayed lower occurrences of water-depleted fibers. We suggest a novel functional role for xylem fibers during drought and recovery. We hypothesize that parenchyma cells can access water stored in completely mature fibers via pits, enhancing their survival during drought. Upon xylem tension relief, this stored water may be mobilized by living cells from fibers to vessels, facilitating the recovery of their transport function.
Collapse
Affiliation(s)
- Niccolò Tricerri
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- University School for Advanced Studies IUSS Pavia, 27100, Pavia, Italy
| | - Martina Tomasella
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
| | - Silvia Cavalletto
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Francesco Petruzzellis
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padova, Italy
| | - Sara Natale
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
- Department of Biology, University of Padova, Via Ugo Bassi 58B, 35121, Padova, Italy
| | - Alan Crivellaro
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Str. Universitatii 13, 720229, Suceava, Romania
| | - Rachele Gamba
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| | - Alma Piermattei
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
- Forest Biometrics Laboratory, Faculty of Forestry, "Stefan cel Mare" University of Suceava, Str. Universitatii 13, 720229, Suceava, Romania
| | - Lorenzo D'Amico
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, 34149, Trieste, Italy
| | - Giuliana Tromba
- Elettra-Sincrotrone Trieste, Area Science Park, Basovizza, 34149, Trieste, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, University of Trieste, via Giorgieri 10, 34127, Trieste, Italy
| | - Maciej A Zwieniecki
- Department of Plant Sciences, University of California Davis, One Shields Ave, 95616, Davis, CA, USA
| | - Francesca Secchi
- Department of Agriculture, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco, Italy
| |
Collapse
|
3
|
Nawaz AF, Gargiulo S, Pichierri A, Casolo V. Exploring the Role of Non-Structural Carbohydrates (NSCs) Under Abiotic Stresses on Woody Plants: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2025; 14:328. [PMID: 39942890 PMCID: PMC11820143 DOI: 10.3390/plants14030328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025]
Abstract
Global climate change has increased the severity and frequency of abiotic stresses, posing significant challenges to the survival and growth of woody plants. Non-structural carbohydrates (NSCs), including starch and sugars, play a vital role in enabling plants to withstand these stresses, helping to stabilize cellular functions by buffering plant energy demands and facilitating recovery on the alleviation of stress. Despite the recognized multiple functions of NSCs, the contrasting effects of multiple abiotic stresses on NSCs dynamics in woody plants remain poorly understood. This review aims to explore the current knowledge of the contrasting effects of abiotic stress conditions including drought, salinity, heat, water logging, and cold on NSCs dynamics. The roles of NSCs in regulating stress-resilience responses in woody plants are also discussed, along with the challenges in NSC measurement, and options for future research directions are explored. This review is based on comprehensive literature research across different search engines like Scopus, Web of Science, and Google Scholar (2000-2024) using targeted keywords. This study compiles the current research on NSCs functions and provides insights into the adaptive strategies of woody plants in response to changing climate conditions, providing groundwork for future research to improve stress tolerance in woody plants.
Collapse
Affiliation(s)
- Ayesha Fazal Nawaz
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Sara Gargiulo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Alessandro Pichierri
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, 34127 Trieste, Italy; (A.F.N.); (A.P.)
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| | - Valentino Casolo
- Dipartimento di Scienze Agroalimentari, Ambientali ed Animali, Università di Udine, via delle Scienze 206, 33100 Udine, Italy;
| |
Collapse
|
4
|
Gargiulo S, Boscutti F, Carrer M, Prendin AL, Unterholzner L, Dibona R, Casolo V. Snowpack permanence shapes the growth and dynamic of non-structural carbohydrates in Juniperus communis in alpine tundra. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174891. [PMID: 39047817 DOI: 10.1016/j.scitotenv.2024.174891] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Climate warming is altering snowpack permanence in alpine tundra, modifying shrub growth and distribution. Plant acclimation to snowpack changes depends on the capability to guarantee growth and carbon storage, suggesting that the content of non-structural carbohydrates (NSC) in plant organs can be a key trait to depict the plant response under different snow regimes. To test this hypothesis, we designed a 3-years long manipulative experiment aimed at evaluating the effect of snow melt timing (i.e., early, control, and late) on NSC content in needles, bark and wood of Juniperus communis L. growing at high elevation in the Alps. Starch evidenced a general decrease from late spring to summer in control and early melting, while starch was low but stable in plants subjected to a late snow melt. Leaves, bark and wood have different level of soluble NSC changing during growing season: in bark, sugars content decreased significantly in late summer, while there was no seasonal effect in needles and wood. Soluble NSC and starch were differently related with the plant growth, when considering different tissues and snow treatment. In leaf and bark we observed a starch depletion in control and early melting plants, consistently to a higher growth (i.e., twig elongation), while in late snow melt, we did not find any significant relationship between growth and NSC concentration. Our findings confirmed that snowpack duration affects the onset of the growing season promoting a change in carbon allocation in plant organs and, between bark and wood in twigs. Finally, our results suggest that plants, at this elevation, could take advantage from an early snow melt caused by climate warming, most likely due to photosynthetic activity by maintaining the level of reserves and enhancing the carbon investment for growth.
Collapse
Affiliation(s)
- Sara Gargiulo
- Department of Agricultural Food Environmental Animal Sciences, University of Udine, Udine, Italy; Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Francesco Boscutti
- Department of Agricultural Food Environmental Animal Sciences, University of Udine, Udine, Italy; NBFC, National Biodiversity Future Center, 90133 Palermo, Italy
| | - Marco Carrer
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Italy
| | - Angela Luisa Prendin
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Italy; Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Lucrezia Unterholzner
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Italy
| | - Raffaela Dibona
- Department of Land, Environment, Agriculture and Forestry, University of Padua, Italy
| | - Valentino Casolo
- Department of Agricultural Food Environmental Animal Sciences, University of Udine, Udine, Italy
| |
Collapse
|
5
|
Borghi M, Pacifico D, Crucitti D, Squartini A, Berger MMJ, Gamboni M, Carimi F, Lehad A, Costa A, Gallusci P, Fernie AR, Zottini M. Smart selection of soil microbes for resilient and sustainable viticulture. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1258-1267. [PMID: 38329213 DOI: 10.1111/tpj.16674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The grapevine industry is of high economic importance in several countries worldwide. Its growing market demand led to an acceleration of the entire production processes, implying increasing use of water resources at the expense of environmental water balance and the hydrological cycle. Furthermore, in recent decades climate change and the consequent expansion of drought have further compromised water availability, making current agricultural systems even more fragile from ecological and economical perspectives. Consequently, farmers' income and welfare are increasingly unpredictable and unstable. Therefore, it is urgent to improve the resilience of vineyards, and of agro-ecosystems in general, by developing sustainable and environmentally friendly farming practices by more rational biological and natural resources use. The PRIMA project PROSIT addresses these challenges by characterizing and harnessing grapevine-associated microbiota to propose innovative and sustainable agronomic practices. PROSIT aims to determine the efficacy of natural microbiomes transferred from grapevines adapted to arid climate to commonly cultivated grapevine cultivars. In doing so it will test those natural microbiome effects on drought tolerance. This multidisciplinary project will utilize in vitro culture techniques, bioimaging, microbiological tests, metabolomics, metabarcoding and epigenetic analyses. These will be combined to shed light on molecular mechanisms triggered in plants by microbial associations upon water stress. To this end it is hoped that the project will serve as a blueprint not only for studies uncovering the microbiome role in drought stress in a wide range of species, but also for analyzing its effect on a wide range of stresses commonly encountered in modern agricultural systems.
Collapse
Affiliation(s)
- Monica Borghi
- Department of Biology, Utah State University, Logan, Utah, 84321-5305, USA
| | - Davide Pacifico
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Dalila Crucitti
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Andrea Squartini
- Department of Agronomy, Animals, Food, Natural Resources, and Environment, Università degli Studi di Padova, Viale dell'Università 16, 35020, Legnaro, Padua, Italy
| | - Margot M J Berger
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, University of Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leyssottes, 33882, Villenave d'Ornon, France
| | - Mauro Gamboni
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Francesco Carimi
- IBBR CNR - Institute of Biosciences and Bioresources, via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Arezki Lehad
- ENSA, Rue Hassan Badi, Belfort, El Harrach, 16000, Algeria
| | - Alex Costa
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milano, Italy
| | - Philippe Gallusci
- UMR Ecophysiologie et Génomique Fonctionnelle de la Vigne, University of Bordeaux, INRAE, Bordeaux Science Agro, 210 Chemin de Leyssottes, 33882, Villenave d'Ornon, France
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Michela Zottini
- Department of Biology, Università degli Studi di Padova, via U. Bassi 58b, 35131, Padova, Italy
| |
Collapse
|
6
|
Prats KA, Fanton AC, Brodersen CR, Furze ME. Starch depletion in the xylem and phloem ray parenchyma of grapevine stems under drought. AOB PLANTS 2023; 15:plad062. [PMID: 37899975 PMCID: PMC10601394 DOI: 10.1093/aobpla/plad062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/29/2023] [Indexed: 10/31/2023]
Abstract
While nonstructural carbohydrate (NSC) storage can support long-lived woody plants during abiotic stress, the timing and extent of their use are less understood, as are the thresholds for cell mortality as NSCs and water supplies are consumed. Here, we combine physiological and imaging tools to study the response of Vitis riparia to a 6-week experimental drought. We focused on the spatial and temporal dynamics of starch consumption and cell viability in the xylem and phloem of the stem. Starch dynamics were further corroborated with enzymatic starch digestion and X-ray microcomputed tomography imaging. Starch depletion in the stems of droughted plants was detected after 2 weeks and continued over time. We observed distinct differences in starch content and cell viability in the xylem and phloem. By the end of the drought, nearly all the starch was consumed in the phloem ray parenchyma (98 % decrease), and there were almost no metabolically active cells in the phloem. In contrast, less starch was consumed in the xylem ray parenchyma (30 % decrease), and metabolically active cells remained in the ray and vessel-associated parenchyma in the xylem. Our data suggest that the higher proportion of living cells in the phloem and cambium, combined with smaller potential NSC storage area, rapidly depleted starch, which led to cell death. In contrast, the larger cross-sectional area of the xylem ray parenchyma with higher NSC storage and lower metabolically active cell populations depleted starch at a slower pace. Why NSC source-sink relationships between xylem and phloem do not allow for a more uniform depletion of starch in ray parenchyma over time is unclear. Our data help to pinpoint the proximate and ultimate causes of plant death during prolonged drought exposure and highlight the need to consider the influence of within-organ starch dynamics and cell mortality on abiotic stress response.
Collapse
Affiliation(s)
- Kyra A Prats
- Department of Botany and Plant Pathology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
| | - Ana C Fanton
- Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRAE, 210 Chemin de Leysotte, Villenave-d’Ornon 33140, France
| | - Craig R Brodersen
- School of the Environment, Yale University, 195 Prospect St, New Haven, CT 06511, USA
| | - Morgan E Furze
- Department of Botany and Plant Pathology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
- Center for Plant Biology, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
- Department of Forestry and Natural Resources, Purdue University, 715 Mitch Daniels Blvd, West Lafayette, IN 47907, USA
| |
Collapse
|