1
|
Deja-Sikora E, Gołębiewski M, Hrynkiewicz K. Transcriptomic responses of Solanum tuberosum cv. Pirol to arbuscular mycorrhiza and potato virus Y (PVY) infection. PLANT MOLECULAR BIOLOGY 2024; 114:123. [PMID: 39527333 PMCID: PMC11554710 DOI: 10.1007/s11103-024-01519-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) serve as both plant symbionts and allies in resisting pathogens and environmental stresses. Mycorrhizal colonization of plant roots can influence the outcomes of plant-pathogen interactions by enhancing specific host defense mechanisms. The transcriptional responses induced by AMF in virus-infected plants remain largely unexplored. In the presented study, we employed a comprehensive transcriptomic approach and qPCR to investigate the molecular determinants underlying the interaction between AMF and potato virus Y (PVY) in Solanum tuberosum L. Our primary goal was to identify the symbiosis- and defense-related determinants activated in mycorrhizal potatoes facing PVY. Through a comparative analysis of mRNA transcriptomes in experimental treatments comprising healthy and PVY-infected potatoes colonized by two AMF species, Rhizophagus regularis or Funneliformis mosseae, we unveiled the overexpression of genes associated with mycorrhiza, including nutrient exchange, lipid transfer, and cell wall remodeling. Furthermore, we identified several differentially expressed genes upregulated in all mycorrhizal treatments that encoded pathogenesis-related proteins involved in plant immune responses, thus verifying the bioprotective role of AMF. We investigated the relationship between mycorrhiza levels and PVY levels in potato leaves and roots. We found accumulation of the virus in the leaves of mycorrhizal plants, but our studies additionally showed a reduced PVY content in potato roots colonized by AMF, which has not been previously demonstrated. Furthermore, we observed that a virus-dependent reduction in nutrient exchange could occur in mycorrhizal roots in the presence of PVY. These findings provide an insights into the interplay between virus and AMF.
Collapse
Affiliation(s)
- Edyta Deja-Sikora
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
| | - Marcin Gołębiewski
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100, Torun, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
2
|
Ilyas M, Rahman A, Khan NH, Haroon M, Hussain H, Rehman L, Alam M, Rauf A, Waggas DS, Bawazeer S. Analysis of Germin-like protein genes family in Vitis vinifera (VvGLPs) using various in silico approaches. BRAZ J BIOL 2024; 84:e256732. [DOI: 10.1590/1519-6984.256732] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/28/2021] [Indexed: 12/26/2022] Open
Abstract
Abstract Germin-like proteins (GLPs) play an important role against various stresses. Vitis vinifera L. genome contains 7 GLPs; many of them are functionally unexplored. However, the computational analysis may provide important new insight into their function. Currently, physicochemical properties, subcellular localization, domain architectures, 3D structures, N-glycosylation & phosphorylation sites, and phylogeney of the VvGLPs were investigated using the latest computational tools. Their functions were predicted using the Search tool for the retrieval of interacting genes/proteins (STRING) and Blast2Go servers. Most of the VvGLPs were extracellular (43%) in nature but also showed periplasmic (29%), plasma membrane (14%), and mitochondrial- or chloroplast-specific (14%) expression. The functional analysis predicted unique enzymatic activities for these proteins including terpene synthase, isoprenoid synthase, lipoxygenase, phosphate permease, receptor kinase, and hydrolases generally mediated by Mn+ cation. VvGLPs showed similarity in the overall structure, shape, and position of the cupin domain. Functionally, VvGLPs control and regulate the production of secondary metabolites to cope with various stresses. Phylogenetically VvGLP1, -3, -4, -5, and VvGLP7 showed greater similarity due to duplication while VvGLP2 and VvGLP6 revealed a distant relationship. Promoter analysis revealed the presence of diverse cis-regulatory elements among which CAAT box, MYB, MYC, unnamed-4 were common to all of them. The analysis will help to utilize VvGLPs and their promoters in future food programs by developing resistant cultivars against various biotic (Erysiphe necator and in Powdery Mildew etc.) and abiotic (Salt, drought, heat, dehydration, etc.) stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - M. Alam
- University of Swabi, Pakistan
| | - A. Rauf
- University of Swabi, Pakistan
| | - D. S. Waggas
- Fakeeh College of Medical Sciences, Saudi Arabia
| | | |
Collapse
|
3
|
Zorin EA, Sulima AS, Zhernakov AI, Kuzmina DO, Rakova VA, Kliukova MS, Romanyuk DA, Kulaeva OA, Akhtemova GA, Shtark OY, Tikhonovich IA, Zhukov VA. Genomic and Transcriptomic Analysis of Pea ( Pisum sativum L.) Breeding Line 'Triumph' with High Symbiotic Responsivity. PLANTS (BASEL, SWITZERLAND) 2023; 13:78. [PMID: 38202386 PMCID: PMC10781049 DOI: 10.3390/plants13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Pea (Pisum sativum L.), like most legumes, forms mutualistic symbioses with nodule bacteria and arbuscular mycorrhizal (AM) fungi. The positive effect of inoculation is partially determined by the plant genotype; thus, pea varieties with high and low symbiotic responsivity have been described, but the molecular genetic basis of this trait remains unknown. Here, we compare the symbiotically responsive breeding line 'Triumph' of grain pea with its parental cultivars 'Vendevil' (a donor of high symbiotic responsivity) and 'Classic' (a donor of agriculturally valuable traits) using genome and transcriptome sequencing. We show that 'Triumph' inherited one-fourth of its genome from 'Vendevil', including the genes related to AM and nodule formation, and reveal that under combined inoculation with nodule bacteria and AM fungi, 'Triumph' and 'Vendevil', in contrast to 'Classic', demonstrate similar up-regulation of the genes related to solute transport, hormonal regulation and flavonoid biosynthesis in their roots. We also identify the gene PsGLP2, whose expression pattern distinguishing 'Triumph' and 'Vendevil' from 'Classic' correlates with difference within the promoter region sequence, making it a promising marker for the symbiotic responsivity trait. The results of this study may be helpful for future molecular breeding programs aimed at creation of symbiotically responsive cultivars of pea.
Collapse
Affiliation(s)
- Evgeny A. Zorin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Anton S. Sulima
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Aleksandr I. Zhernakov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Daria O. Kuzmina
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Valeria A. Rakova
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia;
| | - Marina S. Kliukova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Daria A. Romanyuk
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Olga A. Kulaeva
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Gulnar A. Akhtemova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Oksana Y. Shtark
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
| | - Igor A. Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia;
| | - Vladimir A. Zhukov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia; (E.A.Z.); (A.S.S.); (A.I.Z.); (D.O.K.); (M.S.K.); (D.A.R.); (O.A.K.); (G.A.A.); (O.Y.S.); (I.A.T.)
- Center of Genetics and Life Sciences, Sirius University of Science and Technology, Sirius 354340, Russia;
| |
Collapse
|
4
|
Hu F, Ye Z, Dong K, Zhang W, Fang D, Cao J. Divergent structures and functions of the Cupin proteins in plants. Int J Biol Macromol 2023; 242:124791. [PMID: 37164139 DOI: 10.1016/j.ijbiomac.2023.124791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Cupin superfamily proteins have extensive functions. Their members are not only involved in the development of plants but also responded to various stresses. Whereas, the research on the Cupin members has not attracted enough attention. In this article, we summarized the research progress on these family genes in recent years and explored their evolution, structural characteristics, and biological functions. The significance of members of the Cupin family in the development of plant cell walls, roots, leaves, flowers, fruits, and seeds and their role in stress response are highlighted. Simultaneously, the prospective application of Cupin protein in crop enhancement was introduced. Some members can enhance plant growth, development, and resistance to adversity, thereby increasing crop yield. It will be as a foundation for future effective crop research and breeding.
Collapse
Affiliation(s)
- Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
5
|
Domingo G, Vannini C, Bracale M, Bonfante P. Proteomics as a tool to decipher plant responses in arbuscular mycorrhizal interactions: a meta-analysis. Proteomics 2023; 23:e2200108. [PMID: 36571480 DOI: 10.1002/pmic.202200108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/09/2022] [Accepted: 12/21/2022] [Indexed: 12/27/2022]
Abstract
The beneficial symbiosis between plants and arbuscular mycorrhizal (AM) fungi leads to a deep reprogramming of plant metabolism, involving the regulation of several molecular mechanisms, many of which are poorly characterized. In this regard, proteomics is a powerful tool to explore changes related to plant-microbe interactions. This study provides a comprehensive proteomic meta-analysis conducted on AM-modulated proteins at local (roots) and systemic (shoots/leaves) level. The analysis was implemented by an in-depth study of root membrane-associated proteins and by a comparison with a transcriptome meta-analysis. A total of 4262 differentially abundant proteins were retrieved and, to identify the most relevant AM-regulated processes, a range of bioinformatic studies were conducted, including functional enrichment and protein-protein interaction network analysis. In addition to several protein transporters which are present in higher amounts in AM plants, and which are expected due to the well-known enhancement of AM-induced mineral uptake, our analysis revealed some novel traits. We detected a massive systemic reprogramming of translation with a central role played by the ribosomal translational apparatus. On one hand, these new protein-synthesis efforts well support the root cellular re-organization required by the fungal penetration, and on the other they have a systemic impact on primary metabolism.
Collapse
Affiliation(s)
- Guido Domingo
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Candida Vannini
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Marcella Bracale
- Biotechnology and Life Science Department, University of Insubria, Varese, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, Università degli Studi di Torino, Torino, Italy
| |
Collapse
|
6
|
A Germin-Like Protein GLP1 of Legumes Mediates Symbiotic Nodulation by Interacting with an Outer Membrane Protein of Rhizobia. Microbiol Spectr 2023; 11:e0335022. [PMID: 36633436 PMCID: PMC9927233 DOI: 10.1128/spectrum.03350-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rhizobia can infect legumes and induce the coordinated expression of symbiosis and defense genes for the establishment of mutualistic symbiosis. Numerous studies have elucidated the molecular interactions between rhizobia and host plants, which are associated with Nod factor, exopolysaccharide, and T3SS effector proteins. However, there have been relatively few reports about how the host plant recognizes the outer membrane proteins (OMPs) of rhizobia to mediate symbiotic nodulation. In our previous work, a gene (Mhopa22) encoding an OMP was identified in Mesorhizobium huakuii 7653R, whose homologous genes are widely distributed in Rhizobiales. In this study, a germin-like protein GLP1 interacting with Mhopa22 was identified in Astragalus sinicus. RNA interference of AsGLP1 resulted in a decrease in nodule number, whereas overexpression of AsGLP1 increased the number of nodules in the hairy roots of A. sinicus. Consistent symbiotic phenotypes were identified in Medicago truncatula with MtGLPx (refer to medtr7g111240.1, the isogeny of AsGLP1) overexpression or Tnt1 mutant (glpx-1) in symbiosis with Sinorhizobium meliloti 1021. The glpx-1 mutant displayed hyperinfection and the formation of more infection threads but a decrease in root nodules. RNA sequencing analysis showed that many differentially expressed genes were involved in hormone signaling and symbiosis. Taken together, AsGLP1 and its homology play an essential role in mediating the early symbiotic process through interacting with the OMPs of rhizobia. IMPORTANCE This study is the first report to characterize a legume host plant protein to sense and interact with an outer membrane protein (OMP) of rhizobia. It can be speculated that GLP1 plays an essential role to mediate early symbiotic process through interacting with OMPs of rhizobia. The results provide deeper understanding and novel insights into the molecular interactive mechanism of a legume symbiosis signaling pathway in recognition with rhizobial OMPs. Our findings may also provide a new perspective to improve the symbiotic compatibility and nodulation of legume.
Collapse
|
7
|
Gangadhar BH, Mishra RK, Kappachery S, Baskar V, Venkatesh J, Nookaraju A, Thiruvengadam M. Enhanced thermo-tolerance in transgenic potato (Solanum tuberosum L.) overexpressing hydrogen peroxide-producing germin-like protein (GLP). Genomics 2021; 113:3224-3234. [PMID: 34273496 DOI: 10.1016/j.ygeno.2021.07.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 06/16/2021] [Accepted: 07/11/2021] [Indexed: 11/19/2022]
Abstract
Germins and germin-like proteins (GLPs) were reported to participate in plant response to biotic and abiotic stresses involving hydrogen peroxide (H2O2) production, but their role in mitigating heat stress is poorly understood. Here, we investigated the ability of a Solanum tuberosum L. GLP (StGLP) gene isolated from the yeast cDNA library generated from heat-stressed potato plants and characterized its role in generating innate and/or acquired thermo-tolerance to potato via genetic transformation. The transgenic plants exhibited enhanced tolerance to gradual heat stress (GHS) compared with sudden heat shock (SHS) in terms of maximal cell viability, minimal ion leakage and reduced chlorophyll breakdown. Further, three StGLP transgenic lines (G9, G12 and G15) exhibited enhanced production of H2O2, which was either reduced or blocked by inhibitors of H2O2 under normal and heat stress conditions. This tolerance was mediated by up-regulation of antioxidant enzymes (catalase, ascorbate peroxidase and glutathione reductase) and other heat stress-responsive genes (StHSP70, StHSP20 and StHSP90) in transgenic potato plants. These results demonstrate that H2O2 produced by over-expression of StGLP in transgenic potato plants triggered the reactive oxygen species (ROS) scavenging signaling pathways controlling antioxidant and heat stress-responsive genes in these plants imparting tolerance to heat stress.
Collapse
Affiliation(s)
| | | | - Sajeesh Kappachery
- Molecular Biology & Physiology Lab, College of Science, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Venkidasamy Baskar
- Department of Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore, Tamil Nadu 641062, India.
| | - Jelli Venkatesh
- Department of Molecular Biotechnology, Konkuk University, Seoul 05029, South Korea; Department of Plant Science and Vegetable Breeding Research Center, Seoul National University, Seoul 08826, South Korea
| | - Akula Nookaraju
- Kaveri Seed Company Ltd., Secundrabad 500 003, Telangana, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Pawlowski ML, Vuong TD, Valliyodan B, Nguyen HT, Hartman GL. Whole-genome resequencing identifies quantitative trait loci associated with mycorrhizal colonization of soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:409-417. [PMID: 31707439 DOI: 10.1007/s00122-019-03471-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/01/2019] [Indexed: 05/15/2023]
Abstract
KEY MESSAGE A whole-genome resequencing-derived SNP dataset identified six quantitative trait loci (QTL) significantly associated with colonization of soybean by an arbuscular mycorrhizal fungus (Rhizophagus intraradices). Candidate genes identified in these QTL regions include homologs to known nodulin protein families and other symbiosis-specific genes. Arbuscular mycorrhizal fungi (AMF) form associations with over 80% of all terrestrial plant species and assist their host plants by increasing their nutrient uptake, drought tolerance, and resilience against pathogens and pests. Genotypic variation of crop plants to AMF colonization has been identified in crops, including soybean; however, the genetics controlling levels of AMF colonization in soybean are unknown. The overall goal of our study was to identify genomic regions associated with mycorrhizal colonization in soybean using genome-wide association analysis. A diverse panel of 350 exotic soybean genotypes inoculated with Rhizophagus intraradices were microscopically evaluated for root colonization using a modified gridline intersect method. Root colonization differed significantly (P < 0.001) among genotypes and ranged from 11 to 70%. A whole-genome resequencing-derived SNP dataset identified six quantitative trait loci (QTL) significantly associated with R. intraradices colonization that explained 24% of the phenotypic variance. Candidate genes identified in these QTL regions include homologs to known nodulin protein families and other symbiosis-specific genes. The results showed there was a significant genetic component to the level of colonization by R. intraradices in soybean. This information may be useful in the development of AMF-sensitive soybean cultivars to enhance nutrient uptake, drought tolerance, and disease resistance in the crop.
Collapse
Affiliation(s)
- Michelle L Pawlowski
- Department of Crop Science, University of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801, USA
| | - Tri D Vuong
- Department of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Babu Valliyodan
- Department of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Henry T Nguyen
- Department of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Glen L Hartman
- Department of Crop Science, University of Illinois, 1101 W. Peabody Drive, Urbana, IL, 61801, USA.
- USDA, Agricultural Research Services, University of Illinois, 1101 W. Peabody Dr., Urbana, IL, USA.
| |
Collapse
|
9
|
Chen P, Wang YZ, Liu QZ, Li WH, Li HQ, Li XY, Zhang YT. Transcriptomic analysis reveals recovery strategies in strawberry roots after using a soil amendment in continuous cropping soil. BMC PLANT BIOLOGY 2020; 20:5. [PMID: 31900117 PMCID: PMC6942283 DOI: 10.1186/s12870-019-2216-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In strawberry cultivation, continuous cropping (CC) obstacles seriously threaten production. A patented soil amendment (SA) can effectively relieve the CC obstacles to strawberry cultivation, but knowledge of the recovery mechanisms underlying this phenomenon is limited. RESULTS In this study, transcriptomic profiling of strawberry roots in soil with and without the SA was conducted using RNA-Seq technology to reveal gene expression changes in response to SA treatment. In total, 188 differentially expressed genes (DEGs), including 144 upregulated and 44 downregulated DEGs, were identified. SA treatment resulted in genotype-dependent responses, and the response pattern, including an overall increase in the expression of nutrient transport genes and a decrease in the expression of defense response genes, may be a possible mechanism underlying recovery strategies in strawberry roots after the application of the SA to CC soil. We also found that 9 Hsp genes involved in plant defense pathways were all downregulated in the SA-treated roots. CONCLUSIONS This research indicated that strawberry plants reallocated defense resources to development when SA treatment alleviated the stress caused by a CC soil environment. The present study provides an opportunity to reveal the fundamental mechanisms of the tradeoff between growth and defense in strawberry.
Collapse
Affiliation(s)
- Peng Chen
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
| | - Yu-zhu Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China
| | - Qi-zhi Liu
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
| | - Wei-hua Li
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China
| | - He-qin Li
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
- Shandong Provincial Key Laboratory of Dryland Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, 266109 China
| | - Xing-yue Li
- Laboratory of Entomology and Nematology, College of Plant Protection, China Agricultural University, Yuan Ming-yuan West Road #2, Beijing, 100193 China
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, Chengdu, 610066 China
| | - Yun-tao Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097 China
| |
Collapse
|
10
|
Vangelisti A, Natali L, Bernardi R, Sbrana C, Turrini A, Hassani-Pak K, Hughes D, Cavallini A, Giovannetti M, Giordani T. Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (Helianthus annuus L.) roots. Sci Rep 2018; 8:4. [PMID: 29311719 PMCID: PMC5758643 DOI: 10.1038/s41598-017-18445-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/08/2017] [Indexed: 01/11/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are essential elements of soil fertility, plant nutrition and productivity, facilitating soil mineral nutrient uptake. Helianthus annuus is a non-model, widely cultivated species. Here we used an RNA-seq approach for evaluating gene expression variation at early and late stages of mycorrhizal establishment in sunflower roots colonized by the arbuscular fungus Rhizoglomus irregulare. mRNA was isolated from roots of plantlets at 4 and 16 days after inoculation with the fungus. cDNA libraries were built and sequenced with Illumina technology. Differential expression analysis was performed between control and inoculated plants. Overall 726 differentially expressed genes (DEGs) between inoculated and control plants were retrieved. The number of up-regulated DEGs greatly exceeded the number of down-regulated DEGs and this difference increased in later stages of colonization. Several DEGs were specifically involved in known mycorrhizal processes, such as membrane transport, cell wall shaping, and other. We also found previously unidentified mycorrhizal-induced transcripts. The most important DEGs were carefully described in order to hypothesize their roles in AM symbiosis. Our data add a valuable contribution for deciphering biological processes related to beneficial fungi and plant symbiosis, adding an Asteraceae, non-model species for future comparative functional genomics studies.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Rodolfo Bernardi
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology UOS Pisa, Pisa, Italy
| | - Alessandra Turrini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | | | - David Hughes
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Andrea Cavallini
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Manuela Giovannetti
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food, and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy.
| |
Collapse
|
11
|
Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty PE. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. PLANT & CELL PHYSIOLOGY 2017; 58:1003-1017. [PMID: 28387868 DOI: 10.1093/pcp/pcx044] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/17/2017] [Indexed: 05/21/2023]
Abstract
Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions.
Collapse
Affiliation(s)
- Silvia Calabrese
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Annegret Kohler
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Annette Niehl
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Claire Veneault-Fourrey
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
12
|
Isayenkov S, Maathuis FJM. Construction and applications of a mycorrhizal arbuscular specific cDNA library. CYTOL GENET+ 2016. [DOI: 10.3103/s0095452716020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Groten K, Pahari NT, Xu S, Miloradovic van Doorn M, Baldwin IT. Virus-Induced Gene Silencing Using Tobacco Rattle Virus as a Tool to Study the Interaction between Nicotiana attenuata and Rhizophagus irregularis. PLoS One 2015; 10:e0136234. [PMID: 26291081 PMCID: PMC4546398 DOI: 10.1371/journal.pone.0136234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023] Open
Abstract
Most land plants live in a symbiotic association with arbuscular mycorrhizal fungi (AMF) that belong to the phylum Glomeromycota. Although a number of plant genes involved in the plant-AMF interactions have been identified by analyzing mutants, the ability to rapidly manipulate gene expression to study the potential functions of new candidate genes remains unrealized. We analyzed changes in gene expression of wild tobacco roots (Nicotiana attenuata) after infection with mycorrhizal fungi (Rhizophagus irregularis) by serial analysis of gene expression (SuperSAGE) combined with next generation sequencing, and established a virus-induced gene-silencing protocol to study the function of candidate genes in the interaction. From 92,434 SuperSAGE Tag sequences, 32,808 (35%) matched with our in-house Nicotiana attenuata transcriptome database and 3,698 (4%) matched to Rhizophagus genes. In total, 11,194 Tags showed a significant change in expression (p<0.05, >2-fold change) after infection. When comparing the functions of highly up-regulated annotated Tags in this study with those of two previous large-scale gene expression studies, 18 gene functions were found to be up-regulated in all three studies mainly playing roles related to phytohormone metabolism, catabolism and defense. To validate the function of identified candidate genes, we used the technique of virus-induced gene silencing (VIGS) to silence the expression of three putative N. attenuata genes: germin-like protein, indole-3-acetic acid-amido synthetase GH3.9 and, as a proof-of-principle, calcium and calmodulin-dependent protein kinase (CCaMK). The silencing of the three plant genes in roots was successful, but only CCaMK silencing had a significant effect on the interaction with R. irregularis. Interestingly, when a highly activated inoculum was used for plant inoculation, the effect of CCaMK silencing on fungal colonization was masked, probably due to trans-complementation. This study demonstrates that large-scale gene expression studies across different species induce of a core set of genes of similar functions. However, additional factors seem to influence the overall pattern of gene expression, resulting in high variability among independent studies with different hosts. We conclude that VIGS is a powerful tool with which to investigate the function of genes involved in plant-AMF interactions but that inoculum strength can strongly influence the outcome of the interaction.
Collapse
Affiliation(s)
- Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Nabin T. Pahari
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Shuqing Xu
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Maja Miloradovic van Doorn
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| |
Collapse
|
14
|
Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K. RNA-seq Transcriptional Profiling of an Arbuscular Mycorrhiza Provides Insights into Regulated and Coordinated Gene Expression in Lotus japonicus and Rhizophagus irregularis. PLANT & CELL PHYSIOLOGY 2015; 56:1490-511. [PMID: 26009592 DOI: 10.1093/pcp/pcv071] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/13/2015] [Indexed: 05/03/2023]
Abstract
Gene expression during arbuscular mycorrhizal development is highly orchestrated in both plants and arbuscular mycorrhizal fungi. To elucidate the gene expression profiles of the symbiotic association, we performed a digital gene expression analysis of Lotus japonicus and Rhizophagus irregularis using a HiSeq 2000 next-generation sequencer with a Cufflinks assembly and de novo transcriptome assembly. There were 3,641 genes differentially expressed during arbuscular mycorrhizal development in L. japonicus, approximately 80% of which were up-regulated. The up-regulated genes included secreted proteins, transporters, proteins involved in lipid and amino acid metabolism, ribosomes and histones. We also detected many genes that were differentially expressed in small-secreted peptides and transcription factors, which may be involved in signal transduction or transcription regulation during symbiosis. Co-regulated genes between arbuscular mycorrhizal and root nodule symbiosis were not particularly abundant, but transcripts encoding for membrane traffic-related proteins, transporters and iron transport-related proteins were found to be highly co-up-regulated. In transcripts of arbuscular mycorrhizal fungi, expansion of cytochrome P450 was observed, which may contribute to various metabolic pathways required to accommodate roots and soil. The comprehensive gene expression data of both plants and arbuscular mycorrhizal fungi provide a powerful platform for investigating the functional and molecular mechanisms underlying arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Yoshihiro Handa
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Hiroyo Nishide
- Data Integration and Analysis Facility, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Naoya Takeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan School of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Aichi 444-8585, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
15
|
Versatility of germin-like proteins in their sequences, expressions, and functions. Funct Integr Genomics 2015; 15:533-48. [DOI: 10.1007/s10142-015-0454-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/28/2015] [Accepted: 07/02/2015] [Indexed: 12/19/2022]
|
16
|
Hogekamp C, Küster H. A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC Genomics 2013; 14:306. [PMID: 23647797 PMCID: PMC3667144 DOI: 10.1186/1471-2164-14-306] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 04/26/2013] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND About 80% of today's land plants are able to establish an arbuscular mycorrhizal (AM) symbiosis with Glomeromycota fungi to improve their access to nutrients and water in the soil. On the molecular level, the development of AM symbioses is only partly understood, due to the asynchronous development of the microsymbionts in the host roots. Although many genes specifically activated during fungal colonization have been identified, genome-wide information on the exact place and time point of their activation remains limited. RESULTS In this study, we relied on a combination of laser-microdissection and the use of Medicago GeneChips to perform a genome-wide analysis of transcription patterns in defined cell-types of Medicago truncatula roots mycorrhized with Glomus intraradices. To cover major stages of AM development, we harvested cells at 5-6 and at 21 days post inoculation (dpi). Early developmental stages of the AM symbiosis were analysed by monitoring gene expression in appressorial and non-appressorial areas from roots harbouring infection units at 5-6 dpi. Here, the use of laser-microdissection for the first time enabled the targeted harvest of those sites, where fungal hyphae first penetrate the root. Circumventing contamination with developing arbuscules, we were able to specifically detect gene expression related to early infection events. To cover the late stages of AM formation, we studied arbusculated cells, cortical cells colonized by intraradical hyphae, and epidermal cells from mature mycorrhizal roots at 21 dpi. Taken together, the cell-specific expression patterns of 18014 genes were revealed, including 1392 genes whose transcription was influenced by mycorrhizal colonization at different stages, namely the pre-contact phase, the infection of roots via fungal appressoria, the subsequent colonization of the cortex by fungal hyphae, and finally the formation of arbuscules. Our cellular expression patterns identified distinct groups of AM-activated genes governing the sequential reprogramming of host roots towards an accommodation of microsymbionts, including 42 AM-activated transcription factor genes. CONCLUSIONS Our genome-wide analysis provides novel information on the cell-specific activity of AM-activated genes during both early and late stages of AM development, together revealing the road map of fine-tuned adjustments of transcript accumulation within root tissues during AM fungal colonization.
Collapse
Affiliation(s)
- Claudia Hogekamp
- Institut für Pflanzengenetik, Abteilung IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Helge Küster
- Institut für Pflanzengenetik, Abteilung IV - Pflanzengenomforschung, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| |
Collapse
|
17
|
Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. PLANT PHYSIOLOGY 2011; 157:2023-43. [PMID: 22034628 PMCID: PMC3327204 DOI: 10.1104/pp.111.186635] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/26/2011] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizae (AM) are the most widespread symbioses on Earth, promoting nutrient supply of most terrestrial plant species. To unravel gene expression in defined stages of Medicago truncatula root colonization by AM fungi, we here combined genome-wide transcriptome profiling based on whole mycorrhizal roots with real-time reverse transcription-PCR experiments that relied on characteristic cell types obtained via laser microdissection. Our genome-wide approach delivered a core set of 512 genes significantly activated by the two mycorrhizal fungi Glomus intraradices and Glomus mossae. Focusing on 62 of these genes being related to membrane transport, signaling, and transcriptional regulation, we distinguished whether they are activated in arbuscule-containing or the neighboring cortical cells harboring fungal hyphae. In addition, cortical cells from nonmycorrhizal roots served as a reference for gene expression under noncolonized conditions. Our analysis identified 25 novel arbuscule-specific genes and 37 genes expressed both in the arbuscule-containing and the adjacent cortical cells colonized by fungal hyphae. Among the AM-induced genes specifying transcriptional regulators were two members encoding CAAT-box binding transcription factors (CBFs), designated MtCbf1 and MtCbf2. Promoter analyses demonstrated that both genes were already activated by the first physical contact between the symbionts. Subsequently, and corresponding to our cell-type expression patterns, they were progressively up-regulated in those cortical areas colonized by fungal hyphae, including the arbuscule-containing cells. The encoded CBFs thus represent excellent candidates for regulators that mediate a sequential reprogramming of root tissues during the establishment of an AM symbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Helge Küster
- Institut für Pflanzengenetik, Leibniz Universität Hannover, D–30419 Hannover, Germany (C.H., D.A., N.H., H.K.); Instituto Gulbenkian de Ciência, 2780–156 Oeiras, Portugal (P.A.P., J.D.B.)
| |
Collapse
|
18
|
Farinati S, DalCorso G, Panigati M, Furini A. Interaction between selected bacterial strains and Arabidopsis halleri modulates shoot proteome and cadmium and zinc accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3433-47. [PMID: 21357773 PMCID: PMC3130167 DOI: 10.1093/jxb/err015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 05/20/2023]
Abstract
The effects of plant-microbe interactions between the hyperaccumulator Arabidopsis halleri and eight bacterial strains, isolated from the rhizosphere of A. halleri plants grown in a cadmium- and zinc-contaminated site, were analysed for shoot metal accumulation, shoot proteome, and the transcription of genes involved in plant metal homeostasis and hyperaccumulation. Cadmium and zinc concentrations were lower in the shoots of plants cultivated in the presence of these metals plus the selected bacterial strains compared with plants grown solely with these metals or, as previously reported, with plants grown with these metals plus the autochthonous rhizosphere-derived microorganisms. The shoot proteome of plants cultivated in the presence of these selected bacterial strains plus metals, showed an increased abundance of photosynthesis- and abiotic stress-related proteins (e.g. subunits of the photosynthetic complexes, Rubisco, superoxide dismutase, and malate dehydrogenase) counteracted by a decreased amount of plant defence-related proteins (e.g. endochitinases, vegetative storage proteins, and β-glucosidase). The transcription of several homeostasis genes was modulated by the microbial communities and by Cd and Zn content in the shoot. Altogether these results highlight the importance of plant-microbe interactions in plant protein expression and metal accumulation and emphasize the possibility of exploiting microbial consortia for increasing or decreasing shoot metal content.
Collapse
Affiliation(s)
- Silvia Farinati
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Giovanni DalCorso
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| | - Monica Panigati
- Dipartimento di Chimica Inorganica, Metallorganica e Analitica ‘L. Malatesta’, Università di Milano Via Venezian 21, I-20133 Milano, Italy
| | - Antonella Furini
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, I-37134 Verona, Italy
| |
Collapse
|
19
|
Henckel K, Küster H, Stutz LJ, Goesmann A. MediPlEx - a tool to combine in silico & experimental gene expression profiles of the model legume Medicago truncatula. BMC Res Notes 2010; 3:262. [PMID: 20958970 PMCID: PMC2972298 DOI: 10.1186/1756-0500-3-262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 10/19/2010] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Expressed Sequence Tags (ESTs) are in general used to gain a first insight into gene activities from a species of interest. Subsequently, and typically based on a combination of EST and genome sequences, microarray-based expression analyses are performed for a variety of conditions. In some cases, a multitude of EST and microarray experiments are conducted for one species, covering different tissues, cell states, and cell types. Under these circumstances, the challenge arises to combine results derived from the different expression profiling strategies, with the goal to uncover novel information on the basis of the integrated datasets. FINDINGS Using our new analysis tool, MediPlEx (MEDIcago truncatula multiPLe EXpression analysis), expression data from EST experiments, oligonucleotide microarrays and Affymetrix GeneChips® can be combined and analyzed, leading to a novel approach to integrated transcriptome analysis. We have validated our tool via the identification of a set of well-characterized AM-specific and AM-induced marker genes, identified by MediPlEx on the basis of in silico and experimental gene expression profiles from roots colonized with AM fungi. CONCLUSIONS MediPlEx offers an integrated analysis pipeline for different sets of expression data generated for the model legume Medicago truncatula. As expected, in silico and experimental gene expression data that cover the same biological condition correlate well. The collection of differentially expressed genes identified via MediPlEx provides a starting point for functional studies in plant mutants. MediPlEx can freely be used at http://www.cebitec.uni-bielefeld.de/mediplex.
Collapse
Affiliation(s)
- Kolja Henckel
- Bioinformatics of Signaling Networks, Center for Biotechnology, Bielefeld University, Germany
| | - Helge Küster
- Unit IV - Plant Genomics, Institute for Plant Genetics, Leibniz Universität Hannover, Germany
| | - Leonhard J Stutz
- Computational Genomics, Center for Biotechnology, Bielefeld University, Germany
- Technical Faculty, Bielefeld University, Germany
| | - Alexander Goesmann
- Computational Genomics, Center for Biotechnology, Bielefeld University, Germany
| |
Collapse
|
20
|
Breen J, Bellgard M. Germin-like proteins (GLPs) in cereal genomes: gene clustering and dynamic roles in plant defence. Funct Integr Genomics 2010; 10:463-76. [PMID: 20683632 DOI: 10.1007/s10142-010-0184-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 11/29/2022]
Abstract
The recent release of the genome sequences of a number of crop and model plant species has made it possible to define the genome organisation and functional characteristics of specific genes and gene families of agronomic importance. For instance, Sorghum bicolor, maize (Zea mays) and Brachypodium distachyon genome sequences along with the model grass species rice (Oryza sativa) enable the comparative analysis of genes involved in plant defence. Germin-like proteins (GLPs) are a small, functionally and taxonomically diverse class of cupin-domain containing proteins that have recently been shown to cluster in an area of rice chromosome 8. The genomic location of this gene cluster overlaps with a disease resistance QTL that provides defence against two rice fungal pathogens (Magnaporthe oryzae and Rhizoctonia solani). Studies showing the involvement of GLPs in basal host resistance against powdery mildew (Blumeria graminis ssp.) have also been reported in barley and wheat. In this mini-review, we compare the close proximity of GLPs in publicly available cereal crop genomes and discuss the contribution that these proteins, and their genome sequence organisation, play in plant defence.
Collapse
Affiliation(s)
- James Breen
- Institute for Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland.
| | | |
Collapse
|
21
|
Luo H, Sun C, Li Y, Wu Q, Song J, Wang D, Jia X, Li R, Chen S. Analysis of expressed sequence tags from the Huperzia serrata leaf for gene discovery in the areas of secondary metabolite biosynthesis and development regulation. PHYSIOLOGIA PLANTARUM 2010; 139:1-12. [PMID: 20059733 DOI: 10.1111/j.1399-3054.2009.01339.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Huperzia serrata produces various types of lycopodium alkaloids, especially the huperzine A (HupA) that is a promising drug candidate for Alzheimer's disease. Despite the medicinal importance of H. serrata, little genomic or transcriptomic data are available from the public databases. A cDNA library was thus generated from RNA isolated from the leaves of H. serrata. A total of 4012 clones were randomly selected from the library, and 3451 high-quality expressed sequence tags (ESTs) were assembled to yield 1510 unique sequences with an average length of 712 bp. The majority (79.4%) of the unique sequences were assigned to the putative functions based on the BLAST searches against the public databases. The functions of these unique sequences covered a broad set of molecular functions, biological processes and biochemical pathways according to GO and KEGG assignments. The transcripts involved in the secondary metabolite biosynthesis of alkaloids, terpenoids and flavone/flavonoids, such as cytochrome P450, lysine decarboxylase (LDC), flavanone 3-hydroxylase, squalene synthetase and 2-oxoglutarate 3-dioxygenase, were well represented by 34 unique sequences in this EST dataset. The corresponding peptide sequence of the LDC contained the Pfam 03641 domain and was annotated as a putative LDC. The unique sequences encoding transcription factors, phytohormone biosynthetic enzymes and signaling components were also found in this EST collection. In addition, a total of 501 potential SSR-motif microsatellite loci were identified from the 393 H. serrata leaf unique sequences. This set of non-redundant ESTs and the molecular markers obtained in this study will establish valuable resources for a wide range of applications including gene discovery and identification, genetic mapping and analysis of genetic diversity, cultivar identification and marker-assisted selections in this important medicinal plant.
Collapse
Affiliation(s)
- Hongmei Luo
- Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151, Malianwa North Road, HaiDian District, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sawers RJH, Gebreselassie MN, Janos DP, Paszkowski U. Characterizing variation in mycorrhiza effect among diverse plant varieties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1029-39. [PMID: 20012933 DOI: 10.1007/s00122-009-1231-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 11/21/2009] [Indexed: 05/11/2023]
Abstract
Exploitation of arbuscular mycorrhizal fungi may be an important approach for development of reduced-input agriculture. We discuss the use of linear models to analyze variation in mycorrhiza response among diverse plant varieties in order to assess the value of mycorrhizas. Our approach allows elimination of variation linked to differences in plant performance in the absence of mycorrhizas and the selection of plant lines that might harbor genetic variation of use to improve the mycorrhizal symbiosis in agriculture. We illustrate our approach by applying it to previously published and to novel data. We suggest that in dealing with a relative trait such as mycorrhiza effect, the choice of measure used to quantify the trait greatly affects interpretation. In the plant populations under consideration, we find evidence for a greater potential to increase mycorrhiza benefit than previously suggested.
Collapse
Affiliation(s)
- Ruairidh J H Sawers
- Department of Plant Molecular Biology, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
23
|
Fiorilli V, Catoni M, Miozzi L, Novero M, Accotto GP, Lanfranco L. Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. THE NEW PHYTOLOGIST 2009; 184:975-87. [PMID: 19765230 DOI: 10.1111/j.1469-8137.2009.03031.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
*Arbuscular mycorrhizal symbiosis develops in roots; extensive cellular reorganizations and specific metabolic changes occur, which are mirrored by local and systemic changes in the transcript profiles. *A TOM2 microarray (c. 12 000 probes) has been used to obtain an overview of the transcriptional changes that are triggered in Solanum lycopersicum roots and shoots, as a result of colonization by the arbuscular mycorrhizal fungus Glomus mosseae. The cell-type expression profile of a subset of genes was monitored, using laser microdissection, to identify possible plant determinants of arbuscule development,. *Microarrays revealed 362 up-regulated and 293 down-regulated genes in roots. Significant gene modulation was also observed in shoots: 85 up- and 337 down-regulated genes. The most responsive genes in both organs were ascribed to primary and secondary metabolism, defence and response to stimuli, cell organization and protein modification, and transcriptional regulation. Six genes, preferentially expressed in arbusculated cells, were identified. *A comparative analysis only showed a limited overlap with transcript profiles identified in mycorrhizal roots of Medicago truncatula, probably as a consequence of the largely nonoverlapping probe sets on the microarray tools used. The results suggest that auxin and abscisic acid metabolism are involved in arbuscule formation and/or functioning.
Collapse
Affiliation(s)
- Valentina Fiorilli
- Dipartimento di Biologia Vegetale, Università degli Studi di Torino, Torino, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Floss DS, Hause B, Lange PR, Küster H, Strack D, Walter MH. Knock-down of the MEP pathway isogene 1-deoxy-D-xylulose 5-phosphate synthase 2 inhibits formation of arbuscular mycorrhiza-induced apocarotenoids, and abolishes normal expression of mycorrhiza-specific plant marker genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:86-100. [PMID: 18557838 DOI: 10.1111/j.1365-313x.2008.03575.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The first step of the plastidial methylerythritol phosphate (MEP) pathway is catalyzed by two isoforms of 1-deoxy-D-xylulose 5-phosphate synthase (DXS1 and DXS2). In Medicago truncatula, MtDXS1 and MtDXS2 genes exhibit completely different expression patterns. Most prominently, colonization by arbuscular mycorrhizal (AM) fungi induces the accumulation of certain apocarotenoids (cyclohexenone and mycorradicin derivatives) correlated with the expression of MtDXS2 but not of MtDXS1. To prove a distinct function of DXS2, a selective RNAi approach on MtDXS2 expression was performed in transgenic hairy roots of M. truncatula. Repression of MtDXS2 consistently led to reduced transcript levels in mycorrhizal roots, and to a concomitant reduction of AM-induced apocarotenoid accumulation. The transcript levels of MtDXS1 remained unaltered in RNAi plants, and no phenotypical changes in non-AM plants were observed. Late stages of the AM symbiosis were adversely affected, but only upon strong repression with residual MtDXS2-1 transcript levels remaining below approximately 10%. This condition resulted in a strong decrease in the transcript levels of MtPT4, an AM-specific plant phosphate transporter gene, and in a multitude of other AM-induced plant marker genes, as shown by transcriptome analysis. This was accompanied by an increased proportion of degenerating and dead arbuscules at the expense of mature ones. The data reveal a requirement for DXS2-dependent MEP pathway-based isoprenoid products to sustain mycorrhizal functionality at later stages of the symbiosis. They further validate the concept of a distinct role for DXS2 in secondary metabolism, and offer a novel tool to selectively manipulate the levels of secondary isoprenoids by targeting their precursor supply.
Collapse
Affiliation(s)
- Daniela S Floss
- Abteilung Sekundärstoffwechsel, Leibniz-Institut für Pflanzenbiochemie (IPB), Weinberg 3, D-06120 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
25
|
Schliemann W, Ammer C, Strack D. Metabolite profiling of mycorrhizal roots of Medicago truncatula. PHYTOCHEMISTRY 2008; 69:112-46. [PMID: 17706732 DOI: 10.1016/j.phytochem.2007.06.032] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 04/27/2007] [Accepted: 06/22/2007] [Indexed: 05/16/2023]
Abstract
Metabolite profiling of soluble primary and secondary metabolites, as well as cell wall-bound phenolic compounds from roots of barrel medic (Medicago truncatula) was carried out by GC-MS, HPLC and LC-MS. These analyses revealed a number of metabolic characteristics over 56 days of symbiotic interaction with the arbuscular mycorrhizal (AM) fungus Glomus intraradices, when compared to the controls, i.e. nonmycorrhizal roots supplied with low and high amounts of phosphate. During the most active stages of overall root mycorrhization, elevated levels of certain amino acids (Glu, Asp, Asn) were observed accompanied by increases in amounts of some fatty acids (palmitic and oleic acids), indicating a mycorrhiza-specific activation of plastidial metabolism. In addition, some accumulating fungus-specific fatty acids (palmitvaccenic and vaccenic acids) were assigned that may be used as markers of fungal root colonization. Stimulation of the biosynthesis of some constitutive isoflavonoids (daidzein, ononin and malonylononin) occurred, however, only at late stages of root mycorrhization. Increase of the levels of saponins correlated AM-independently with plant growth. Only in AM roots was the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives) observed. The structures of the unknown cyclohexenone derivatives were identified by spectroscopic methods as glucosides of blumenol C and 13-hydroxyblumenol C and their corresponding malonyl conjugates. During mycorrhization, the levels of typical cell wall-bound phenolics (e.g. 4-hydroxybenzaldehyde, vanillin, ferulic acid) did not change; however, high amounts of cell wall-bound tyrosol were exclusively detected in AM roots. Principal component analyses of nonpolar primary and secondary metabolites clearly separated AM roots from those of the controls, which was confirmed by an hierarchical cluster analysis. Circular networks of primary nonpolar metabolites showed stronger and more frequent correlations between metabolites in the mycorrhizal roots. The same trend, but to a lesser extent, was observed in nonmycorrhizal roots supplied with high amounts of phosphate. These results indicate a tighter control of primary metabolism in AM roots compared to control plants. Network correlation analyses revealed distinct clusters of amino acids and sugars/aliphatic acids with strong metabolic correlations among one another in all plants analyzed; however, mycorrhizal symbiosis reduced the cluster separation and enlarged the sugar cluster size. The amino acid clusters represent groups of metabolites with strong correlations among one another (cliques) that are differently composed in mycorrhizal and nonmycorrhizal roots. In conclusion, the present work shows for the first time that there are clear differences in development- and symbiosis-dependent primary and secondary metabolism of M. truncatula roots.
Collapse
Affiliation(s)
- Willibald Schliemann
- Department of Secondary Metabolism, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany.
| | | | | |
Collapse
|
26
|
Godfrey D, Able AJ, Dry IB. Induction of a grapevine germin-like protein (VvGLP3) gene is closely linked to the site of Erysiphe necator infection: a possible role in defense? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:1112-25. [PMID: 17849714 DOI: 10.1094/mpmi-20-9-1112] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Germin-like proteins (GLP) have various proposed roles in plant development and defense. Seven novel GLP cDNA clones were isolated from grapevine (Vitis vinifera cv. Chardonnay). Reverse transcriptase-polymerase chain reaction expression analysis revealed that the VvGLP genes exhibit diverse and highly specific patterns of expression in response to a variety of abiotic and biotic treatments, including challenge by Erysiphe necator, Plasmopara viticola, and Botrytis cinerea, suggesting a diversity of roles for each of the GLP family members. Significantly, one of the grapevine GLP genes, VvGLP3, is induced specifically by E. necator infection and expression is closely linked to the site of infection. Subcellular localization of VvGLP3 determined by transient expression of a VvGLP3:GFP fusion construct in onion cells indicated that the recombinant protein was targeted to the cell wall. Recombinant VvGLP3 was successfully expressed in Arabidopsis thaliana and the partially purified recombinant protein was demonstrated to have superoxide dismutase activity. This data has provided an insight into the diverse nature of the GLP family in grapevine and suggests that VvGLP3 may be involved in the defense response against E. necator.
Collapse
Affiliation(s)
- Dale Godfrey
- CSIRO Plant Industry, PO Box 350, Glen Osmond, SA 5064, Australia
| | | | | |
Collapse
|
27
|
Balestrini R, Lanfranco L. Fungal and plant gene expression in arbuscular mycorrhizal symbiosis. MYCORRHIZA 2006; 16:509-524. [PMID: 17004063 DOI: 10.1007/s00572-006-0069-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2006] [Accepted: 07/05/2006] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizas (AMs) are a unique example of symbiosis between two eukaryotes, soil fungi and plants. This association induces important physiological changes in each partner that lead to reciprocal benefits, mainly in nutrient supply. The symbiosis results from modifications in plant and fungal cell organization caused by specific changes in gene expression. Recently, much effort has gone into studying these gene expression patterns to identify a wider spectrum of genes involved. We aim in this review to describe AM symbiosis in terms of current knowledge on plant and fungal gene expression profiles.
Collapse
Affiliation(s)
- Raffaella Balestrini
- Istituto per la Protezione delle Piante-Sezione di Torino-CNR, Viale Mattioli 25, 10125, Turin, Italy.
| | - Luisa Lanfranco
- Dipartimento di Biologia Vegetale, Università di Torino, Viale Mattioli 25, 10125, Turin, Italy
| |
Collapse
|
28
|
Hohnjec N, Henckel K, Bekel T, Gouzy J, Dondrup M, Goesmann A, Küster H. Transcriptional snapshots provide insights into the molecular basis of arbuscular mycorrhiza in the model legume Medicago truncatula. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:737-748. [PMID: 32689284 DOI: 10.1071/fp06079] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 06/15/2006] [Indexed: 06/11/2023]
Abstract
The arbuscular mycorrhizal (AM) association between terrestrial plants and soil fungi of the phylum Glomeromycota is the most widespread beneficial plant-microbe interaction on earth. In the course of the symbiosis, fungal hyphae colonise plant roots and supply limiting nutrients, in particular phosphorus, in exchange for carbon compounds. Owing to the obligate biotrophy of mycorrhizal fungi and the lack of genetic systems to study them, targeted molecular studies on AM symbioses proved to be difficult. With the emergence of plant genomics and the selection of suitable models, an application of untargeted expression profiling experiments became possible. In the model legume Medicago truncatula, high-throughput expressed sequence tag (EST)-sequencing in conjunction with in silico and experimental transcriptome profiling provided transcriptional snapshots that together defined the global genetic program activated during AM. Owing to an asynchronous development of the symbiosis, several hundred genes found to be activated during the symbiosis cannot be easily correlated with symbiotic structures, but the expression of selected genes has been extended to the cellular level to correlate gene expression with specific stages of AM development. These approaches identified marker genes for the AM symbiosis and provided the first insights into the molecular basis of gene expression regulation during AM.
Collapse
Affiliation(s)
- Natalija Hohnjec
- Institute for Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Kolja Henckel
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Thomas Bekel
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Jerome Gouzy
- Laboratoire des Interactions Plantes Micro-organismes LIPM, Chemin de Borde-Rouge-Auzeville, BP 52627, 31326 Castanet Tolosan, Cedex, France
| | - Michael Dondrup
- International Graduate School in Bioinformatics and Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics Resource Facility, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| | - Helge Küster
- Institute for Genome Research, Center for Biotechnology (CeBiTec), Bielefeld University, D-33594 Bielefeld, Germany
| |
Collapse
|
29
|
Frenzel A, Manthey K, Perlick AM, Meyer F, Pühler A, Küster H, Krajinski F. Combined transcriptome profiling reveals a novel family of arbuscular mycorrhizal-specific Medicago truncatula lectin genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:771-82. [PMID: 16134889 DOI: 10.1094/mpmi-18-0771] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The large majority of plants are capable of undergoing a tight symbiosis with arbuscular mycorrhizal (AM) fungi. During this symbiosis, highly specialized new structures called arbuscules are formed within the host cells, indicating that, during interaction with AM fungi, plants express AM-specific genetic programs. Despite increasing efforts, the number of genes known to be induced in the AM symbiosis is still low. In order to identify novel AM-induced genes which have not been listed before, 5,646 expressed sequence tags (ESTs) were generated from two Medicago truncatula cDNA libraries: a random cDNA library (MtAmp) and a suppression subtractive hybridization (SSH) library (MtGim), the latter being designed to enhance the cloning of mycorrhiza-upregulated genes. In silico expression analysis was applied to identify those tentative consensus sequences (TCs) of The Institute for Genomic Research M. truncatula gene index (MtGI) that are composed exclusively of ESTs deriving from the MtGim or MtAmp library, but not from any other cDNA library of the MtGI. This search revealed 115 MtAmp- or MTGim-specific TCs. For the majority of these TCs with sequence similarities to plant genes, the AM-specific expression was verified by quantitative reverse-transcription polymerase chain reaction. Annotation of the novel genes induced in mycorrhizal roots suggested their involvement in different transport as well as signaling processes and revealed a novel family of AM-specific lectin genes. The expression of reporter gene fusions in transgenic roots revealed an arbuscule-related expression of two members of the lectin gene family, indicating a role for AM-specific lectins during arbuscule formation or functioning.
Collapse
Affiliation(s)
- André Frenzel
- Lehrgebiet Molekulargenetik, Universität Hannover, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Webb KJ, Szczyglowski K, Parniske M. Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. THE PLANT CELL 2005; 17:2217-29. [PMID: 15980262 PMCID: PMC1182484 DOI: 10.1105/tpc.105.032714] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 05/19/2005] [Accepted: 05/31/2005] [Indexed: 05/03/2023]
Abstract
A combined genetic and transcriptome analysis was performed to study the molecular basis of the arbuscular mycorrhiza (AM) symbiosis. By testing the AM phenotype of nodulation-impaired mutants and complementation analysis, we defined seven Lotus japonicus common symbiosis genes (SYMRK, CASTOR, POLLUX, SYM3, SYM6, SYM15, and SYM24) that are required for both fungal and bacterial entry into root epidermal or cortical cells. To describe the phenotype of these mutants at the molecular level, we screened for differentiating transcriptional responses of mutant and wild-type roots by large-scale gene expression profiling using cDNA-amplified fragment length polymorphism. Two percent of root transcripts was found to increase in abundance during AM development, from which a set of AM-regulated marker genes was established. A Ser-protease (SbtS) and a Cys-protease (CysS) were also activated during root nodule development. AM-induced transcriptional activation was abolished in roots carrying mutations in common symbiosis genes, suggesting a central position of these genes in a pathway leading to the transcriptional activation of downstream genes. By contrast, AM fungus-induced gene repression appeared to be unaffected in mutant backgrounds, which indicates the presence of additional independent signaling pathways.
Collapse
Affiliation(s)
| | - Thilo Winzer
- Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | | | | | - Shusei Sato
- Kazusa DNA Research Institute, Chiba 292-0818, Japan
| | | | | | - Niels Sandal
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - Jens Stougaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, DK-8000 Aarhus C, Denmark
| | - K. Judith Webb
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth SY23 3EB, United Kingdom
| | - Krzysztof Szczyglowski
- Agriculture and Agri-Food Canada, Southern Crop Protection and Food Research Centre, London, Ontario N5V 4T3, Canada
| | | |
Collapse
|
31
|
Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T. Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxillus involutus (Batsch) Fr. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:659-73. [PMID: 16042012 DOI: 10.1094/mpmi-18-0659] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The formation of ectomycorrhizal (ECM) root tissue is characterized by distinct morphological and developmental stages, such as preinfection and adhesion, mantle, and Hartig net formation. The global pattern of gene expression during these stages in the birch (Betula pendula)-Paxillus involutus ECM association was analyzed using cDNA microarrays. In comparison with nonsymbiotic conditions, 251 fungal (from a total of 1,075) and 138 plant (1,074 in total) genes were found to be differentially regulated during the ECM development. For instance, during mantle and Hartig net development, there were several plant genes upregulated that are normally involved in defense responses during pathogenic fungal challenges. These responses were, at later stages of ECM development, found to be repressed. Other birch genes that showed differential regulation involved several homologs that usually are implicated in water permeability (aquaporins) and water stress tolerance (dehydrins). Among fungal genes differentially upregulated during stages of mantle and Hartig net formation were homologs putatively involved in mitochondrial respiration. In fully developed ECM tissue, there was an upregulation of fungal genes related to protein synthesis and the cytoskeleton assembly machinery. This study highlights complex molecular interactions between two symbionts during the development of an ECM association.
Collapse
Affiliation(s)
- Antoine Le Quéré
- Department of Microbial Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | | | | | | | | |
Collapse
|
32
|
Güimil S, Chang HS, Zhu T, Sesma A, Osbourn A, Roux C, Ioannidis V, Oakeley EJ, Docquier M, Descombes P, Briggs SP, Paszkowski U. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc Natl Acad Sci U S A 2005; 102:8066-70. [PMID: 15905328 PMCID: PMC1142390 DOI: 10.1073/pnas.0502999102] [Citation(s) in RCA: 215] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glomalean fungi induce and colonize symbiotic tissue called arbuscular mycorrhiza on the roots of most land plants. Other fungi also colonize plants but cause disease not symbiosis. Whole-transcriptome analysis using a custom-designed Affymetrix Gene-Chip and confirmation with real-time RT-PCR revealed 224 genes affected during arbuscular mycorrhizal symbiosis. We compared these transcription profiles with those from rice roots that were colonized by pathogens (Magnaporthe grisea and Fusarium moniliforme). Over 40% of genes showed differential regulation caused by both the symbiotic and at least one of the pathogenic interactions. A set of genes was similarly expressed in all three associations, revealing a conserved response to fungal colonization. The responses that were shared between pathogen and symbiont infection may play a role in compatibility. Likewise, the responses that are different may cause disease. Some of the genes that respond to mycorrhizal colonization may be involved in the uptake of phosphate. Indeed, phosphate addition mimicked the effect of mycorrhiza on 8% of the tested genes. We found that 34% of the mycorrhiza-associated rice genes were also associated with mycorrhiza in dicots, revealing a conserved pattern of response between the two angiosperm classes.
Collapse
Affiliation(s)
- Sonia Güimil
- Laboratory of Plant Genetics, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H. Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. PLANT PHYSIOLOGY 2005; 137:1283-301. [PMID: 15778460 PMCID: PMC1088321 DOI: 10.1104/pp.104.056572] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Revised: 01/28/2005] [Accepted: 01/30/2005] [Indexed: 05/18/2023]
Abstract
Arbuscular mycorrhiza (AM) is a widespread symbiotic association between plants and fungal microsymbionts that supports plant development under nutrient-limiting and various stress conditions. In this study, we focused on the overlapping genetic program activated by two commonly studied microsymbionts in addition to identifying AM-related genes. We thus applied 16,086 probe microarrays to profile the transcriptome of the model legume Medicago truncatula during interactions with Glomus mosseae and Glomus intraradices and specified a total of 201 plant genes as significantly coinduced at least 2-fold, with more than 160 being reported as AM induced for the first time. Several hundred genes were additionally up-regulated during a sole interaction, indicating that the plant genetic program activated in AM to some extent depends on the colonizing microsymbiont. Genes induced during both interactions specified AM-related nitrate, ion, and sugar transporters, enzymes involved in secondary metabolism, proteases, and Kunitz-type protease inhibitors. Furthermore, coinduced genes encoded receptor kinases and other components of signal transduction pathways as well as AM-induced transcriptional regulators, thus reflecting changes in signaling. By the use of reporter gene expression, we demonstrated that one member of the AM-induced gene family encoding blue copper binding proteins (MtBcp1) was both specifically and strongly up-regulated in arbuscule-containing regions of mycorrhizal roots. A comparison of the AM expression profiles to those of nitrogen-fixing root nodules suggested only a limited overlap between the genetic programs orchestrating root endosymbioses.
Collapse
Affiliation(s)
- Natalija Hohnjec
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, D-33615 Bielefeld, Germany
| | | | | | | | | |
Collapse
|
34
|
Lanfranco L, Novero M, Bonfante P. The mycorrhizal fungus Gigaspora margarita possesses a CuZn superoxide dismutase that is up-regulated during symbiosis with legume hosts. PLANT PHYSIOLOGY 2005; 137:1319-30. [PMID: 15749992 PMCID: PMC1088323 DOI: 10.1104/pp.104.050435] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 12/01/2004] [Accepted: 12/20/2004] [Indexed: 05/21/2023]
Abstract
A full-length cDNA showing high similarity to previously described CuZn superoxide dismutases (SODs) was identified in an expressed sequence tag collection from germinated spores of the arbuscular mycorrhizal fungus Gigaspora margarita (BEG 34). The corresponding gene sequence, named GmarCuZnSOD, is composed of four exons. As revealed by heterologous complementation assays in a yeast mutant, GmarCuZnSOD encodes a functional polypeptide able to confer increased tolerance to oxidative stress. The GmarCuZnSOD RNA was differentially expressed during the fungal life cycle; highest transcript levels were found in fungal structures inside the roots as observed on two host plants, Lotus japonicus and Medicago truncatula. These structures also reacted positively to 3,3'-diaminobenzidine, used to localize H2O2 accumulation. This H2O2 is likely to be produced by CuZnSOD activity since treatment with a chelator of copper ions, generally used to inhibit CuZnSODs, strongly reduced the 3,3'-diaminobenzidine deposits. A slight induction of GmarCuZnSOD gene expression was also observed in germinated spores exposed to L. japonicus root exudates, although the response showed variation in independent samples. These results provide evidence of the occurrence, in an arbuscular mycorrhizal fungus, of a functional SOD gene that is modulated during the life cycle and may offer protection as a reactive oxygen species-inactivating system against localized host defense responses raised in arbuscule-containing cells.
Collapse
Affiliation(s)
- Luisa Lanfranco
- Dipartimento di Biologia Vegetale, Università di Torino, 10125 Turin, Italy
| | | | | |
Collapse
|
35
|
Isayenkov S, Fester T, Hause B. Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1379-1383. [PMID: 15658808 DOI: 10.1016/j.jplph.2004.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The quantifications of root colonization and symbiotic activity in the arbuscular mycorrhizal (AM) association of Medicago truncatula and Glomus intraradices were performed by quantitative polymerase chain reaction (real-time PCR). A strong correlation between fungal colonization of the root system and the amounts of fungal rDNA and rRNA were shown. In contrast, the transcript levels of the AM-specific phosphate transporter 4 from M. truncatula (MtPT4) correlate with arbuscule formation rather than with fungal colonization. These results suggest (i) that real-time PCR assay is a rapid, useful, and accurate method for the determination of arbuscular mycorrhizal features, (ii) that the amount of fungal rDNA or rRNA is a good parameter to estimate fungal colonization, and (iii) that it is necessary to evaluate the amount of other transcripts-like the MtPT4 transcript-to obtain additional information about the symbiotic state of the colonized root system.
Collapse
Affiliation(s)
- Stanislav Isayenkov
- Institute of Plant Biochemistry, Department of Secondary Metabolism, Weinberg 3, 06120 Halle (Saale), Germany.
| | | | | |
Collapse
|
36
|
Grunwald U, Nyamsuren O, Tamasloukht M, Lapopin L, Becker A, Mann P, Gianinazzi-Pearson V, Krajinski F, Franken P. Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. PLANT MOLECULAR BIOLOGY 2004; 55:553-66. [PMID: 15604700 DOI: 10.1007/s11103-004-1303-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Suppressive subtractive hybridisation was applied to the analysis of late stage arbuscular mycorrhizal development in pea. 96 cDNA clones were amplified and 81, which carried fragments more than 200 nt in size, were sequence analysed. Among 67 unique fragments, 10 showed no homology and 10 were similar to sequences with unknown function. RNA accumulation of the corresponding 67 genes was analysed by hybridisation of macro-arrays. The cDNAs used as probes were derived from roots of wild type and late mutant pea genotypes, inoculated or not with the AM fungus Glomus mosseae. After calibration, a more than 2.5-fold mycorrhiza-induced RNA accumulation was detected in two independent experiments in the wild type for 25 genes, 22 of which seemed to be induced specifically during late stage AM development. Differential expression for 7 genes was confirmed by RT-PCR using RNA from mycorrhiza and from controls of a different pea cultivar. In order to confirm arbuscule-related expression, the Medicago truncatula EST data base was screened for homologous sequences with putative mycorrhiza-related expression and among a number of sequences with significant similarities, a family of trypsin inhibitor genes could be identified. Mycorrhiza-induced RNA accumulation was verified for five members by real-time PCR and arbuscule-related activation of the promoter could be shown in transgenic roots for one of the genes, MtTi 1.
Collapse
Affiliation(s)
- Ulf Grunwald
- Max-Planck Institut für terrestrische Mikrobiologie, and Laboratorium für Mikrobiologie, Philipps-University, Karl-von-Frisch-Strasse, Marburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|