1
|
Kimura S, Sato M, Fan X, Ohmori M, Ehira S. The two-component response regulator OrrA confers dehydration tolerance by regulating avaKa expression in the cyanobacterium Anabaena sp. strain PCC 7120. Environ Microbiol 2022; 24:5165-5173. [PMID: 36054741 PMCID: PMC9804601 DOI: 10.1111/1462-2920.16162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/06/2022] [Indexed: 01/05/2023]
Abstract
The cyanobacterium Anabaena sp. strain PCC 7120 exhibits dehydration tolerance. The regulation of gene expression in response to dehydration is crucial for the acquisition of dehydration tolerance, but the molecular mechanisms underlying dehydration responses remain unknown. In this study, the functions of the response regulator OrrA in the regulation of salt and dehydration responses were investigated. Disruption of orrA abolished or diminished the induction of hundreds of genes in response to salt stress and dehydration. Thus, OrrA is a principal regulator of both stress responses. In particular, OrrA plays a crucial role in dehydration tolerance because an orrA disruptant completely lost the ability to regrow after dehydration. Moreover, in the OrrA regulon, avaKa encoding a protein of unknown function was revealed to be indispensable for dehydration tolerance. OrrA and AvaK are conserved among the terrestrial cyanobacteria, suggesting their conserved functions in dehydration tolerance in cyanobacteria.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan
| | - Miho Sato
- Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Xingyan Fan
- Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Masayuki Ohmori
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan
| | - Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of ScienceSaitama UniversitySaitamaJapan,Department of Biological Sciences, Graduate school of ScienceTokyo Metropolitan UniversityTokyoJapan
| |
Collapse
|
2
|
Sen S, Rai S, Yadav S, Agrawal C, Rai R, Chatterjee A, Rai L. Dehydration and rehydration - induced temporal changes in cytosolic and membrane proteome of the nitrogen fixing cyanobacterium Anabaena sp. PCC 7120. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Hernández-Prieto MA, Semeniuk TA, Giner-Lamia J, Futschik ME. The Transcriptional Landscape of the Photosynthetic Model Cyanobacterium Synechocystis sp. PCC6803. Sci Rep 2016; 6:22168. [PMID: 26923200 PMCID: PMC4770689 DOI: 10.1038/srep22168] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/09/2016] [Indexed: 01/03/2023] Open
Abstract
Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu).
Collapse
Affiliation(s)
- Miguel A. Hernández-Prieto
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Trudi Ann Semeniuk
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Joaquín Giner-Lamia
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - Matthias E. Futschik
- Systems Biology and Bioinformatics Laboratory, Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Higo A, Isu A, Fukaya Y, Hisabori T. Efficient Gene Induction and Endogenous Gene Repression Systems for the Filamentous Cyanobacterium Anabaena sp. PCC 7120. PLANT & CELL PHYSIOLOGY 2016; 57:387-396. [PMID: 26684202 DOI: 10.1093/pcp/pcv202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/15/2015] [Indexed: 06/05/2023]
Abstract
In the last decade, many studies have been conducted to employ genetically engineered cyanobacteria in the production of various metabolites. However, the lack of a strict gene regulation system in cyanobacteria has hampered these attempts. The filamentous cyanobacterium Anabaena sp. PCC 7120 performs both nitrogen and carbon fixation and is, therefore, a good candidate organism for such production. To employ Anabaena cells for this purpose, we intended to develop artificial gene regulation systems to alter the cell metabolic pathways efficiently. We introduced into Anabaena a transcriptional repressor TetR, widely used in diverse organisms, and green fluorescent protein (GFP) as a reporter. We found that anhydrotetracycline (aTc) substantially induced GFP fluorescence in a concentration-dependent manner. By expressing tetR under the nitrate-specific promoter nirA, we successfully reduced the concentration of aTc required for the induction of gfp under nitrogen fixation conditions (to 10% of the concentration needed under nitrate-replete conditions). Further, we succeeded in the overexpression of GFP by depletion of nitrate without the inducer by means of promoter engineering of the nirA promoter. Moreover, we applied these gene regulation systems to a metabolic enzyme in Anabaena and successfully repressed glnA, the gene encoding glutamine synthetase that is essential for nitrogen assimilation in cyanobacteria, by expressing the small antisense RNA for glnA. Consequently, the ammonium production of an ammonium-excreting Anabaena mutant was significantly enhanced. We therefore conclude that the gene regulation systems developed in this study are useful tools for the regulation of metabolic enzymes and will help to increase the production of desired substances in Anabaena.
Collapse
Affiliation(s)
- Akiyoshi Higo
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503 Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, 102-0075 Japan
| | - Atsuko Isu
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503 Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, 102-0075 Japan
| | - Yuki Fukaya
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503 Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, 102-0075 Japan
| | - Toru Hisabori
- Chemical Resources Laboratory, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-ku, Yokohama, 226-8503 Japan Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Tokyo, 102-0075 Japan
| |
Collapse
|
5
|
Agrawal C, Sen S, Singh S, Rai S, Singh PK, Singh VK, Rai L. Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. J Proteomics 2014; 96:271-90. [DOI: 10.1016/j.jprot.2013.11.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/11/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022]
|
6
|
Ludwig M, Bryant DA. Synechococcus sp. Strain PCC 7002 Transcriptome: Acclimation to Temperature, Salinity, Oxidative Stress, and Mixotrophic Growth Conditions. Front Microbiol 2012; 3:354. [PMID: 23087677 PMCID: PMC3468840 DOI: 10.3389/fmicb.2012.00354] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/15/2012] [Indexed: 12/29/2022] Open
Abstract
Synechococcus sp. strain PCC 7002 is a unicellular, euryhaline cyanobacterium. It is a model organism for studies of cyanobacterial metabolism and has great potential for biotechnological applications. It exhibits an exceptional tolerance of high-light irradiation and shows very rapid growth. The habitats from which this and closely related strains were isolated are subject to changes in several environmental factors, including light, nutrient supply, temperature, and salinity. In this study global transcriptome profiling via RNAseq has been used to perform a comparative and integrated study of global changes in cells grown at different temperatures, at different salinities, and under mixotrophic conditions, when a metabolizable organic carbon source was present. Furthermore, the transcriptomes were investigated for cells that were subjected to a heat shock and that were exposed to oxidative stress. Lower growth temperatures caused relatively minor changes of the transcriptome; the most prominent changes affected fatty acid desaturases. A heat shock caused severe changes of the transcriptome pattern; transcripts for genes associated with major metabolic pathways declined and those for different chaperones increased dramatically. Oxidative stress, however, left the transcript pattern almost unaffected. When grown at high salinity, Synechococcus sp. PCC 7002 had increased expression of genes involved in compatible solute biosynthesis and showed increased mRNA levels for several genes involved in electron transport. Transcripts of two adjacent genes dramatically increased upon growth at high salinity; the respective proteins are putatively involved in coping with oxidative stress and in triggering ion channels. Only minor changes were observed when cells were grown at low salinity or when the growth medium was supplemented with glycerol. However, the transcriptome data suggest that cells must acclimate to excess reducing equivalents when a reduced C-source is present.
Collapse
Affiliation(s)
- Marcus Ludwig
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University University Park, PA, USA
| | | |
Collapse
|
7
|
Li W, Gao H, Yin C, Xu X. Identification of a novel thylakoid protein gene involved in cold acclimation in cyanobacteria. MICROBIOLOGY-SGM 2012; 158:2440-2449. [PMID: 22767544 DOI: 10.1099/mic.0.060038-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In cyanobacteria, genes involved in cold acclimation can be upregulated in response to cold stress with or without light. By inactivating 17 such genes in Synechocystis sp. PCC 6803, slr0815 (ccr2) was identified to be a novel gene required for survival at 15 °C. It was upregulated by cold stress in the light. Upon exposure to low temperature, a ccr2-null mutant showed greatly reduced photosynthetic and respiratory activities within 12 h relative to the wild-type. At 48 h, the photosystem (PS)II-mediated electron transport in the mutant was reduced to less than one-third of the wild-type level, and the duration of electron transfer from the Q(B) binding site of PSII to PSI was increased to about eight times the wild-type level, whereas the PSI-mediated electron transport remained unchanged. Using an antibody against GFP, a Ccr2-GFP fusion protein was localized to the thylakoid membrane rather than the cytoplasmic and outer membranes. Homologues to Ccr2 can be found in most cyanobacteria, algae and higher plants with sequenced genomes. Ccr2 is probably representative of a group of novel thylakoid proteins involved in acclimation to cold or other stresses.
Collapse
Affiliation(s)
- Weizhi Li
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Hong Gao
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Chuntao Yin
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Xudong Xu
- The State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| |
Collapse
|
8
|
Abstract
Synechocystis sp. strain PCC 6803 cultured at 30°C losses viability quickly under chill (5°C)-light stress but becomes highly tolerant to the stress after conditioning at 15°C (Y. Yang, C. Yin, W. Li, and X. Xu, J. Bacteriol. 190:1554-1560, 2008). Hypothetically, certain factors induced during preconditioning are involved in acquisition of chill-light tolerance. In this study, Rbp1 (RNA-binding protein 1) rather than Rbp2 was found to be accumulated during preconditioning, and the accumulation of Rbp1 was correlated with the increase of chill-light tolerance. Inactivation of its encoding gene rbp1 led to a great reduction in the acquired chill-light tolerance, while ectopic expression of rbp1 enabled the cyanobacterium to survive the chill-light stress without preconditioning. Microarray analyses suggested that the Rbp1-dependent chill-light tolerance may not be based on its influence on mRNA abundance of certain genes. Similarly to that in Synechocystis, the Rbp1 homologue(s) can be accumulated in Microcystis cells collected from a subtropic lake in low-temperature seasons. Rbp1 is the first factor shown to be both accumulated early during preconditioning and directly involved in development of chill-light tolerance in Synechocystis. Its accumulation may greatly enhance the overwintering capability in certain groups of cyanobacteria.
Collapse
|
9
|
Oliveira P, Lindblad P. Transcriptional regulation of the cyanobacterial bidirectional Hox-hydrogenase. Dalton Trans 2009:9990-6. [PMID: 19904424 DOI: 10.1039/b908593a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The overall processes of transcription and its regulation have advanced significantly in the last years, making our understanding of prokaryotic biology more complex and detailed. In fact, a systematic study of different aspects of transcriptional regulation opens up outstanding opportunities to improve and develop the perception of complex reaction mechanisms, genetic processes and cell functions. In close connection to the cyanobacterial bidirectional hydrogenase, the main hydrogen-evolving enzyme in non-nitrogen fixing strains, two novel transcription factors have received increasing attention over the past five years: a LexA-related protein and the AbrB-like family members. Recent work on these regulators has produced new insights and advances towards the understanding (and possible interconnection) of several regulatory networks in cyanobacteria, namely nitrogen metabolism, redox response, toxin production, CO2 concentrating mechanisms and hydrogen metabolism. The fact that a LexA-related protein and AbrB-like family members have been co-purified in independent laboratories studying different sets of cyanobacterial genes suggests a possible common and/or complementary function of these regulators. In this review, we summarize the knowledge gained thus far regarding the transcriptional regulation of the cyanobacterial bidirectional hydrogenase, with special focus on the above mentioned transcription factors. Moreover, we discuss several additional points that warrants further investigation to increase our knowledge in this fast evolving research field.
Collapse
Affiliation(s)
- Paulo Oliveira
- Department of Photochemistry and Molecular Science, Angström Laboratories, Uppsala University, P. O. Box 523, SE-751 20, Uppsala, Sweden
| | | |
Collapse
|
10
|
Lechno-Yossef S, Fan Q, Ehira S, Sato N, Wolk CP. Mutations in four regulatory genes have interrelated effects on heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 2006; 188:7387-95. [PMID: 16936023 PMCID: PMC1636280 DOI: 10.1128/jb.00974-06] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulatory genes hepK, hepN, henR, and hepS are required for heterocyst maturation in Anabaena sp. strain PCC 7120. They presumptively encode two histidine kinases, a response regulator, and a serine/threonine kinase, respectively. To identify relationships between those genes, we compared global patterns of gene expression, at 14 h after nitrogen step-down, in corresponding mutants and in the wild-type strain. Heterocyst envelopes of mutants affected in any of those genes lack a homogeneous, polysaccharide layer. Those of a henR mutant also lack a glycolipid layer. patA, which encodes a positive effector of heterocyst differentiation, was up-regulated in all mutants except the hepK mutant, suggesting that patA expression may be inhibited by products related to heterocyst development. hepS and hepK were up-regulated if mutated and so appear to be negatively autoregulated. HepS and HenR regulated a common set of genes and so appear to belong to one regulatory system. Some nontranscriptional mechanism may account for the observation that henR mutants lack, and hepS mutants possess, a glycolipid layer, even though both mutations down-regulated genes involved in formation of the glycolipid layer. HepK and HepN also affected transcription of a common set of genes and therefore appear to share a regulatory pathway. However, the transcript abundance of other genes differed very significantly from expression in the wild-type strain in either the hepK or hepN mutant while differing very little from wild-type expression in the other of those two mutants. Therefore, hepK and hepN appear to participate also in separate pathways.
Collapse
Affiliation(s)
- Sigal Lechno-Yossef
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, 48824-1312, USA
| | | | | | | | | |
Collapse
|
11
|
Makarova KS, Koonin EV, Haselkorn R, Galperin MY. Cyanobacterial response regulator PatA contains a conserved N-terminal domain (PATAN) with an alpha-helical insertion. Bioinformatics 2006; 22:1297-301. [PMID: 16543275 DOI: 10.1093/bioinformatics/btl096] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The cyanobacterium Anabaena (Nostoc) PCC 7120 responds to starvation for nitrogen compounds by differentiating approximately every 10th cell in the filament into nitrogen-fixing cells called heterocysts. Heterocyst formation is subject to complex regulation, which involves an unusual response regulator PatA that contains a CheY-like phosphoacceptor (receiver, REC) domain at its C-terminus. PatA-like response regulators are widespread in cyanobacteria; one of them regulates phototaxis in Synechocystis PCC 6803. Sequence analysis of PatA revealed, in addition to the REC domain, a previously undetected, conserved domain, which we named PATAN (after PatA N-terminus), and a potential helix-turn-helix (HTH) domain. PATAN domains are encoded in a variety of environmental bacteria and archaea, often in several copies per genome, and are typically associated with REC, Roadblock and other signal transduction domains, or with DNA-binding HTH domains. Many PATAN domains contain insertions of a small additional domain, termed alpha-clip, which is predicted to form a four-helix bundle. PATAN domains appear to participate in protein-protein interactions that regulate gliding motility and processes of cell development and differentiation in cyanobacteria and some proteobacteria, such as Myxococcus xanthus and Geobacter sulfurreducens.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
12
|
Ehira S, Ohmori M, Sato N. Role of the 5'-UTR in accumulation of the rbpA1 transcript at low temperature in the cyanobacterium Anabaena variabilis M3. FEMS Microbiol Lett 2006; 251:91-8. [PMID: 16112820 DOI: 10.1016/j.femsle.2005.07.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 07/25/2005] [Accepted: 07/25/2005] [Indexed: 11/24/2022] Open
Abstract
The expression of the rbp genes, which encode RNA-binding proteins with a single RNA-recognition motif and a glycine-rich sequence, is known to increase at low temperature in cyanobacteria. We previously showed that their regulation involved both transcription and mRNA stability. In the present study, various reporter constructs with deletions and mutations were used to analyze this regulation, revealing that at least the following three elements are involved. First, a putative enhancer element is located within the upstream gene. Second, the rbpA1 transcript is dramatically stabilized by a large stem-loop structure located at the 5' terminus. Third, the transcript is also destabilized by a downstream box located within the coding region.
Collapse
Affiliation(s)
- Shigeki Ehira
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Ohkubo, Sakura, Saitama 338-8570, Japan
| | | | | |
Collapse
|