1
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Kong L, Li Z, Song Q, Li X, Luo K. Construction of a Full-Length cDNA Over-Expressing Library to Identify Valuable Genes from Populus tomentosa. Int J Mol Sci 2021; 22:ijms22073448. [PMID: 33810585 PMCID: PMC8036549 DOI: 10.3390/ijms22073448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/24/2021] [Indexed: 11/16/2022] Open
Abstract
Poplar wood is the main source of renewable biomass energy worldwide, and is also considered to be a model system for studying woody plants. The Full-length cDNA Over-eXpressing (FOX) gene hunting system is an effective method for generating gain-of-function mutants. Large numbers of novel genes have successfully been identified from many herbaceous plants according to the phenotype of gain-of-function mutants under normal or abiotic stress conditions using this system. However, the system has not been used for functional gene identification with high-throughput mutant screening in woody plants. In this study, we constructed a FOX library from the Chinese white poplar, Populus tomentosa. The poplar cDNA library was constructed into the plant expression vector pEarleyGate101 and further transformed into Arabidopsis thaliana (thale cress). We collected 1749 T1 transgenic plants identified by PCR. Of these, 593 single PCR bands from different transgenic lines were randomly selected for sequencing, and 402 diverse sequences of poplar genes were isolated. Most of these genes were involved in photosynthesis, environmental adaptation, and ribosome biogenesis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. We characterized in detail two mutant lines carrying PtoCPCa or PtoWRKY13 cDNA insertions. Phenotypic characterization showed that overexpression of these genes in A. thaliana affected trichome development or secondary cell wall (SCW) deposition, respectively. Together, the Populus-FOX-Arabidopsis library generated in our experiments will be helpful for efficient discovery of novel genes in poplar.
Collapse
Affiliation(s)
| | | | | | | | - Keming Luo
- Correspondence: ; Tel.: +86-23-6825-3021; Fax: +86-23-6825-2365
| |
Collapse
|
3
|
Rolling Circle Amplification (RCA)-Mediated Genome-Wide ihpRNAi Mutant Library Construction in Brassica napus. Int J Mol Sci 2020; 21:ijms21197243. [PMID: 33008068 PMCID: PMC7582411 DOI: 10.3390/ijms21197243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
With the successful completion of genomic sequencing for Brassica napus, identification of novel genes, determination of functions performed by genes, and exploring the molecular mechanisms underlying important agronomic traits were challenged. Mutagenesis-based functional genomics techniques including chemical, physical, and insertional mutagenesis have been used successfully in the functional characterization of genes. However, these techniques had their disadvantages and inherent limitations for allopolyploid Brassica napus, which contained a large number of homologous and redundant genes. Long intron-spliced hairpin RNA (ihpRNA) constructs which contained inverted repeats of the target gene separated by an intron, had been shown to be very effective in triggering RNAi in plants. In the present study, the genome-wide long ihpRNA library of B. napus was constructed with the rolling circle amplification (RCA)-mediated technology. Using the phytoene desaturase (PDS) gene as a target control, it was shown that the RCA-mediated long ihpRNA construct was significantly effective in triggering gene silence in B. napus. Subsequently, the resultant long ihpRNA library was transformed into B. napus to produce corresponding RNAi mutants. Among the obtained transgenic ihpRNA population of B. napus, five ihpRNA lines with observable mutant phenotypes were acquired including alterations in the floral model and the stamen development. The target genes could be quickly identified using specific primers. These results showed that the RCA-mediated ihpRNA construction method was effective for the genome-wide long ihpRNA library of B. napus, therefore providing a platform for study of functional genomics in allopolyploid B. napus.
Collapse
|
4
|
Aulakh SS, Veilleux RE, Tang G, Flinn BS. Characterization of a potato activation-tagged mutant, nikku, and its partial revertant. PLANTA 2015; 241:1481-1495. [PMID: 25772042 DOI: 10.1007/s00425-015-2272-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
A potato mutant with a strong stress-response phenotype, and a partial mutant revertant, were characterized. Gene expression patterns and DNA cytosine methylation varied between these and wild-type, indicating a role for DNA cytosine methylation changes in the gene expression and visible phenotypes. Morphological and molecular studies were conducted to compare potato cv. Bintje, a Bintje activation-tagged mutant (nikku), and nikku revertant phenotype plants. Morphological studies revealed that nikku plants exhibited an extremely dwarf phenotype, had small hyponastic leaves, were rootless, and infrequently produced small tubers compared to wild-type Bintje. The overall phenotype was suggestive of a constitutive stress response, which was further supported by the greater expression level of several stress-responsive genes in nikku. Unlike the nikku mutant, the revertant exhibited near normal shoot elongation, larger leaves and consistent rooting. The reversion appeared partial, and was not the result of a loss of 35S enhancer copies from the original nikku mutant. Southern blot analyses indicated the presence of a single T-DNA insertion on chromosome 12 in the mutant. Gene expression studies comparing Bintje, nikku and revertant phenotype plants indicated transcriptional activation/repression of several genes flanking both sides of the insertion in the mutant, suggesting that activation tagging had pleiotropic effects in nikku. In contrast, gene expression levels for many, but not all, of the same genes in the revertant were similar to Bintje, indicating some reversion at the gene expression level as well. DNA methylation studies indicated differences in cytosine methylation status of the 35S enhancers between the nikku mutant and its revertant. In addition, global DNA cytosine methylation varied between Bintje, the nikku mutant and the revertant, suggesting involvement in gene expression changes, as well as mutant phenotype.
Collapse
|
5
|
Aulakh SS, Veilleux RE, Dickerman AW, Tang G, Flinn BS. Characterization and RNA-seq analysis of underperformer, an activation-tagged potato mutant. PLANT MOLECULAR BIOLOGY 2014; 84:635-658. [PMID: 24306493 DOI: 10.1007/s11103-013-0159-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 11/21/2013] [Indexed: 06/02/2023]
Abstract
The potato cv. Bintje and a Bintje activation-tagged mutant, underperformer (up) were compared. Mutant up plants grown in vitro were dwarf, with abundant axillary shoot growth, greater tuber yield, altered tuber traits and early senescence compared to wild type. Under in vivo conditions, the dwarf and early senescence phenotypes of the mutant remained, but the up plants exhibited a lower tuber yield and fewer axillary shoots compared to wild type. Southern blot analyses indicated a single T-DNA insertion in the mutant, located on chromosome 10. Initial PCR-based gene expression studies indicated transcriptional activation/repression of several genes in the mutant flanking the insertion. The gene immediately flanking the right border of the T-DNA insertion, which encoded an uncharacterized Broad complex, Tramtrac, Bric-a-brac; also known as Pox virus and Zinc finger (BTB/POZ) domain-containing protein (StBTB/POZ1) containing an Armadillo repeat region, was up-regulated in the mutant. Global gene expression comparisons between Bintje and up using RNA-seq on leaves from 60 day-old plants revealed a dataset of over 1,600 differentially expressed genes. Gene expression analyses suggested a variety of biological processes and pathways were modified in the mutant, including carbohydrate and lipid metabolism, cell division and cell cycle activity, biotic and abiotic stress responses, and proteolysis.
Collapse
|
6
|
Wang L, Zheng J, Luo Y, Xu T, Zhang Q, Zhang L, Xu M, Wan J, Wang MB, Zhang C, Fan Y. Construction of a genomewide RNAi mutant library in rice. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:997-1005. [PMID: 23910936 DOI: 10.1111/pbi.12093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Revised: 05/18/2013] [Accepted: 05/24/2013] [Indexed: 05/04/2023]
Abstract
Long hairpin RNA (hpRNA) transgenes are a powerful tool for gene function studies in plants, but a genomewide RNAi mutant library using hpRNA transgenes has not been reported for plants. Here, we report the construction of a hpRNA library for the genomewide identification of gene function in rice using an improved rolling circle amplification-mediated hpRNA (RMHR) method. Transformation of rice with the library resulted in thousands of transgenic lines containing hpRNAs targeting genes of various function. The target mRNA was down-regulated in the hpRNA lines, and this was correlated with the accumulation of siRNAs corresponding to the double-stranded arms of the hpRNA. Multiple members of a gene family were simultaneously silenced by hpRNAs derived from a single member, but the degree of such cross-silencing depended on the level of sequence homology between the members as well as the abundance of matching siRNAs. The silencing of key genes tended to cause a severe phenotype, but these transgenic lines usually survived in the field long enough for phenotypic and molecular analyses to be conducted. Deep sequencing analysis of small RNAs showed that the hpRNA-derived siRNAs were characteristic of Argonaute-binding small RNAs. Our results indicate that RNAi mutant library is a high-efficient approach for genomewide gene identification in plants.
Collapse
Affiliation(s)
- Lei Wang
- Biotechnology Research Institute, The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Chung KS, Lee JH, Lee JS, Ahn JH. Fruit indehiscence caused by enhanced expression of NO TRANSMITTING TRACT in Arabidopsis thaliana. Mol Cells 2013; 35:519-25. [PMID: 23515580 PMCID: PMC3887870 DOI: 10.1007/s10059-013-0030-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/02/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022] Open
Abstract
In flowering plants, fruit dehiscence enables seed dispersal. Here we report that ntt-3D, an activation tagged allele of NO TRANSMITTING TRACT (NTT), caused a failure of fruit dehiscence in Arabidopsis. We identified ntt-3D, in which the 35S enhancer was inserted adjacent to AT3G-57670, from our activation tagged mutant library. ntt-3D mutants showed serrated leaves, short siliques, and indehiscence phenotypes. NTT-overexpressing plants largely phenocopied the ntt-3D plants. As the proximate cause of the indehiscence, ntt-3D plants exhibited a near absence of valve margin and lignified endocarp b layer in the carpel. In addition, the replum was enlarged in ntt-3D mutants. NTT expression reached a peak in flowers at stage 11 and gradually decreased thereafter and pNTT::GUS expression was mainly observed in the replum, indicating a potential role in fruit patterning. NTT:GFP localized in the nucleus and cytoplasm. FRUITFULL (FUL) expression was downregulated in ntt-3D mutants and ntt-3D suppressed upregulation of FUL in replumless mutants. These results indicate that NTT suppresses FUL, indicating a potential role in patterning of the silique. In seed crops, a reduction in pod dehiscence can increase yield by decreasing seed dispersal; therefore, our results may prove useful as a basis to improve crop yield.
Collapse
Affiliation(s)
- Kyung Sook Chung
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136–701,
Korea
| | - Jeong Hwan Lee
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136–701,
Korea
| | | | - Ji Hoon Ahn
- Creative Research Initiatives, Division of Life Sciences, Korea University, Seoul 136–701,
Korea
| |
Collapse
|
8
|
Meinke DW. A survey of dominant mutations in Arabidopsis thaliana. TRENDS IN PLANT SCIENCE 2013; 18:84-91. [PMID: 22995285 DOI: 10.1016/j.tplants.2012.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 06/01/2023]
Abstract
Following the recent publication of a comprehensive dataset of 2400 genes with a loss-of-function mutant phenotype in Arabidopsis (Arabidopsis thaliana), questions remain concerning the diversity of dominant mutations in Arabidopsis. Most of these dominant phenotypes are expected to result from inappropriate gene expression, novel protein function, or disrupted protein complexes. This review highlights the major classes of dominant mutations observed in model organisms and presents a collection of 200 Arabidopsis genes associated with a dominant or semidominant phenotype. Emphasis is placed on mutants identified through forward genetic screens of mutagenized or activation-tagged populations. These datasets illustrate the variety of genetic changes and protein functions that underlie dominance in Arabidopsis and may ultimately contribute to phenotypic variation in flowering plants.
Collapse
Affiliation(s)
- David W Meinke
- Department of Botany, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
9
|
Roh H, Jeong CW, Fujioka S, Kim YK, Lee S, Ahn JH, Do Choi Y, Lee JS. Genetic evidence for the reduction of brassinosteroid levels by a BAHD acyltransferase-like protein in Arabidopsis. PLANT PHYSIOLOGY 2012; 159:696-709. [PMID: 22544867 PMCID: PMC3375935 DOI: 10.1104/pp.112.197202] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/25/2012] [Indexed: 05/18/2023]
Abstract
Brassinosteroids (BRs) are a group of steroidal hormones involved in plant development. Although the BR biosynthesis pathways are well characterized, the BR inactivation process, which contributes to BR homeostasis, is less understood. Here, we show that a member of the BAHD (for benzylalcohol O-acetyltransferase, anthocyanin O-hydroxycinnamoyltransferase, anthranilate N-hydroxycinnamoyl/benzoyltransferase, and deacetylvindoline 4-O-acetyltransferase) acyltransferase family may play a role in BR homeostasis in Arabidopsis (Arabidopsis thaliana). We isolated two gain-of-function mutants, brassinosteroid inactivator1-1Dominant (bia1-1D) and bia1-2D, in which a novel BAHD acyltransferase-like protein was transcriptionally activated. Both mutants exhibited dwarfism, reduced male fertility, and deetiolation in darkness, which are typical phenotypes of plants defective in BR biosynthesis. Exogenous BR treatment rescued the phenotypes of the bia1-1D mutant. Endogenous levels of BRs were reduced in the bia1-1D mutant, demonstrating that BIA1 regulates endogenous BR levels. When grown in darkness, the bia1 loss-of-function mutant showed a longer hypocotyl phenotype and was more responsive to exogenous BR treatment than the wild-type plant. BIA1 expression was predominantly observed in the root, where low levels of BRs were detected. These results indicate that the BAHD acyltransferase family member encoded by BIA1 plays a role in controlling BR levels, particularly in the root and hypocotyl in darkness. Taken together, our study provides new insights into a mechanism that maintains BR homeostasis in Arabidopsis, likely via acyl conjugation of BRs.
Collapse
|
10
|
An E3 ligase complex regulates SET-domain polycomb group protein activity in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2011; 108:8036-41. [PMID: 21518870 DOI: 10.1073/pnas.1104232108] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional repression via methylation of histone H3 lysine 27 (H3K27) by the polycomb repressive complex 2 (PRC2) is conserved in higher eukaryotes. The Arabidopsis PRC2 controls homeotic gene expression, flowering time, and gene imprinting. Although downstream target genes and the regulatory mechanism of PRC2 are well understood, much less is known about the significance of posttranslational regulation of PRC2 protein activity. Here, we show the posttranslational regulation of CURLY LEAF (CLF) SET-domain polycomb group (PcG) protein by the F-box protein, UPWARD CURLY LEAF1 (UCL1). Overexpression of UCL1 generates mutant phenotypes similar to those observed in plants with a loss-of-function mutation in the CLF gene. Leaf curling and early flowering phenotypes of UCL1 overexpression mutants, like clf mutants, are rescued by mutations in the AGAMOUS and FLOWERING LOCUS T genes, which is consistent with UCL1 and CLF functioning in the same genetic pathway. Overexpression of UCL1 reduces the level of CLF protein and alters expression and H3K27 methylation of CLF-target genes in transgenic plants, suggesting that UCL1 negatively regulates CLF. Interaction of UCL1 with CLF was detected in plant nuclei and in the yeast two-hybrid system. The UCL1 F-box binds in vivo to components of the E3 ligase complex, which ubiquitylate proteins that are subsequently degraded via the ubiquitin-26S proteasome pathway. Taken together, these results demonstrate the posttranslational regulation of the CLF SET-domain PcG activity by the UCL1 F-box protein in the E3 ligase complex.
Collapse
|
11
|
Yoo SK, Hong SM, Lee JS, Ahn JH. A genetic screen for leaf movement mutants identifies a potential role for AGAMOUS-LIKE 6 (AGL6) in circadian-clock control. Mol Cells 2011; 31:281-7. [PMID: 21331777 PMCID: PMC3932699 DOI: 10.1007/s10059-011-0035-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/21/2010] [Indexed: 01/30/2023] Open
Abstract
The circadian clock in plants regulates many important physiological and biological processes, including leaf movement. We have used an imaging system to genetically screen Arabidopsis seedlings for altered leaf movement with the aim of identifying a circadian clock gene. A total of 285 genes were selected from publicly available microarrays that showed an expression pattern similar to those of the Arabidopsis core oscillator genes. We subsequently isolated 42 homozygous recessive mutants and analyzed their leaf movements. We also analyzed leaf movements of activation tagging mutants that showed altered flowering time. We found that agl6-1D plants, in which AGAMOUS-LIKE 6 (AGL6) was activated by the 35S enhancer, showed a shortened period of leaf movement as well as a high level of ZEITLUPE (ZTL) expression, reduced amplitude of LATE ELONGATED HYPOCOTYL (LHY) expression, and arrhythmic TIMING OF CAB EXPRESSION1 (TOC1)/CIRCADIAN CLOCK ASSOCIATED1 (CCA1) expression. A shortened period of leaf movement was also seen in 35S-AGL6-myc plants, although 35S-amiRAGL6 plants, transgenic plants overexpressing an artificial miRNA (amiR) targeting AGL6, showed unaltered leaf movement. The amplitude of CHLOROPHYLL A/B BINDING PROTEIN 2 (CAB2) expression, a circadian output gene, was also reduced in agl6-1D plants. Taken together, these results suggest that AGL6 plays a potential role in the regulation of the circadian clock by regulating ZTL mRNA level in Arabidopsis.
Collapse
Affiliation(s)
- Seung Kwan Yoo
- Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Sung Myun Hong
- Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Jong Seob Lee
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji Hoon Ahn
- Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
12
|
Yoo SK, Wu X, Lee JS, Ahn JH. AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:62-76. [PMID: 21175890 DOI: 10.1111/j.1365-313x.2010.04402.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
MADS-box genes encode a family of transcription factors that regulate diverse developmental programs in plants. The present work shows the regulation of flowering time by AGL6 through control of the transcription of both a subset of the FLOWERING LOCUS C (FLC) family genes and FT, two key regulators of flowering time. The agl6-1D mutant, in which AGL6 was activated by the 35S enhancer, showed an early flowering phenotype under both LD and SD conditions. Its early flowering was additively accelerated by CONSTANS (CO) overexpression. The agl6-1D mutation strongly suppressed the late flowering of fve-4 and fca-9 mutants. Endogenous AGL6 transcript accumulation was photoperiod-independent and the AGL6:GFP protein was preferentially localized in the nucleus. In agl6-1D plants, the expression of FLC, MADS AFFECTING FLOWERING (MAF) 4, and MAF5 was downregulated. Interestingly, late flowering of a functional FRIGIDA (FRI) FLC allele was dramatically suppressed by the agl6-1D mutation. AGL6 activation in the flc-3 background further enhanced FT expression, suggesting that AGL6 also regulates FT expression independently of FLC mRNA level. A near RNA-null ft-10 mutation completely suppressed early flowering of the agl6-1D plants, suggesting that FT is a major downstream output of AGL6. Transgenic plants overexpressing an artificial microRNA targeting AGL6 showed a late-flowering phenotype. In these plants, FT expression was downregulated, whereas FLC expression was upregulated. The present results suggest that AGL6 acts as a floral promoter with a dual role, the inhibition of the transcription of the FLC/MAF genes and the promotion of FT expression in Arabidopsis.
Collapse
Affiliation(s)
- Seung Kwan Yoo
- Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, KoreaMolecular and Computational Biology, College of Letters, Arts & Sciences, University of Southern California, CA 90089-9031, USASchool of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Xuelin Wu
- Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, KoreaMolecular and Computational Biology, College of Letters, Arts & Sciences, University of Southern California, CA 90089-9031, USASchool of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jong Seob Lee
- Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, KoreaMolecular and Computational Biology, College of Letters, Arts & Sciences, University of Southern California, CA 90089-9031, USASchool of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji Hoon Ahn
- Creative Research Initiatives, School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, KoreaMolecular and Computational Biology, College of Letters, Arts & Sciences, University of Southern California, CA 90089-9031, USASchool of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
13
|
Micol JL. Leaf development: time to turn over a new leaf? CURRENT OPINION IN PLANT BIOLOGY 2009; 12:9-16. [PMID: 19109050 DOI: 10.1016/j.pbi.2008.11.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 10/30/2008] [Accepted: 11/01/2008] [Indexed: 05/18/2023]
Abstract
Molecular cloning of mutations affecting the morphology of plant leaves has proven to be useful for the causal analysis of leaf development. Studies of leaf mutants have produced a wealth of biologically meaningful information on the genes that participate in leaf initiation, leaf polarity specification and maintenance, and leaf expansion and maturation. The availability of collections of gene-indexed insertional mutants, automated platforms for high-throughput imaging, and new morphometry software is making genome-wide leaf phenomics possible and complements classical forward genetics approaches. Large-scale phenomic studies will further our understanding, among others, of two intriguing phenomena that recently reentered the leaf scenario. One is the unexpected relationship between translation and leaf dorsoventrality, recently confirmed by the severe abaxialization of double mutants involving loss-of-function alleles of the developmental selector genes AS1 and AS2 and some genes encoding ribosomal proteins. The second unexplained phenomenon is the compensatory cell enlargement experienced by some leaf mutants, in which a reduced cell number is compensated by their increased cell size compared with the wild type. This compensation suggests that cell cycling and cell enlargement are integrated in leaf primordia via cell-to-cell communication.
Collapse
Affiliation(s)
- José Luis Micol
- División de Genética and Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, Elche, Alicante, Spain.
| |
Collapse
|
14
|
Yoo SY, Kim Y, Kim SY, Lee JS, Ahn JH. Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One 2007; 2:e642. [PMID: 17653269 PMCID: PMC1920552 DOI: 10.1371/journal.pone.0000642] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 06/20/2007] [Indexed: 02/05/2023] Open
Abstract
Background Plants must integrate complex signals from environmental and endogenous cues to fine-tune the timing of flowering. Low temperature is one of the most common environmental stresses that affect flowering time; however, molecular mechanisms underlying the cold temperature regulation of flowering time are not fully understood. Methodology/Principal Findings We report the identification of a novel regulator, LONG VEGETATIVE PHASE 1 (LOV1), that controls flowering time and cold response. An Arabidopsis mutant, longvegetative phase 1-1D (lov1-1D) showing the late-flowering phenotype, was isolated by activation tagging screening. Subsequent analyses demonstrated that the phenotype of the mutant resulted from the overexpression of a NAC-domain protein gene (At2g02450). Both gain- and loss-of-function alleles of LOV1 affected flowering time predominantly under long-day but not short-day conditions, suggesting that LOV1 may act within the photoperiod pathway. The expression of CONSTANS (CO), a floral promoter, was affected by LOV1 level, suggesting that LOV1 controls flowering time by negatively regulating CO expression. The epistatic relationship between CO and LOV1 was consistent with this proposed regulatory pathway. Physiological analyses to elucidate upstream signalling pathways revealed that LOV1 regulates the cold response in plants. Loss of LOV1 function resulted in hypersensitivity to cold temperature, whereas a gain-of-function allele conferred cold tolerance. The freezing tolerance was accompanied by upregulation of cold response genes, COLD-REGULATED 15A (COR15A) and COLD INDUCED 1 (KIN1) without affecting expression of the C-repeat-binding factor/dehydration responsive element-binding factor 1 (CBF/DREB1) family of genes. Conclusions Our study shows that LOV1 functions as a floral repressor that negatively regulates CO expression under long-day conditions and acts as a common regulator of two intersecting pathways that regulate flowering time and the cold response, respectively. Our results suggest an overlapping pathway for controlling cold stress response and flowering time in plants.
Collapse
Affiliation(s)
- So Yeon Yoo
- Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Yunhee Kim
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Soo Young Kim
- Department of Molecular Biotechnology and Kumho Life Science Laboratory, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Korea
- * To whom correspondence should be addressed. E-mail: (SYK); (JSL); (JHA)
| | - Jong Seob Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
- * To whom correspondence should be addressed. E-mail: (SYK); (JSL); (JHA)
| | - Ji Hoon Ahn
- Plant Signaling Network Research Center, School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
- * To whom correspondence should be addressed. E-mail: (SYK); (JSL); (JHA)
| |
Collapse
|