1
|
Krynická V, Komenda J. The Role of FtsH Complexes in the Response to Abiotic Stress in Cyanobacteria. PLANT & CELL PHYSIOLOGY 2024; 65:1103-1114. [PMID: 38619128 PMCID: PMC11287208 DOI: 10.1093/pcp/pcae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/24/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
FtsH proteases (FtsHs) belong to intramembrane ATP-dependent metalloproteases which are widely distributed in eubacteria, mitochondria and chloroplasts. The best-studied roles of FtsH in Escherichia coli include quality control of membrane proteins, regulation of response to heat shock, superoxide stress and viral infection, and control of lipopolysaccharide biosynthesis. While heterotrophic bacteria mostly contain a single indispensable FtsH complex, photosynthetic cyanobacteria usually contain three FtsH complexes: two heterocomplexes and one homocomplex. The essential cytoplasmic FtsH1/3 most probably fulfills a role similar to other bacterial FtsHs, whereas the thylakoid FtsH2/3 heterocomplex and FtsH4 homocomplex appear to maintain the photosynthetic apparatus of cyanobacteria and optimize its functionality. Moreover, recent studies suggest the involvement of all FtsH proteases in a complex response to nutrient stresses. In this review, we aim to comprehensively evaluate the functions of the cyanobacterial FtsHs specifically under stress conditions with emphasis on nutrient deficiency and high irradiance. We also point to various unresolved issues concerning FtsH functions, which deserve further attention.
Collapse
Affiliation(s)
- Vendula Krynická
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický Mlýn, Novohradská 237, Třeboň 37901, The Czech Republic
| | - Josef Komenda
- Institute of Microbiology of the Czech Academy of Sciences, Centre Algatech, Opatovický Mlýn, Novohradská 237, Třeboň 37901, The Czech Republic
| |
Collapse
|
2
|
Zhai Z, Keereetaweep J, Liu H, Xu C, Shanklin J. The Role of Sugar Signaling in Regulating Plant Fatty Acid Synthesis. FRONTIERS IN PLANT SCIENCE 2021; 12:643843. [PMID: 33828577 PMCID: PMC8020596 DOI: 10.3389/fpls.2021.643843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/17/2021] [Indexed: 05/07/2023]
Abstract
Photosynthates such as glucose, sucrose, and some of their derivatives play dual roles as metabolic intermediates and signaling molecules that influence plant cell metabolism. Such sugars provide substrates for de novo fatty acid (FA) biosynthesis. However, compared with the well-defined examples of sugar signaling in starch and anthocyanin synthesis, until recently relatively little was known about the role of signaling in regulating FA and lipid biosynthesis. Recent research progress shows that trehalose 6-phosphate and 2-oxoglutarate (2-OG) play direct signaling roles in the regulation of FA biosynthesis by modulating transcription factor stability and enzymatic activities involved in FA biosynthesis. Specifically, mechanistic links between sucrose non-fermenting-1-related protein kinase 1 (SnRK1)-mediated trehalose 6-phosphate (T6P) sensing and its regulation by phosphorylation of WRI1 stability, diacylglycerol acyltransferase 1 (DGAT1) enzyme activity, and of 2-OG-mediated relief of inhibition of acetyl-CoA carboxylase (ACCase) activity by protein PII are exemplified in detail in this review.
Collapse
Affiliation(s)
| | | | | | | | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| |
Collapse
|
3
|
Forchhammer K, Selim KA. Carbon/nitrogen homeostasis control in cyanobacteria. FEMS Microbiol Rev 2020; 44:33-53. [PMID: 31617886 PMCID: PMC8042125 DOI: 10.1093/femsre/fuz025] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Carbon/nitrogen (C/N) balance sensing is a key requirement for the maintenance of cellular homeostasis. Therefore, cyanobacteria have evolved a sophisticated signal transduction network targeting the metabolite 2-oxoglutarate (2-OG), the carbon skeleton for nitrogen assimilation. It serves as a status reporter for the cellular C/N balance that is sensed by transcription factors NtcA and NdhR and the versatile PII-signaling protein. The PII protein acts as a multitasking signal-integrating regulator, combining the 2-OG signal with the energy state of the cell through adenyl-nucleotide binding. Depending on these integrated signals, PII orchestrates metabolic activities in response to environmental changes through binding to various targets. In addition to 2-OG, other status reporter metabolites have recently been discovered, mainly indicating the carbon status of the cells. One of them is cAMP, which is sensed by the PII-like protein SbtB. The present review focuses, with a main emphasis on unicellular model strains Synechoccus elongatus and Synechocystis sp. PCC 6803, on the physiological framework of these complex regulatory loops, the tight linkage to metabolism and the molecular mechanisms governing the signaling processes.
Collapse
Affiliation(s)
- Karl Forchhammer
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| | - Khaled A Selim
- Lehrstuhl für Mikrobiologie, Universität Tübingen, Auf der Morgenstelle 28, D-72076 Tübingen, Germany
| |
Collapse
|
4
|
Kurdrid P, Phuengcharoen P, Senachak J, Saree S, Hongsthong A. Revealing the key point of the temperature stress response of Arthrospira platensis C1 at the interconnection of C- and N- metabolism by proteome analyses and PPI networking. BMC Mol Cell Biol 2020; 21:43. [PMID: 32532219 PMCID: PMC7291507 DOI: 10.1186/s12860-020-00285-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Growth-temperature stress causes biochemical changes in the cells and reduction of biomass yield. Quantitative proteome of Arthrospira platensis C1 in response to low- and high temperature stresses was previously analysed to elucidate the stress response mechanism. The data highlighted the linkage of signaling proteins and proteins involved in nitrogen and ammonia assimilation, photosynthesis and oxidative stress. RESULTS After phosphoproteome analysis was carried out in this study, the tentative temperature response cascade of A. platensis C1 was drawn based on data integration of quantitative proteome and phosphoproteome analysis and protein-protein interaction (PPI) networks. The integration revealed 31 proteins regulated at the protein-expression and post-translational levels; thus, this group of proteins was designated bi-level regulated proteins. PPI networks were then constructed based on A. platensis C1 gene inference from publicly available interaction data. The key two-component system (TCS) proteins, SPLC1_S082010 and SPLC1_S230960, were identified as bi-level regulated proteins and were linked to SPLC1_S270380 or glutamate synthase, an important enzyme in nitrogen assimilation that synthesizes glutamate from 2-oxoglutarate, which is known as the signal compound that regulates the carbon/nitrogen (C/N) balance of cells. Moreover, the role of the p-site in the PPIs of some phosphoproteins of interest was determined using site-directed mutagenesis and a yeast two-hybrid system. Evidence showing the critical role of the p-site in the PPI was observed for the multi-sensor histidine kinase SPLC1_S041070 (Hik28) and glutamate synthase. PPI subnetwork also showed that the Hik28 involved with the enzymes in fatty acid desaturation and nitrogen metabolism. The effect of Hik28-deletion was validated by fatty acid analysis and measurement of photosynthetic activity under nitrogen depletion. CONCLUSIONS Taken together, the data clearly represents (i) the multi-level regulation of proteins involved in the stress response mechanism and (ii) the key point of the temperature stress response at the interconnection of C- and N- metabolism.
Collapse
Affiliation(s)
- Pavinee Kurdrid
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Mailing Address: IBEG/BIOTEC@KMUTT, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Phutnichar Phuengcharoen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Jittisak Senachak
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Mailing Address: IBEG/BIOTEC@KMUTT, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Sirilak Saree
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand
| | - Apiradee Hongsthong
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Mailing Address: IBEG/BIOTEC@KMUTT, 49 Soi Thian Thale 25, Tha Kham, Bang Khun Thian, Bangkok, 10150, Thailand.
| |
Collapse
|
5
|
Bolay P, Muro-Pastor MI, Florencio FJ, Klähn S. The Distinctive Regulation of Cyanobacterial Glutamine Synthetase. Life (Basel) 2018; 8:E52. [PMID: 30373240 PMCID: PMC6316151 DOI: 10.3390/life8040052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 12/02/2022] Open
Abstract
Glutamine synthetase (GS) features prominently in bacterial nitrogen assimilation as it catalyzes the entry of bioavailable nitrogen in form of ammonium into cellular metabolism. The classic example, the comprehensively characterized GS of enterobacteria, is subject to exquisite regulation at multiple levels, among them gene expression regulation to control GS abundance, as well as feedback inhibition and covalent modifications to control enzyme activity. Intriguingly, the GS of the ecologically important clade of cyanobacteria features fundamentally different regulatory systems to those of most prokaryotes. These include the interaction with small proteins, the so-called inactivating factors (IFs) that inhibit GS linearly with their abundance. In addition to this protein interaction-based regulation of GS activity, cyanobacteria use alternative elements to control the synthesis of GS and IFs at the transcriptional level. Moreover, cyanobacteria evolved unique RNA-based regulatory mechanisms such as glutamine riboswitches to tightly tune IF abundance. In this review, we aim to outline the current knowledge on the distinctive features of the cyanobacterial GS encompassing the overall control of its activity, sensing the nitrogen status, transcriptional and post-transcriptional regulation, as well as strain-specific differences.
Collapse
Affiliation(s)
- Paul Bolay
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | - M Isabel Muro-Pastor
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Francisco J Florencio
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Américo Vespucio 49, E-41092 Seville, Spain.
| | - Stephan Klähn
- Helmholtz Centre for Environmental Research, Department of Solar Materials, Permoserstrasse 15, D-04318 Leipzig, Germany.
| |
Collapse
|
6
|
Babst BA, Coleman GD. Seasonal nitrogen cycling in temperate trees: Transport and regulatory mechanisms are key missing links. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:268-277. [PMID: 29576080 DOI: 10.1016/j.plantsci.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 05/08/2023]
Abstract
Nutrient accumulation, one of the major ecosystem services provided by forests, is largely due to the accumulation and retention of nutrients in trees. This review focuses on seasonal cycling of nitrogen (N), often the most limiting nutrient in terrestrial ecosystems. When leaves are shed during autumn, much of the N may be resorbed and stored in the stem over winter, and then used for new stem and leaf growth in spring. A framework exists for understanding the metabolism and transport of N in leaves and stems during winter dormancy, but many of the underlying genes remain to be identified and/or verified. Transport of N during seasonal N cycling is a particularly weak link, since the physical pathways for loading and unloading of amino N to and from the phloem are poorly understood. Short-day photoperiod followed by decreasing temperatures are the environmental cues that stimulate dormancy induction, and nutrient remobilization and storage. However, beyond the involvement of phytochrome, very little is known about the signal transduction mechanisms that link environmental cues to nutrient remobilization and storage. We propose a model whereby nutrient transport and sensing plays a major role in source-sink transitions of leaves and stems during seasonal N cycling.
Collapse
Affiliation(s)
- Benjamin A Babst
- Arkansas Forest Resources Center, Division of Agriculture, University of Arkansas System, Monticello, AR 71656, USA; School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, AR 71656, USA.
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
7
|
Li Y, Liu W, Sun LP, Zhou ZG. Evidence for PII with NAGK interaction that regulates Arg synthesis in the microalga Myrmecia incisa in response to nitrogen starvation. Sci Rep 2017; 7:16291. [PMID: 29176648 PMCID: PMC5701185 DOI: 10.1038/s41598-017-16644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 11/12/2022] Open
Abstract
To understand why most eukaryotic microalgae accumulate lipids during nitrogen starvation stress, a gene, MiglnB, encoding PII, a signal transduction protein, was cloned from the arachidonic acid-rich microalga Myrmecia incisa Reisigl. Similarly to its homologues, MiPII contains three conserved T-, B-, and C-loops. In the presence of abundant Mg2+, ATP, and Gln, MiPII upregulates Arg biosynthesis by interacting with the rate-limiting enzyme, MiNAGK, as evidenced by yeast two-hybrid, co-immunoprecipitation assays, and kinetics analysis of enzyme-catalyzed reactions. However, this interaction of MiPII with MiNAGK is reversed by addition of 2-oxoglutarate (2-OG). Moreover, this interaction is present in the chloroplasts of M. incisa, as illustrated cytologically by both immunoelectron microscopy and agroinfiltration of Nicotiana benthamiana leaves to determine the subcellular localization of MiPII with MiNAGK. During the process of nitrogen starvation, soluble Arg levels in M. incisa are modulated by a change in MiNAGK enzymatic activity, both of which are significantly correlated (r = 0.854). A model for the manipulation of Arg biosynthesis via MiPII in M. incisa chloroplasts in response to nitrogen starvation is proposed. The ATP and 2-OG saved from Arg biosynthesis is thus suggested to facilitate the accumulation of fatty acids and triacylglycerol in M. incisa during exposure to nitrogen starvation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. .,National Demonstration Center for the Experimental Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China. .,International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
8
|
Estrada P, Manandhar M, Dong SH, Deveryshetty J, Agarwal V, Cronan JE, Nair SK. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Nat Chem Biol 2017; 13:668-674. [PMID: 28414711 DOI: 10.1038/nchembio.2359] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 03/02/2017] [Indexed: 01/11/2023]
Abstract
Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.
Collapse
Affiliation(s)
- Paola Estrada
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jaigeeth Deveryshetty
- Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinayak Agarwal
- Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
9
|
Orf I, Schwarz D, Kaplan A, Kopka J, Hess WR, Hagemann M, Klähn S. CyAbrB2 Contributes to the Transcriptional Regulation of Low CO2 Acclimation in Synechocystis sp. PCC 6803. PLANT & CELL PHYSIOLOGY 2016; 57:2232-2243. [PMID: 27638927 DOI: 10.1093/pcp/pcw146] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Acclimation to low CO2 conditions in cyanobacteria involves the co-ordinated regulation of genes mainly encoding components of the carbon-concentrating mechanism (CCM). Making use of several independent microarray data sets, a core set of CO2-regulated genes was defined for the model strain Synechocystis sp. PCC 6803. On the transcriptional level, the CCM is mainly regulated by the well-characterized transcriptional regulators NdhR (= CcmR) and CmpR. However, the role of an additional regulatory protein, namely cyAbrB2 belonging to the widely distributed AbrB regulator family that was originally characterized in the genus Bacillus, is less defined. Here we present results of transcriptomic and metabolic profiling of the wild type and a ΔcyabrB2 mutant of Synechocystis sp. PCC 6803 after shifts from high CO2 (5% in air, HC) to low CO2 (0.04%, LC). Evaluation of the transcriptomic data revealed that cyAbrB2 is involved in the regulation of several CCM-related genes such as sbtA/B, ndhF3/ndhD3/cupA and cmpABCD under LC conditions, but apparently acts supplementary to NdhR and CmpR. Under HC conditions, cyAbrB2 deletion affects the transcript abundance of PSII subunits, light-harvesting components and Calvin-Benson-Bassham cycle enzymes. These changes are also reflected by down-regulation of primary metabolite pools. The data suggest a role for cyAbrB2 in adjusting primary carbon and nitrogen metabolism to photosynthetic activity under fluctuating environmental conditions. The findings were integrated into the current knowledge about the acquisition of inorganic carbon (Ci), the CCM and parts of its regulation on the transcriptional level.
Collapse
Affiliation(s)
- Isabel Orf
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, Potsdam-Golm, Germany
| | - Doreen Schwarz
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Department of Molecular Physiology: Applied Metabolome Analysis, Potsdam-Golm, Germany
| | - Wolfgang R Hess
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Plant Physiology Department, Institute of Biological Sciences, University of Rostock, Rostock, Germany
| | - Stephan Klähn
- Genetics & Experimental Bioinformatics, Institute of Biology III, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Forchhammer K, Lüddecke J. Sensory properties of the PII signalling protein family. FEBS J 2015; 283:425-37. [PMID: 26527104 DOI: 10.1111/febs.13584] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent.
Collapse
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| | - Jan Lüddecke
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| |
Collapse
|
11
|
Gaudana SB, Zarzycki J, Moparthi VK, Kerfeld CA. Bioinformatic analysis of the distribution of inorganic carbon transporters and prospective targets for bioengineering to increase Ci uptake by cyanobacteria. PHOTOSYNTHESIS RESEARCH 2015; 126:99-109. [PMID: 25399051 DOI: 10.1007/s11120-014-0059-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Cyanobacteria have evolved a carbon-concentrating mechanism (CCM) which has enabled them to inhabit diverse environments encompassing a range of inorganic carbon (Ci: [Formula: see text] and CO2) concentrations. Several uptake systems facilitate inorganic carbon accumulation in the cell, which can in turn be fixed by ribulose 1,5-bisphosphate carboxylase/oxygenase. Here we survey the distribution of genes encoding known Ci uptake systems in cyanobacterial genomes and, using a pfam- and gene context-based approach, identify in the marine (alpha) cyanobacteria a heretofore unrecognized number of putative counterparts to the well-known Ci transporters of beta cyanobacteria. In addition, our analysis shows that there is a huge repertoire of transport systems in cyanobacteria of unknown function, many with homology to characterized Ci transporters. These can be viewed as prospective targets for conversion into ancillary Ci transporters through bioengineering. Increasing intracellular Ci concentration coupled with efforts to increase carbon fixation will be beneficial for the downstream conversion of fixed carbon into value-added products including biofuels. In addition to CCM transporter homologs, we also survey the occurrence of rhodopsin homologs in cyanobacteria, including bacteriorhodopsin, a class of retinal-binding, light-activated proton pumps. Because they are light driven and because of the apparent ease of altering their ion selectivity, we use this as an example of re-purposing an endogenous transporter for the augmentation of Ci uptake by cyanobacteria and potentially chloroplasts.
Collapse
Affiliation(s)
- Sandeep B Gaudana
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
| | - Jan Zarzycki
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vamsi K Moparthi
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Cheryl A Kerfeld
- DOE Plant Research Laboratories, Department of Biochemistry and Molecular Biology, Michigan State University, 612 Wilson Road, East Lansing, MI, 48824, USA.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
12
|
Plohnke N, Seidel T, Kahmann U, Rögner M, Schneider D, Rexroth S. The proteome and lipidome of Synechocystis sp. PCC 6803 cells grown under light-activated heterotrophic conditions. Mol Cell Proteomics 2015; 14:572-84. [PMID: 25561504 PMCID: PMC4349978 DOI: 10.1074/mcp.m114.042382] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 10/10/2014] [Indexed: 12/31/2022] Open
Abstract
Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria. Here we present a detailed proteome analysis of the important model and host organism Synechocystis sp. PCC 6803 under light-activated heterotrophic growth conditions. Because of the mechanistic importance and severe changes in thylakoid membrane morphology under light-activated heterotrophic growth conditions, a focus was put on the analysis of the membrane proteome, which was supported by a targeted lipidome analysis. In total, 1528 proteins (24.5% membrane integral) were identified in our analysis. For 641 of these proteins quantitative information was obtained by spectral counting. Prominent changes were observed for proteins associated with oxidative stress response and protein folding. Because of the heterotrophic growth conditions, also proteins involved in carbon metabolism and C/N-balance were severely affected. Although intracellular thylakoid membranes were significantly reduced, only minor changes were observed in their protein composition. The increased proportion of the membrane-stabilizing sulfoqinovosyl diacyl lipids found in the lipidome analysis, as well as the increased content of lipids with more saturated acyl chains, are clear indications for a coordinated synthesis of proteins and lipids, resulting in stabilization of intracellular thylakoid membranes under stress conditions.
Collapse
Affiliation(s)
- Nicole Plohnke
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Tobias Seidel
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany
| | - Uwe Kahmann
- ¶Department of Molecular Cell Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany
| | - Dirk Schneider
- §Department of Pharmacy and Biochemistry, Johannes Gutenberg-University Mainz, 55128 Mainz, Germany;
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr-University Bochum, 44780 Bochum, Germany;
| |
Collapse
|
13
|
Schwarz D, Orf I, Kopka J, Hagemann M. Effects of Inorganic Carbon Limitation on the Metabolome of the Synechocystis sp. PCC 6803 Mutant Defective in glnB Encoding the Central Regulator PII of Cyanobacterial C/N Acclimation. Metabolites 2014; 4:232-47. [PMID: 24957024 PMCID: PMC4101504 DOI: 10.3390/metabo4020232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 11/27/2022] Open
Abstract
Cyanobacteria are the only prokaryotes performing oxygenic photosynthesis. Non-diazotrophic strains such as the model Synechocystis sp. PCC 6803 depend on a balanced uptake and assimilation of inorganic carbon and nitrogen sources. The internal C/N ratio is sensed via the PII protein (GlnB). We analyzed metabolic changes of the ΔglnB mutant of Synechocystis sp. PCC 6803 under different CO2 availability. The identified metabolites provided a snapshot of the central C/N metabolism. Cells of the ΔglnB mutant shifted to carbon-limiting conditions, i.e. a decreased C/N ratio, showed changes in intermediates of the sugar storage and particularly of the tricarboxylic acid cycle, arginine, and glutamate metabolism. The changes of the metabolome support the notion that the PII protein is primarily regulating the N-metabolism whereas the changes in C-metabolism are probably secondary effects of the PII deletion.
Collapse
Affiliation(s)
- Doreen Schwarz
- Universität Rostock, Institut Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| | - Isabel Orf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany.
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Golm, Germany.
| | - Martin Hagemann
- Universität Rostock, Institut Biowissenschaften, Pflanzenphysiologie, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
| |
Collapse
|
14
|
Deschoenmaeker F, Facchini R, Leroy B, Badri H, Zhang CC, Wattiez R. Proteomic and cellular views of Arthrospira sp. PCC 8005 adaptation to nitrogen depletion. MICROBIOLOGY-SGM 2014; 160:1224-1236. [PMID: 24648480 DOI: 10.1099/mic.0.074641-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyanobacteria are photosynthetic prokaryotes that play a crucial role in the Earth's nitrogen and carbon cycles. Nitrogen availability is one of the most important factors in cyanobacterial growth. Interestingly, filamentous non-diazotrophic cyanobacteria, such as Arthrospira sp. PCC 8005, have developed survival strategies that enable them to adapt to nitrogen deprivation. Metabolic studies recently demonstrated a substantial synthesis and accumulation of glycogen derived from amino acids during nitrogen starvation. Nevertheless, the regulatory mechanism of this adaptation is poorly understood. To the best of our knowledge, this study is the first proteomic and cellular analysis of Arthrospira sp. PCC 8005 under nitrogen depletion. Label-free differential proteomic analysis indicated the global carbon and nitrogen reprogramming of the cells during nitrogen depletion as characterized by an upregulation of glycogen synthesis and the use of endogenous nitrogen sources. The degradation of proteins and cyanophycin provided endogenous nitrogen when exogenous nitrogen was limited. Moreover, formamides, cyanates and urea were also potential endogenous nitrogen sources. The transporters of some amino acids and alternative nitrogen sources such as ammonium permease 1 were induced under nitrogen depletion. Intriguingly, although Arthrospira is a non-diazotrophic cyanobacterium, we observed the upregulation of HetR and HglK proteins, which are involved in heterocyst differentiation. Moreover, after a long period without nitrate, only a few highly fluorescent cells in each trichome were observed, and they might be involved in the long-term survival mechanism of this non-diazotrophic cyanobacterium under nitrogen deprivation.
Collapse
Affiliation(s)
- Frédéric Deschoenmaeker
- Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Raphaël Facchini
- Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Baptiste Leroy
- Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - Hanène Badri
- Expert Group for Molecular and Cellular Biology MCB, Belgian Nuclear Research Center SCK.CEN, B-2400 Mol, Belgium.,Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| | - C-C Zhang
- Laboratoire de Chimie Bactérienne, CNRS-UMR 7283, Aix-Marseille Université, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | - Ruddy Wattiez
- Department of Proteomics and Microbiology, Research Institute for Biosciences, University of Mons, Place du Parc 20, B-7000 Mons, Belgium
| |
Collapse
|
15
|
Rre37 stimulates accumulation of 2-oxoglutarate and glycogen under nitrogen starvation in Synechocystis sp. PCC 6803. FEBS Lett 2013; 588:466-71. [PMID: 24374346 DOI: 10.1016/j.febslet.2013.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/21/2022]
Abstract
Rre37 (sll1330) in a cyanobacterium Synechocystis sp. PCC 6803 acts as a regulatory protein for sugar catabolic genes during nitrogen starvation. Low glycogen accumulation in Δrre37 was due to low expression of glycogen anabolic genes. In addition to low 2-oxoglutarate accumulation, normal upregulated expression of genes encoding glutamate synthases (gltD and gltB) as well as accumulation of metabolites in glycolysis (fructose-6-phosphate, fructose-1,6-bisphosphate, and glyceraldehyde-3-phosphate) and tricarboxylic acid (TCA) cycle (oxaloacetate, fumarate, succinate, and aconitate) were abolished by rre37 knockout. Rre37 regulates 2-oxoglutarate accumulation, glycogen accumulation through expression of glycogen anabolic genes, and TCA cycle metabolites accumulation.
Collapse
|
16
|
Price MB, Kong D, Okumoto S. Inter-subunit interactions between glutamate-like receptors in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2013; 8:e27034. [PMID: 24300102 PMCID: PMC4091553 DOI: 10.4161/psb.27034] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 11/01/2013] [Indexed: 05/27/2023]
Abstract
The plant Glutamate-Like Receptors (GLRs) are homologs of animal ionotropic glutamate receptors (iGluRs), and are hypothesized to be potential amino acid sensors in plants. Genetic studies of proteins from this family implicate individual GLRs in a diversity of physiological roles in plants. Recently, amino-acid gated channel activities have been proven for a few plant GLRs, suggesting that at least some of the functional mechanisms are conserved between plant GLRs and animal iGluRs. Animal iGluRs generally form heterotetramers, and the ligand-binding specificity and channel functionality is determined by interaction between the subunits. In order to investigate whether plant GLRs interact with each other, a modified yeast-2-hybrid system (mbSUS) approach was taken on 15 of the 20 Arabidopsis GLRs to identify potential interaction partners. Using this approach, we have successfully identified GLR subunits that are capable of interacting with multiple other GLRs. Unlike iGluRs, sequence similarity between the subunit was not correlated with the likelihood of interaction among 2 given subunits. Interactions between selected GLRs (GLR1.1, 2.9, 3.2, and 3.4) were further tested in another heterologous expression system, mammalian HEK293 cells, using Förster resonance energy transfer (FRET). Two separate approaches (sensitized FRET and acceptor photobleaching) indicated that GLRs 1.1 and 3.4 are capable of forming homomers, whereas other combinations did not result in detectable FRET between the subunits.
Collapse
Affiliation(s)
- Michelle B Price
- Department of Plant Pathology, Physiology, and Weed Science; Virginia Polytechnic Institute and State University; Blacksburg, VA USA
| | - Dongdong Kong
- Department of Cell Biology and Molecular Genetics,University of Maryland, College Park, MD USA
| | - Sakiko Okumoto
- Department of Plant Pathology, Physiology, and Weed Science; Virginia Polytechnic Institute and State University; Blacksburg, VA USA
| |
Collapse
|
17
|
Wilson ME, Maksaev G, Haswell ES. MscS-like mechanosensitive channels in plants and microbes. Biochemistry 2013; 52:5708-22. [PMID: 23947546 DOI: 10.1021/bi400804z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The challenge of osmotic stress is something all living organisms must face as a result of environmental dynamics. Over the past three decades, innovative research and cooperation across disciplines have irrefutably established that cells utilize mechanically gated ion channels to release osmolytes and prevent cell lysis during hypoosmotic stress. Early electrophysiological analysis of the inner membrane of Escherichia coli identified the presence of three distinct mechanosensitive activities. The subsequent discoveries of the genes responsible for two of these activities, the mechanosensitive channels of large (MscL) and small (MscS) conductance, led to the identification of two diverse families of mechanosensitive channels. The latter of these two families, the MscS family, consists of members from bacteria, archaea, fungi, and plants. Genetic and electrophysiological analysis of these family members has provided insight into how organisms use mechanosensitive channels for osmotic regulation in response to changing environmental and developmental circumstances. Furthermore, determining the crystal structure of E. coli MscS and several homologues in several conformational states has contributed to our understanding of the gating mechanisms of these channels. Here we summarize our current knowledge of MscS homologues from all three domains of life and address their structure, proposed physiological functions, electrophysiological behaviors, and topological diversity.
Collapse
Affiliation(s)
- Margaret E Wilson
- Department of Biology, Washington University in St. Louis, Missouri 63130, United States
| | | | | |
Collapse
|
18
|
Huergo LF, Chandra G, Merrick M. PIIsignal transduction proteins: nitrogen regulation and beyond. FEMS Microbiol Rev 2013; 37:251-83. [DOI: 10.1111/j.1574-6976.2012.00351.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 01/12/2023] Open
|
19
|
Chellamuthu VR, Alva V, Forchhammer K. From cyanobacteria to plants: conservation of PII functions during plastid evolution. PLANTA 2013. [PMID: 23192387 DOI: 10.1007/s00425-012-1801-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This article reviews the current state-of-the-art concerning the functions of the signal processing protein PII in cyanobacteria and plants, with a special focus on evolutionary aspects. We start out with a general introduction to PII proteins, their distribution, and their evolution. We also discuss PII-like proteins and domains, in particular, the similarity between ATP-phosphoribosyltransferase (ATP-PRT) and its PII-like domain and the complex between N-acetyl-L-glutamate kinase (NAGK) and its PII activator protein from oxygenic phototrophs. The structural basis of the function of PII as an ATP/ADP/2-oxoglutarate signal processor is described for Synechococcus elongatus PII. In both cyanobacteria and plants, a major target of PII regulation is NAGK, which catalyzes the committed step of arginine biosynthesis. The common principles of NAGK regulation by PII are outlined. Based on the observation that PII proteins from cyanobacteria and plants can functionally replace each other, the hypothesis that PII-dependent NAGK control was under selective pressure during the evolution of plastids of Chloroplastida and Rhodophyta is tested by bioinformatics approaches. It is noteworthy that two lineages of heterokont algae, diatoms and brown algae, also possess NAGK, albeit lacking PII; their NAGK however appears to have descended from an alphaproteobacterium and not from a cyanobacterium as in plants. We end this article by coming to the conclusion that during the evolution of plastids, PII lost its function in coordinating gene expression through the PipX-NtcA network but preserved its role in nitrogen (arginine) storage metabolism, and subsequently took over the fine-tuned regulation of carbon (fatty acid) storage metabolism, which is important in certain developmental stages of plants.
Collapse
Affiliation(s)
- Vasuki Ranjani Chellamuthu
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Spemannstrasse 35, Tübingen, Germany.
| | | | | |
Collapse
|
20
|
Ermilova E, Lapina T, Zalutskaya Z, Minaeva E, Fokina O, Forchhammer K. PII signal transduction protein in Chlamydomonas reinhardtii: localization and expression pattern. Protist 2012; 164:49-59. [PMID: 22578427 DOI: 10.1016/j.protis.2012.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 03/05/2012] [Accepted: 04/09/2012] [Indexed: 11/25/2022]
Abstract
Although PII signal transduction proteins have been described in bacteria, archaea and higher plants, no PII homolog has so far been characterized in green algae. In the unicellular green alga Chlamydomonas reinhardtii, the PII protein is encoded by a single nuclear gene CrGLB1. The C. reinhardtii PII (CrPII) was cloned and overexpressed with a C-terminal-fused Strep-tag II peptide. Consistent with the presence of key conserved residues necessary for trimer formation, gel filtration showed the oligomeric structure of C. reinhardtii to be a homotrimer. Under the studied culture conditions, CrPII appears not to be modified by phosphorylation. Here we show that like its plant PII homologs, the CrPII protein is localized in the chloroplast. Although the CrGLB1 transcript level increased in response to dark-light shift and nitrogen depletion, the level of mature CrPII protein did not change accordingly. Changes in the level of CrGLB1 mRNA were independent of gametogenesis. Characterization of PII in the green alga C. reinhardtii provides a framework for a more complete understanding of the function of this highly conserved signaling protein.
Collapse
Affiliation(s)
- Elena Ermilova
- Laboratory of Adaptation in Microorganisms, Biological Research Institute of St. Petersburg University, Oranienbaumskoe schosse 2, Stary Peterhof, St. Petersburg, 198504 Russia.
| | | | | | | | | | | |
Collapse
|
21
|
Mechanosensitive channels: what can they do and how do they do it? Structure 2012; 19:1356-69. [PMID: 22000509 DOI: 10.1016/j.str.2011.09.005] [Citation(s) in RCA: 257] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/19/2011] [Accepted: 09/20/2011] [Indexed: 12/16/2022]
Abstract
While mechanobiological processes employ diverse mechanisms, at their heart are force-induced perturbations in the structure and dynamics of molecules capable of triggering subsequent events. Among the best characterized force-sensing systems are bacterial mechanosensitive channels. These channels reflect an intimate coupling of protein conformation with the mechanics of the surrounding membrane; the membrane serves as an adaptable sensor that responds to an input of applied force and converts it into an output signal, interpreted for the cell by mechanosensitive channels. The cell can exploit this information in a number of ways: ensuring cellular viability in the presence of osmotic stress and perhaps also serving as a signal transducer for membrane tension or other functions. This review focuses on the bacterial mechanosensitive channels of large (MscL) and small (MscS) conductance and their eukaryotic homologs, with an emphasis on the outstanding issues surrounding the function and mechanism of this fascinating class of molecules.
Collapse
|
22
|
Muramatsu M, Hihara Y. Acclimation to high-light conditions in cyanobacteria: from gene expression to physiological responses. JOURNAL OF PLANT RESEARCH 2012; 125:11-39. [PMID: 22006212 DOI: 10.1007/s10265-011-0454-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/04/2023]
Abstract
Photosynthetic organisms have evolved various acclimatory responses to high-light (HL) conditions to maintain a balance between energy supply (light harvesting and electron transport) and consumption (cellular metabolism) and to protect the photosynthetic apparatus from photodamage. The molecular mechanism of HL acclimation has been extensively studied in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Whole genome DNA microarray analyses have revealed that the change in gene expression profile under HL is closely correlated with subsequent acclimatory responses such as (1) acceleration in the rate of photosystem II turnover, (2) downregulation of light harvesting capacity, (3) development of a protection mechanism for the photosystems against excess light energy, (4) upregulation of general protection mechanism components, and (5) regulation of carbon and nitrogen assimilation. In this review article, we survey recent progress in the understanding of the molecular mechanisms of these acclimatory responses in Synechocystis sp. PCC 6803. We also briefly describe attempts to understand HL acclimation in various cyanobacterial species in their natural environments.
Collapse
Affiliation(s)
- Masayuki Muramatsu
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Ibaraki, 305-8602, Japan
| | | |
Collapse
|
23
|
Price GD. Inorganic carbon transporters of the cyanobacterial CO2 concentrating mechanism. PHOTOSYNTHESIS RESEARCH 2011; 109:47-57. [PMID: 21359551 DOI: 10.1007/s11120-010-9608-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 12/14/2010] [Indexed: 05/04/2023]
Abstract
Cyanobacteria possess an environmental adaptation known as a CO(2) concentrating mechanism (CCM) that evolved to improve photosynthetic performance, particularly under CO(2)-limiting conditions. The CCM functions to actively transport dissolved inorganic carbon species (Ci; HCO(3)(-) and CO(2)) resulting in accumulation of a pool of HCO(3)(-) within the cell that is then utilised to provide an elevated CO(2) concentration around the primary CO(2) fixing enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). Rubisco is encapsulated in unique micro-compartments known as carboxysomes and also provides the location for elevated CO(2) levels in the cell. Five distinct transport systems for active Ci uptake are known, including two types of Na(+)-dependent HCO(3)(-) transporters (BicA and SbtA), one traffic ATPase (BCT1) for HCO(3)(-) uptake and two CO(2) uptake systems based on modified NADPH dehydrogenase complexes (NDH-I(3) and NDH-I(4)). The genes for a number of these transporters are genetically induced under Ci limitation via transcriptional regulatory processes. The in-membrane topology structures of the BicA and SbtA HCO(3)(-) transporters are now known and this may aid in determining processes related to transporter activation during dark to light transitions or under severe Ci limitation.
Collapse
Affiliation(s)
- G Dean Price
- Molecular Plant Physiology Cluster, Plant Science Division, Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
24
|
Schwarz D, Nodop A, Hüge J, Purfürst S, Forchhammer K, Michel KP, Bauwe H, Kopka J, Hagemann M. Metabolic and transcriptomic phenotyping of inorganic carbon acclimation in the Cyanobacterium Synechococcus elongatus PCC 7942. PLANT PHYSIOLOGY 2011; 155:1640-55. [PMID: 21282404 PMCID: PMC3091134 DOI: 10.1104/pp.110.170225] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The amount of inorganic carbon is one of the main limiting environmental factors for photosynthetic organisms such as cyanobacteria. Using Synechococcus elongatus PCC 7942, we characterized metabolic and transcriptomic changes in cells that had been shifted from high to low CO(2) levels. Metabolic phenotyping indicated an activation of glycolysis, the oxidative pentose phosphate cycle, and glycolate metabolism at lowered CO(2) levels. The metabolic changes coincided with a general reprogramming of gene expression, which included not only increased transcription of inorganic carbon transporter genes but also genes for enzymes involved in glycolytic and photorespiratory metabolism. In contrast, the mRNA content for genes from nitrogen assimilatory pathways decreased. These observations indicated that cyanobacteria control the homeostasis of the carbon-nitrogen ratio. Therefore, results obtained from the wild type were compared with the MP2 mutant of Synechococcus 7942, which is defective for the carbon-nitrogen ratio-regulating PII protein. Metabolites and genes linked to nitrogen assimilation were differentially regulated, whereas the changes in metabolite concentrations and gene expression for processes related to central carbon metabolism were mostly similar in mutant and wild-type cells after shifts to low-CO(2) conditions. The PII signaling appears to down-regulate the nitrogen metabolism at lowered CO(2), whereas the specific shortage of inorganic carbon is recognized by different mechanisms.
Collapse
|
25
|
Fuszard MA, Wright PC, Biggs CA. Cellular acclimation strategies of a minimal picocyanobacterium to phosphate stress. FEMS Microbiol Lett 2010; 306:127-34. [DOI: 10.1111/j.1574-6968.2010.01942.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
26
|
Amon J, Titgemeyer F, Burkovski A. Common patterns - unique features: nitrogen metabolism and regulation in Gram-positive bacteria. FEMS Microbiol Rev 2010; 34:588-605. [PMID: 20337720 DOI: 10.1111/j.1574-6976.2010.00216.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gram-positive bacteria have developed elaborate mechanisms to control ammonium assimilation, at the levels of both transcription and enzyme activity. In this review, the common and specific mechanisms of nitrogen assimilation and regulation in Gram-positive bacteria are summarized and compared for the genera Bacillus, Clostridium, Streptomyces, Mycobacterium and Corynebacterium, with emphasis on the high G+C genera. Furthermore, the importance of nitrogen metabolism and control for the pathogenic lifestyle and virulence is discussed. In summary, the regulation of nitrogen metabolism in prokaryotes shows an impressive diversity. Virtually every phylum of bacteria evolved its own strategy to react to the changing conditions of nitrogen supply. Not only do the transcription factors differ between the phyla and sometimes even between families, but the genetic targets of a given regulon can also differ between closely related species.
Collapse
Affiliation(s)
- Johannes Amon
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | | |
Collapse
|
27
|
Forchhammer K. The Network of PII Signalling Protein Interactions in Unicellular Cyanobacteria. RECENT ADVANCES IN PHOTOTROPHIC PROKARYOTES 2010; 675:71-90. [DOI: 10.1007/978-1-4419-1528-3_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit. Proc Natl Acad Sci U S A 2009; 107:502-7. [PMID: 20018655 DOI: 10.1073/pnas.0910097107] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The PII protein is a signal integrator involved in the regulation of nitrogen metabolism in bacteria and plants. Upon sensing of cellular carbon and energy availability, PII conveys the signal by interacting with target proteins, thereby modulating their biological activity. Plant PII is located to plastids; therefore, to identify new PII target proteins, PII-affinity chromatography of soluble extracts from Arabidopsis leaf chloroplasts was performed. Several proteins were retained only when Mg-ATP was present in the binding medium and they were specifically released from the resin by application of a 2-oxoglutarate-containing elution buffer. Mass spectroscopy of SDS/PAGE-resolved protein bands identified the biotin carboxyl carrier protein subunits of the plastidial acetyl-CoA carboxylase (ACCase) and three other proteins containing a similar biotin/lipoyl-binding motif as putative PII targets. ACCase is a key enzyme initiating the synthesis of fatty acids in plastids. In in vitro reconstituted assays supplemented with exogenous ATP, recombinant Arabidopsis PII inhibited chloroplastic ACCase activity, and this was completely reversed in the presence of 2-oxoglutarate, pyruvate, or oxaloacetate. The inhibitory effect was PII-dose-dependent and appeared to be PII-specific because ACCase activity was not altered in the presence of other tested proteins. PII decreased the V(max) of the ACCase reaction without altering the K(m) for acetyl-CoA. These data show that PII function has evolved between bacterial and plant systems to control the carbon metabolism pathway of fatty acid synthesis in plastids.
Collapse
|
29
|
Feria Bourrellier AB, Ferrario-Méry S, Vidal J, Hodges M. Metabolite regulation of the interaction between Arabidopsis thaliana PII and N-acetyl-l-glutamate kinase. Biochem Biophys Res Commun 2009; 387:700-4. [PMID: 19631611 DOI: 10.1016/j.bbrc.2009.07.088] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 07/17/2009] [Indexed: 10/20/2022]
Abstract
The metabolic control of the interaction between ArabidopsisN-acetyl-l-glutamate kinase (NAGK) and the PII protein has been studied. Both gel exclusion and affinity chromatography analyses of recombinant, affinity-purified PII (trimeric complex) and NAGK (hexameric complex) showed that NAGK strongly interacted with PII only in the presence of Mg-ATP, and that this process was reversed by 2-oxoglutarate (2-OG). Furthermore, metabolites such as arginine, glutamate, citrate, and oxalacetate also exerted a negative effect on the PII-NAGK complex formation in the presence of Mg-ATP. Using chloroplast protein extracts and PII affinity chromatography, NAGK interacted with PII only in the presence of ATP-Mg(2+), and this process was antagonized by 2-OG. These results reveal a complex metabolic control of the PII interaction with NAGK in the chloroplast stroma of higher plants.
Collapse
Affiliation(s)
- Ana Belén Feria Bourrellier
- Institut de Biotechnologie des Plantes, Centre National de la Recherche Scientifique, Université Paris Sud, Orsay, France
| | | | | | | |
Collapse
|
30
|
Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F. Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 2009; 73:249-99. [PMID: 19487728 PMCID: PMC2698417 DOI: 10.1128/mmbr.00035-08] [Citation(s) in RCA: 463] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45 degrees N to 40 degrees S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level.
Collapse
Affiliation(s)
- D J Scanlan
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Sant'Anna FH, Trentini DB, de Souto Weber S, Cecagno R, da Silva SC, Schrank IS. The PII superfamily revised: a novel group and evolutionary insights. J Mol Evol 2009; 68:322-36. [PMID: 19296042 DOI: 10.1007/s00239-009-9209-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/16/2009] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
Abstract
The PII proteins compose a superfamily of signal transducers with fundamental roles in the nitrogen metabolism of prokaryotic organisms. They act at different cellular targets, such as ammonia transporters, enzymes, and transcriptional factors. These proteins are small, highly conserved, and well distributed among prokaryotes. The current PII classification is based on sequence similarity and genetic linkage. Our work reviewed this classification through an extensive analysis of PII homologues deposited in GenBank. We also investigated evolutionary aspects of this ancient protein superfamily and revised its PROSITE signatures. A new group of PII proteins is described in this work. These PII homologues have a peculiar genetic context, as they are associated with metal transporters and do not contain the canonical PROSITE signatures of PII. Our analysis reveals that horizontal gene transfer could have played an important role in PII evolution. Thus, new insights into PII evolution, a new PII group, and more comprehensive PROSITE signatures are proposed.
Collapse
|
32
|
The plant-specific TFIIB-related protein, pBrp, is a general transcription factor for RNA polymerase I. EMBO J 2009; 27:2317-27. [PMID: 18668124 DOI: 10.1038/emboj.2008.151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 01/19/2023] Open
Abstract
TFIIB and BRF are general transcription factors (GTFs) for eukaryotic RNA polymerases II and III, respectively, and have important functions in transcriptional initiation. In this study, the third type of TFIIB-related protein, pBrp, found in plant lineages was characterized in the red alga Cyanidioschyzon merolae. Chromatin immunoprecipitation analysis revealed that CmpBrp specifically occupied the rDNA promoter region in vivo, and the occupancy was proportional to de novo 18S rRNA synthesis. Consistently, CmpBrp and CmTBP cooperatively bound the rDNA promoter region in vitro, and the binding site was identified at a proximal downstream region of the transcription start point. alpha-Amanitin-resistant transcription from the rDNA promoter in crude cell lysate was severely inhibited by the CmpBrp antibody and was also inhibited when DNA template with a mutated CmpBrp-CmTBP binding site was used. CmpBrp was shown to co-immunoprecipitate and co-localize with the RNA polymerase I subunit, CmRPA190, in the cell. Thus, together with comparative studies of Arabidopsis pBrp, we concluded that pBrp is a GTF for RNA polymerase I in plant cells.
Collapse
|
33
|
|
34
|
Abstract
When nitrogen is abundant, prokaryotic and eukaryotic oxygen-producing photosynthetic organisms store nitrogen as arginine, by relieving feedback inhibition of the arginine biosynthesis controlling enzyme, N-acetylglutamate kinase (NAGK). The signalling protein PII, an ancient and widely distributed nitrogen/carbon/ADP/ATP sensor, mediates feedback inhibition relief of NAGK by binding to this enzyme. PII phosphorylation or PII binding of ADP or 2-oxoglutarate prevents PII-NAGK complex formation. Crystal structures of NAGK, cyanobacterial and plant PII and corresponding PII-NAGK complexes have been recently determined. In these complexes, two polar PII trimers sandwich one ring-like NAGK hexamer. Each PII subunit contacts one NAGK subunit, triggering a symmetry-restricted narrowing of the NAGK ring, with concomitant adoption by the arginine sites of a low-affinity conformation.
Collapse
|
35
|
Ferrario-Méry S, Meyer C, Hodges M. Chloroplast nitrite uptake is enhanced in Arabidopsis PII mutants. FEBS Lett 2008; 582:1061-6. [PMID: 18325336 DOI: 10.1016/j.febslet.2008.02.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 02/22/2008] [Accepted: 02/25/2008] [Indexed: 11/16/2022]
Abstract
In higher plants, the PII protein is a nuclear-encoded plastid protein that regulates the activity of a key enzyme of arginine biosynthesis. We have previously observed that Arabidopsis PII mutants are more sensitive to nitrite toxicity. Using intact chloroplasts isolated from Arabidopsis leaves and (15)N-labelled nitrite we show that a light-dependent nitrite uptake into chloroplasts is increased in PII knock-out mutants when compared to the wild-type. This leads to a higher incorporation of (15)N into ammonium and amino acids in the mutant chloroplasts. However, the uptake differences do not depend on GS/GOGAT activities. Our observations suggest that PII is involved in the regulation of nitrite uptake into higher plant chloroplasts.
Collapse
Affiliation(s)
- Sylvie Ferrario-Méry
- Unité de Nutrition Azotée des Plantes, INRA, Route de St. Cyr, 78026 Versailles Cedex, France.
| | | | | |
Collapse
|
36
|
Forchhammer K. PII signal transducers: novel functional and structural insights. Trends Microbiol 2008; 16:65-72. [DOI: 10.1016/j.tim.2007.11.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 11/29/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
|
37
|
Mizuno Y, Moorhead GBG, Ng KKS. Structural basis for the regulation of N-acetylglutamate kinase by PII in Arabidopsis thaliana. J Biol Chem 2007; 282:35733-40. [PMID: 17913711 DOI: 10.1074/jbc.m707127200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
PII is a highly conserved regulatory protein found in organisms across the three domains of life. In cyanobacteria and plants, PII relieves the feedback inhibition of the rate-limiting step in arginine biosynthesis catalyzed by N-acetylglutamate kinase (NAGK). To understand the molecular structural basis of enzyme regulation by PII, we have determined a 2.5-A resolution crystal structure of a complex formed between two homotrimers of PII and a single hexamer of NAGK from Arabidopsis thaliana bound to the metabolites N-acetylglutamate, ADP, ATP, and arginine. In PII, the T-loop and Trp(22) at the start of the alpha1-helix, which are both adjacent to the ATP-binding site of PII, contact two beta-strands as well as the ends of two central helices (alphaE and alphaG) in NAGK, the opposing ends of which form major portions of the ATP and N-acetylglutamate substrate-binding sites. The binding of Mg(2+).ATP to PII stabilizes a conformation of the T-loop that favors interactions with both open and closed conformations of NAGK. Interactions between PII and NAGK appear to limit the degree of opening and closing of the active-site cleft in opposition to a domain-separating inhibitory effect exerted by arginine, thus explaining the stimulatory effect of PII on the kinetics of arginine-inhibited NAGK.
Collapse
Affiliation(s)
- Yutaka Mizuno
- Department of Biological Sciences and the Alberta Ingenuity Centre for Carbohydrate Science, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | |
Collapse
|