1
|
Zhang H, Hu J, Tian G, Zhao Y, Wang J, Lang S, Chen R. Dihydroflavonol 4-reductase from Iris lactea has distinct substrate specificity and promoting the synthesis of delphinidin-based anthocyanins. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109805. [PMID: 40147327 DOI: 10.1016/j.plaphy.2025.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 02/19/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Anthocyanin, a water-soluble flavonoid pigment, serves as a key secondary metabolite and plays a major role in the formation of color in plant flowers, fruits and vegetables. Dihydroflavonol 4-reductase (DFR) is a key enzyme in the anthocyanin biosynthesis pathway, catalyzing the reduction of dihydroflavonols into leucoanthocyanidins. In this study, we presented the identification of a putative IlDFR gene from Iris lactea Pall var. chinensis. The amino acid sequences of IlDFR shares an evolutionary lineage among its same genus, and IlDFR showed high activity when dihydromyricetin (DHM) was used as a substrate, while less or no activity using dihydrokaempferol (DHK) or dihydroquercetin (DHQ) as a substrate in the enzymatic assay. This may be the reason way the I. lactea exhibits blue-purple color because it mainly biosynthesizes and accumulates delphinidins in its petals. The IlDFR expressed in a white flower variety of Petunia×hybrida converted noticeable different phenotypes that exhibited light to dark purple in their flowers. In a transgenic plant with dark purple flower and the highest expression level of IlDFR showed that the contents of delphinidin-based anthocyanins, including delphinidin and its methylated derivative petunidin, as well as their glycosides (glucoside, rutinoside, galactoside and sophoroside) were significantly in higher levels than those of no-transgenic negative control. These results further strengthened the evidence that IlDFR prefers DHM substrate. Our research will provide new gene resources and a basis for color modification of flowers, fruits and vegetables using molecular biology and genetic engineering techniques.
Collapse
Affiliation(s)
- Hong Zhang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, Ningxia, China; School of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Juan Hu
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, Ningxia, China; School of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Gege Tian
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, Ningxia, China; School of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Yumeng Zhao
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, Ningxia, China; School of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Jing Wang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, Ningxia, China; School of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Sirui Lang
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, Ningxia, China; School of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China
| | - Ren Chen
- Key Lab of Ministry of Education for Protection and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, 750021, Ningxia, China; School of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| |
Collapse
|
2
|
Zhang Z, Li H, Zhang L, Duan S, Li G, Duan Y. Fine Mapping and Candidate Genes Analysis for Regulatory Gene of Anthocyanin Synthesis in the Corolla, Shedding Light on Wild Potato Evolution. Int J Mol Sci 2025; 26:1966. [PMID: 40076591 PMCID: PMC11899842 DOI: 10.3390/ijms26051966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Petota includes more than 100 species (wild and cultivated), presenting a rich variety of corolla colors and associated traits. This variability provides important opportunities for investigating the differentiation of orthologous genes' functions and their evolutionary pathways. However, the genetic underpinnings of this diversity in corolla colors are still to be further explored. In our previous study, a locus responsible for corolla color in potato was mapped to a 740 kb region on chromosome 10, which contains the AN2 gene previously identified as a regulation gene for corolla color. In the present study, this locus was further refined to a 380 kb interval through recombinant analysis. Targeted analysis of anthocyanidins and carotenoids revealed that purple corollas exhibit significantly higher levels of petunidin and delphinidin, while showing significantly lower levels of lutein and β-carotene compared to yellow corollas. Transcriptome and qRT-PCR analysis indicated that StMYB180, rather than AN2, is the candidate gene responsible for regulating coloration, specifically on the abaxial side of the corolla in potato. Expression analysis revealed that StMYB180 is exclusively highly expressed in corolla and leaf tissues, with purple coloration on the abaxial side of both corollas and leaves. Phylogenetic analysis further suggests that corolla color-regulatory genes may be closely tied to the origin and evolutionary trajectory of potato species. This study provides valuable insights into the regulation of tissue-specific expression of anthocyanin biosynthesis in potato and lays the groundwork for understanding the evolution of orthologous genes in the Petota section.
Collapse
Affiliation(s)
| | | | | | | | - Guangcun Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (H.L.); (L.Z.); (S.D.)
| | - Yanfeng Duan
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Tuber and Root Crop of Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (H.L.); (L.Z.); (S.D.)
| |
Collapse
|
3
|
Liu H, Shi G, Ye W, Behera JR, Kilaru A, Wang L. Functional role of DFR genes in various blue Iris for the regulation of delphinidin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109355. [PMID: 39708701 DOI: 10.1016/j.plaphy.2024.109355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Flowers belonging to the Iris genus, with a predominant display of blue hues, showcase a variety of blue polymorphisms across different species. This study focused on analyzing the L∗, a∗, and b∗ color values of Iris typhifolia, I. lactea, I. laevigata, and I. sanguinea. Notably, I. lactea exhibited the highest L∗ value, indicating a brighter hue, while I. typhifolia and I. laevigata displayed larger a∗ values, suggesting a shift towards a reddish tone. I. sanguinea, conversely, presented the most profound blue with the lowest b∗ value. Our research delved into understanding the influence of anthocyanin components on these color variations and explored the regulatory role of the dihydroflavonol-4-reductase (DFR) gene. The findings underscore delphinidin as the primary blue pigment, with the additional presence of petunidin in I. typhifolia and I. laevigata introducing a purplish-red hue. Flavonoids were identified as contributors to enhancing the brightness of I. lactea's color. The study elucidates that blue polymorphism predominantly arises from varying proportions of delphinidin pigments, closely linked to substrate selection by Asp type DFRs. Following the expression of different DFR genes from the two blue Iris species, significant substrate selection differences were observed. These findings lay a foundation for future efforts to enhance flower colors in Irises and other related species by offering DFR as a target candidate gene.
Collapse
Affiliation(s)
- Huijun Liu
- College of Landscape Architecture, Northeast Forestry University, 150040, Harbin, China.
| | - Gongfa Shi
- College of Landscape Architecture, Northeast Forestry University, 150040, Harbin, China.
| | - Wangbin Ye
- College of Landscape Architecture, Northeast Forestry University, 150040, Harbin, China.
| | - Jyoti R Behera
- Department of Biological Sciences, East Tennessee State University, 37614, Johnson City, TN, USA.
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, 37614, Johnson City, TN, USA.
| | - Ling Wang
- College of Landscape Architecture, Northeast Forestry University, 150040, Harbin, China.
| |
Collapse
|
4
|
Nishihara M, Hirabuchi A, Teshima T, Uesugi S, Takahashi H. Flower color modification in Torenia fournieri by genetic engineering of betacyanin pigments. BMC PLANT BIOLOGY 2024; 24:614. [PMID: 38937670 PMCID: PMC11210153 DOI: 10.1186/s12870-024-05284-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Betalains are reddish and yellow pigments that accumulate in a few plant species of the order Caryophyllales. These pigments have antioxidant and medicinal properties and can be used as functional foods. They also enhance resistance to stress or disease in crops. Several plant species belonging to other orders have been genetically engineered to express betalain pigments. Betalains can also be used for flower color modification in ornamental plants, as they confer vivid colors, like red and yellow. To date, betalain engineering to modify the color of Torenia fournieri-or wishbone flower-a popular ornamental plant, has not been attempted. RESULTS We report the production of purple-reddish-flowered torenia plants from the purple torenia cultivar "Crown Violet." Three betalain-biosynthetic genes encoding CYP76AD1, dihydroxyphenylalanine (DOPA) 4,5-dioxygenase (DOD), and cyclo-DOPA 5-O-glucosyltransferase (5GT) were constitutively ectopically expressed under the cauliflower mosaic virus (CaMV) 35S promoter, and their expression was confirmed by quantitative real-time PCR (qRT-PCR) analysis. The color traits, measured by spectrophotometric colorimeter and spectral absorbance of fresh petal extracts, revealed a successful flower color modification from purple to reddish. Red pigmentation was also observed in whole plants. LC-DAD-MS and HPLC analyses confirmed that the additional accumulated pigments were betacyanins-mainly betanin (betanidin 5-O-glucoside) and, to a lesser extent, isobetanin (isobetanidin 5-O-glucoside). The five endogenous anthocyanins in torenia flower petals were also detected. CONCLUSIONS This study demonstrates the possibility of foreign betacyanin accumulation in addition to native pigments in torenia, a popular garden bedding plant. To our knowledge, this is the first report presenting engineered expression of betalain pigments in the family Linderniaceae. Genetic engineering of betalains would be valuable in increasing the flower color variation in future breeding programs for torenia.
Collapse
Affiliation(s)
- Masahiro Nishihara
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan.
- Department of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Kenjojima, Matsuoka, Eiheiji-cho, Fukui, 910-1195, Japan.
| | - Akiko Hirabuchi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Takuya Teshima
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Shota Uesugi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
| | - Hideyuki Takahashi
- Iwate Biotechnology Research Center, 22-174-4 Narita, Kitakami, 024-0003, Iwate, Japan
- Department of Agriculture, School of Agriculture, Tokai University, 871-12 Sugidou, Mashikimach, Kamimashiki-gun, Kumamoto, 861-2205, Japan
| |
Collapse
|
5
|
Wong DCJ, Wang Z, Perkins J, Jin X, Marsh GE, John EG, Peakall R. The road less taken: Dihydroflavonol 4-reductase inactivation and delphinidin anthocyanin loss underpins a natural intraspecific flower colour variation. Mol Ecol 2024:e17334. [PMID: 38651763 DOI: 10.1111/mec.17334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/22/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024]
Abstract
Visual cues are of critical importance for the attraction of animal pollinators, however, little is known about the molecular mechanisms underpinning intraspecific floral colour variation. Here, we combined comparative spectral analysis, targeted metabolite profiling, multi-tissue transcriptomics, differential gene expression, sequence analysis and functional analysis to investigate a bee-pollinated orchid species, Glossodia major with common purple- and infrequent white-flowered morphs. We found uncommon and previously unreported delphinidin-based anthocyanins responsible for the conspicuous and pollinator-perceivable colour of the purple morph and three genetic changes underpinning the loss of colour in the white morph - (1) a loss-of-function (LOF; frameshift) mutation affecting dihydroflavonol 4-reductase (DFR1) coding sequence due to a unique 4-bp insertion, (2) specific downregulation of functional DFR1 expression and (3) the unexpected discovery of chimeric Gypsy transposable element (TE)-gene (DFR) transcripts with potential consequences to the genomic stability and post-transcriptional or epigenetic regulation of DFR. This is one of few known cases where regulatory changes and LOF mutation in an anthocyanin structural gene, rather than transcription factors, are important. Furthermore, if TEs prove to be a frequent source of mutation, the interplay between environmental stress-induced TE evolution and pollinator-mediated selection for adaptive colour variation may be an overlooked mechanism maintaining floral colour polymorphism in nature.
Collapse
Affiliation(s)
- Darren C J Wong
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zemin Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - James Perkins
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xin Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Grace Emma Marsh
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Emma Grace John
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
6
|
Parrish SB, Paudel D, Deng Z. Transcriptome analysis of Lantana camara flower petals reveals candidate anthocyanin biosynthesis genes mediating red flower color development. G3 (BETHESDA, MD.) 2023; 14:jkad259. [PMID: 37974306 PMCID: PMC10755171 DOI: 10.1093/g3journal/jkad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023]
Abstract
Flower color plays a crucial role in the appeal and selection of ornamental plants, directly influencing breeding strategies and the broader horticulture industry. Lantana camara, a widely favored flowering shrub, presents a rich palette of flower colors. Yet, the intricate molecular mechanisms governing this color variation in the species have remained largely unidentified. With the aim of filling this gap, this study embarked on a comprehensive de novo transcriptome assembly and differential gene expression analysis across 3 distinct lantana accessions, each showcasing a unique flower color. By harnessing the capabilities of both PacBio and Illumina sequencing platforms, a robust transcriptome assembly, encompassing 123,492 gene clusters and boasting 94.2% BUSCO completeness, was developed. The differential expression analysis unveiled 72,862 unique gene clusters that exhibited varied expression across different flower stages. A pronounced upregulation of 8 candidate core anthocyanin biosynthesis genes in the red-flowered accession was uncovered. This was further complemented by an upregulation of candidate MYB75 (PAP1) and bHLH42 (TT8) transcription factors. A candidate carotenoid cleavage dioxygenase (CCD4a) gene cluster also manifested a marked upregulation in white flowers. The study unveils the molecular groundwork of lantana's flower color variation, offering insights for future research and potential applications in breeding ornamental plants with desired color traits.
Collapse
Affiliation(s)
- Stephen Brooks Parrish
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Dev Paudel
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL 33598, USA
| |
Collapse
|
7
|
Mekapogu M, Song HY, Lim SH, Jung JA. Genetic Engineering and Genome Editing Advances to Enhance Floral Attributes in Ornamental Plants: An Update. PLANTS (BASEL, SWITZERLAND) 2023; 12:3983. [PMID: 38068619 PMCID: PMC10707928 DOI: 10.3390/plants12233983] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 10/16/2024]
Abstract
The ornamental horticulture industry is a highly dynamic and rapidly changing market. Constant development of novel cultivars with elite traits is essential to sustain competitiveness. Conventional breeding has been used to develop cultivars, which is often laborious. Biotechnological strategies such as genetic engineering have been crucial in manipulating and improving various beneficial traits that are technically not possible through cross-breeding. One such trait is the highly desired blue-colored flower in roses and chrysanthemums, which can be achieved through transgenic technology. Advances in genome sequencing platforms have enhanced the opportunities to access the whole genome sequence in various ornamentals, facilitating the dissection of the molecular genetics and regulatory controls of different traits. The recent advent of genome editing tools, including CRISPR/Cas9, has revolutionized plant breeding. CRISPR/Cas9-based gene editing offers efficient and highly precise trait modification, contributing to various beneficial advancements. Although genome editing in ornamentals is currently in its infancy, the recent increase in the availability of ornamental genome sequences provides a platform to extend the frontiers of future genome editing in ornamentals. Hence, this review depicts the implication of various commercially valuable ornamental attributes, and details the research attempts and achievements in enhancing floral attributes using genetic engineering and genome editing in ornamental plants.
Collapse
Affiliation(s)
| | | | | | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| |
Collapse
|
8
|
Wang F, Chen J, Tang R, Wang R, Ahmad S, Liu Z, Peng D. Research Progress on Anthocyanin-Mediated Regulation of 'Black' Phenotypes of Plant Organs. Curr Issues Mol Biol 2023; 45:7242-7256. [PMID: 37754242 PMCID: PMC10527681 DOI: 10.3390/cimb45090458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
The color pattern is one of the most important characteristics of plants. Black stands out among the vibrant colors due to its rare and distinctive nature. While some plant organs appear black, they are, in fact, dark purple. Anthocyanins are the key compounds responsible for the diverse hues in plant organs. Cyanidin plays an important role in the deposition of black pigments in various plant organs, such as flower, leaf, and fruit. A number of structural genes and transcription factors are involved in the metabolism of anthocyanins in black organs. It has been shown that the high expression of R2R3-MYB transcription factors, such as PeMYB7, PeMYB11, and CsMYB90, regulates black pigmentation in plants. This review provides a comprehensive overview of the anthocyanin pathways that are involved in the regulation of black pigments in plant organs, including flower, leaf, and fruit. It is a great starting point for further investigation into the molecular regulation mechanism of plant color and the development of novel cultivars with black plant organs.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, College of Landscape Architecture and Art, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (F.W.); (J.C.); (R.T.); (R.W.); (S.A.)
| |
Collapse
|
9
|
Sasaki K, Tanaka T. Overcoming Difficulties in Molecular Biological Analysis through a Combination of Genetic Engineering, Genome Editing, and Genome Analysis in Hexaploid Chrysanthemum morifolium. PLANTS (BASEL, SWITZERLAND) 2023; 12:2566. [PMID: 37447127 DOI: 10.3390/plants12132566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/11/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023]
Abstract
Chrysanthemum is one of the most commercially important ornamental plants globally, of which many new varieties are produced annually. Among these new varieties, many are the result of crossbreeding, while some are the result of mutation breeding. Recent advances in gene and genome sequencing technology have raised expectations about the use of biotechnology and genome breeding to efficiently breed new varieties. However, some features of chrysanthemum complicate molecular biological analysis. For example, chrysanthemum is a hexaploid hyperploid plant with a large genome, while its genome is heterogeneous because of the difficulty of obtaining pure lines due to self-incompatibility. Despite these difficulties, an increased number of reports on transcriptome analysis in chrysanthemum have been published as a result of recent technological advances in gene sequencing, which should deepen our understanding of the properties of these plants. In this review, we discuss recent studies using gene engineering, genome editing, and genome analysis, including transcriptome analysis, to analyze chrysanthemum, as well as the current status of and future prospects for chrysanthemum.
Collapse
Affiliation(s)
- Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), 2-1 Fujimoto, Tsukuba 305-0852, Ibaraki, Japan
| | - Tsuyoshi Tanaka
- Research Center for Advanced Analysis, National Agriculture and Food Research Organization (NARO), 2-1-2 Kannondai, Tsukuba 305-8518, Ibaraki, Japan
| |
Collapse
|
10
|
Kishi-Kaboshi M, Nishizawa-Yokoi A, Mitsuhara I, Toki S, Sasaki K. Excision of DNA fragments with the piggyBac system in Chrysanthemum morifolium. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:157-165. [PMID: 38250294 PMCID: PMC10797517 DOI: 10.5511/plantbiotechnology.23.0324a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/24/2023] [Indexed: 01/23/2024]
Abstract
Chrysanthemum morifolium is one of the most popular ornamental plants in the world. However, as C. morifolium is a segmental hexaploid, self-incompatible, and has a sizable heterologous genome, it is difficult to modify its trait systematically. Genome editing technology is one of the attractive methods for modifying traits systematically. For the commercial use of genetically modified C. morifolium, rigorous stabilization of its quality is essential. This trait stability can be achieved by avoiding further genome modification after suitable trait modification by genome editing. Since C. morifolium is a vegetatively propagated plant, an approach for removing genome editing tools is required. In this study, we attempted to use the piggyBac transposon system to remove specific DNA sequences from the C. morifolium genome. Using the luminescence as a visible marker, we demonstrated that inoculation of Agrobacterium harboring hyperactive piggyBac transposase removes inserted 2.6 kb DNA, which harbors piggyBac recognition sequences, from the modified Eluc sequence.
Collapse
Affiliation(s)
- Mitsuko Kishi-Kaboshi
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
| | - Ichiro Mitsuhara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan
- Laboratory of Plant Genome Engineering, Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga 520-2194, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| |
Collapse
|
11
|
Lozoya-Gloria E, Cuéllar-González F, Ochoa-Alejo N. Anthocyanin metabolic engineering of Euphorbia pulcherrima: advances and perspectives. FRONTIERS IN PLANT SCIENCE 2023; 14:1176701. [PMID: 37255565 PMCID: PMC10225641 DOI: 10.3389/fpls.2023.1176701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
The range of floral colors is determined by the type of plant pigment accumulated by the plant. Anthocyanins are the most common flavonoid pigments in angiosperms; they provide a wide range of visible colors from red-magenta to blue-purple, products of cyanidin and delphinidin biosynthesis, respectively. For the floriculture industry, floral color is one of the most important ornamental characteristics for the development of new commercial varieties; however, most plant species are restricted to a certain color spectrum, limited by their own genetics. In fact, many ornamental crops lack bluish varieties due to the lack of activity of essential biosynthetic enzymes for the accumulation of delphinidin. An example is the poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch), the ornamental plant symbol of Christmas and native to Mexico. Its popularity is the result of the variety of colors displayed by its bracts, a kind of modified leaves that accumulate reddish pigments based mainly on cyanidin and, to a lesser extent, on pelargonidin. The commercial success of this plant lies in the development of new varieties and, although consumers like the typical red color, they are also looking for poinsettias with new and innovative colors. Previous research has demonstrated the possibility of manipulating flower color through metabolic engineering of the anthocyanin biosynthesis pathway and plant tissue culture in different ornamental plant species. For example, transgenic cultivars of flowers such as roses, carnations or chrysanthemums owe their attractive bluish colors to a high and exclusive accumulation of delphinidin. Here, we discuss the possibilities of genetic engineering of the anthocyanin biosynthetic pathway in E. pulcherrima through the introduction of one or more foreign delphinidin biosynthetic genes under the transcriptional control of a pathway-specific promoter, and the genome editing possibilities as an alternative tool to modify the color of the bracts. In addition, some other approaches such as the appropriate selection of the cultivars that presented the most suitable intracellular conditions to accumulate delphinidin, as well as the incorporation of genes encoding anthocyanin-modifying enzymes or transcription factors to favor the bluish pigmentation of the flowers are also revised.
Collapse
|
12
|
Fan M, Li X, Zhang Y, Yang M, Wu S, Yin H, Liu W, Fan Z, Li J. Novel insight into anthocyanin metabolism and molecular characterization of its key regulators in Camellia sasanqua. PLANT MOLECULAR BIOLOGY 2023; 111:249-262. [PMID: 36371768 DOI: 10.1007/s11103-022-01324-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Flower color is a trait that affects the ornamental value of a plant. Camellia sasanqua is a horticultural plant with rich flower color, but little is known about the regulatory mechanism of color diversity in this plant. Here, the anthocyanin profile of 20 C. sasanqua cultivars revealed and quantified 11 anthocyanin derivatives (five delphinidin-based and six cyanidin-based anthocyanins) for the first time. Cyanidin-3-O-(6-O-(E)-p-coumaroyl)-glucoside was the main contributor to flower base color, and the accumulation of cyanidin and delphinidin derivatives differed in the petals. To further explore the molecular mechanism of color divergence, a transcriptome analysis was performed using C. sasanqua cultivars 'YingYueYe', 'WanXia', 'XueYueHua', and'XiaoMeiGui'. The co-expression network related to differences in delphinidin and cyanidin derivatives accumulation was identified. Eleven candidate genes encoding key enzymes (e.g., F3H, F3'H, and ANS) were involved in anthocyanin biosynthesis. Moreover, 27 transcription factors were screened as regulators of the two types of accumulating anthocyanins. The association was suggested by correlation analysis between the expression levels of the candidate genes and the different camellia cultivars. We concluded that cyanidin and delphinidin derivatives are the major drivers of color diversity in C. sasanqua. This finding provides valuable resources for the study of flower color in C. sasanqua and lays a foundation for genetic modification of anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Menglong Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - XinLei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China.
| | - Ying Zhang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Meiying Yang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - Si Wu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - HengFu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - WeiXin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - ZhengQi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| | - JiYuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, 311400, Zhejiang, China
| |
Collapse
|
13
|
Xu Q, Xia M, He G, Zhang Q, Meng Y, Ming F. New insights into the influence of NHX-type Cation/H + antiporter on flower color in Phalaenopsis orchids. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153857. [PMID: 36370614 DOI: 10.1016/j.jplph.2022.153857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/23/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Vacuolar sodium/proton Na+(K+)/H+ exchanger (NHX) influence color formation because of their effects on cellular pH and Na+/K+ homeostasis. Research regarding NHXs has mainly focused on the vacuolar NHX family members. However, the NHX functions related to Phalaenopsis flower coloration remain relatively uncharacterized. In this study, we cloned and characterized PeNHX1, a vacuolar cation/H+ antiporter-encoding gene that is highly expressed in the Phalaenopsis equestris (orchid) flower lip. Phylogenetic and sequence analyses showed that PeNHX1 is a vacuolar NHX protein family member that is similar to other known vacuolar antiporters. The PeNHX1-GFP fusion protein was clearly localized to the vacuolar membrane in a transient transfection assay. A quantitative real-time PCR analysis revealed the increased expression of PeNHX1 in different flower developmental stages. Moreover, it was more highly expressed in the lip than in the other flower organs. On the basis of virus-induced gene silencing, we determined that decreased PeNHX1 expression significantly reduces P. equestris petal coloration. Furthermore, the overexpression of PeNHX1 in Phalaenopsis Big Chili caused the pH to increase and the petal color to change from red to blue. The results indicate that NHX1 may mediates the Na + or K+/H+ exchange, thereby regulating the vacuolar pH to promote blue coloration. This research provides a theoretical basis for the development of orchid varieties with blue flowers.
Collapse
Affiliation(s)
- Qingyu Xu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Meng Xia
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guoren He
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qiyu Zhang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yang Meng
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Feng Ming
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
14
|
Mekapogu M, Kwon OK, Song HY, Jung JA. Towards the Improvement of Ornamental Attributes in Chrysanthemum: Recent Progress in Biotechnological Advances. Int J Mol Sci 2022; 23:ijms232012284. [PMID: 36293140 PMCID: PMC9603847 DOI: 10.3390/ijms232012284] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
Incessant development and introduction of novel cultivars with improved floral attributes are vital in the dynamic ornamental industry. Chrysanthemum (Chrysanthemum morifolium) is a highly favored ornamental plant, ranking second globally in the cut flower trade, after rose. Development of new chrysanthemum cultivars with improved and innovative modifications in ornamental attributes, including floral color, shape, plant architecture, flowering time, enhanced shelf life, and biotic and abiotic stress tolerance, is a major goal in chrysanthemum breeding. Despite being an economically important ornamental plant, the application of conventional and molecular breeding approaches to various key traits of chrysanthemum is hindered owing to its genomic complexity, heterozygosity, and limited gene pool availability. Although classical breeding of chrysanthemum has resulted in the development of several hundreds of cultivars with various morphological variations, the genetic and transcriptional control of various important ornamental traits remains unclear. The coveted blue colored flowers of chrysanthemums cannot be achieved through conventional breeding and mutation breeding due to technical limitations. However, blue-hued flower has been developed by genetic engineering, and transgenic molecular breeding has been successfully employed, leading to substantial progress in improving various traits. The recent availability of whole-genome sequences of chrysanthemum offers a platform to extensively employ MAS to identify a large number of markers for QTL mapping, and GWAS to dissect the genetic control of complex traits. The combination of NGS, multi-omic platforms, and genome editing technologies has provided a tremendous scope to decipher the molecular and regulatory mechanisms. However, the application and integration of these technologies remain inadequate for chrysanthemum. This review, therefore, details the significance of floral attributes, describes the efforts of recent advancements, and highlights the possibilities for future application towards the improvement of crucial ornamental traits in the globally popular chrysanthemum plant.
Collapse
|
15
|
Tanahara Y, Yamanaka K, Kawai K, Ando Y, Nakatsuka T. Establishment of an efficient transformation method of garden stock ( Matthiola incana) using a callus formation chemical inducer. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:273-280. [PMID: 36349235 PMCID: PMC9592952 DOI: 10.5511/plantbiotechnology.22.0602a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 06/02/2022] [Indexed: 06/16/2023]
Abstract
Matthiola incana is an important floricultural plant that blooms from winter to spring, and had been desired to be established a transformation system. This study successfully obtained stable transgenic plants from M. incana. We used Agrobacterium tumefaciens harboring a binary vector containing the β-glucuronidase gene (GUS) under the control of cauliflower mosaic virus 35S promoter to evaluate the transformation frequency of M. incana. We observed that cocultivation with the A. tumefaciens strain GV3101 for 5 days effectively enhanced the infection frequency, assessed through a transient GUS expression area in the seedling. Furthermore, the addition of 100 µM acetosyringone was necessary for Agrobacterium infection. However, we could not obtain transgenic plants on a shoot formation medium supplemented with 1 mg l-1 6-benzyladenine (BA). For callus formation from the leaf sections, a medium supplemented with 1-50 µM fipexide (FPX), a novel callus induction chemical, was employed. Then, the callus formation was observed after 2 weeks, and an earlier response was detected than that in the BA medium (4-6 weeks). Results also showed that cultivation in a selection medium supplemented with 12.5 µM FPX obtained hygromycin-resistant calli. Thus, this protocol achieved a 0.7% transformation frequency. Similarly, progenies from one transgenic line were observed on the basis of GUS stains on their leaves, revealing that the transgenes were also inherited stably. Hence, FPX is considered a breakthrough for establishing the transformation protocol of M. incana, and its use is proposed in recalcitrant plants.
Collapse
Affiliation(s)
- Yoshiki Tanahara
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kaho Yamanaka
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Kentaro Kawai
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Yukiko Ando
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | - Takashi Nakatsuka
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
16
|
Integrated Analysis of Transcriptome and Metabolome Reveals New Insights into the Formation of Purple Leaf Veins and Leaf Edge Cracks in Brassica juncea. PLANTS 2022; 11:plants11172229. [PMID: 36079611 PMCID: PMC9460116 DOI: 10.3390/plants11172229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Purple leaf veins and leaf edge cracks comprise the typical leaf phenotype of Brassica juncea; however, the molecular mechanisms and metabolic pathways of the formation of purple leaf veins and leaf edge cracks remain unclear. In this study, transcriptome and metabolome analyses were conducted to explore the regulation pathway of purple leaf vein and leaf edge crack formation based on four mustard samples that showed different leaf colors and degrees of cracking. The results showed genes with higher expression in purple leaf veins were mainly enriched in the flavonoid biosynthesis pathway. Integrating related genes and metabolites showed that the highly expressed genes of ANS (BjuA004031, BjuB014115, BjuB044852, and BjuO009605) and the excessive accumulation of dihydrokaempferol and dihydroquercetin contributed to the purple leaf veins by activating the synthetic pathways of pelargonidin-based anthocyanins and delphinidin-based anthocyanins. Meanwhile, “alpha-farnesene synthase activity” and “glucan endo-1, 3-beta-D-glucosidase activity” related to the adversity were mainly enriched in the serrated and lobed leaves, indicating that the environmental pressure was the dominant factor controlling the change in leaf shape. Overall, these results provided new insights into the regulation pathways for formation of purple leaf veins and leaf edge cracks, which could better accelerate the theoretical research on purple leaf vein color and leaf edge cracks in mustard.
Collapse
|
17
|
Ke L, Yu D, Zheng H, Xu Y, Wu Y, Jiao J, Wang X, Mei J, Cai F, Zhao Y, Sun J, Zhang X, Sun Y. Function deficiency of GhOMT1 causes anthocyanidins over-accumulation and diversifies fibre colours in cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1546-1560. [PMID: 35503731 PMCID: PMC9342615 DOI: 10.1111/pbi.13832] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/23/2022] [Indexed: 05/25/2023]
Abstract
Naturally coloured cotton (NCC) fibres need little or no dyeing process in textile industry to low-carbon emission and are environment-friendly. Proanthocyanidins (PAs) and their derivatives were considered as the main components causing fibre coloration and made NCCs very popular and healthy, but the monotonous fibre colours greatly limit the wide application of NCCs. Here a G. hirsutum empurpled mutant (HS2) caused by T-DNA insertion is found to enhance the anthocyanidins biosynthesis and accumulate anthocyanidins in the whole plant. HPLC and LC/MS-ESI analysis confirmed the anthocyanidins methylation and peonidin, petunidin and malvidin formation are blocked. The deficiency of GhOMT1 in HS2 was associated with the activation of the anthocyanidin biosynthesis and the altered components of anthocyanidins. The transcripts of key genes in anthocyanidin biosynthesis pathway are significantly up-regulated in HS2, while transcripts of the genes for transport and decoration were at similar levels as in WT. To investigate the potential mechanism of GhOMT1 deficiency in cotton fibre coloration, HS2 mutant was crossed with NCCs. Surprisingly, offsprings of HS2 and NCCs enhanced PAs biosynthesis and increased PAs levels in their fibres from the accumulated anthocyanidins through up-regulated GhANR and GhLAR. As expected, multiple novel lines with improved fibre colours including orange red and navy blue were produced in their generations. Based on this work, a new strategy for breeding diversified NCCs was brought out by promoting PA biosynthesis. This work will help shed light on mechanisms of PA biosynthesis and bring out potential molecular breeding strategy to increase PA levels in NCCs.
Collapse
Affiliation(s)
- Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yihan Xu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yuqing Wu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Junye Jiao
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Xiaoli Wang
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Jun Mei
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yanyan Zhao
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Jie Sun
- College of AgricultureThe Key Laboratory of Oasis Eco‐AgricultureShihezi UniversityShiheziChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
18
|
Yu T, Han G, Luan Z, Zhu C, Zhao J, Sheng Y. Functional Analysis of Genes GlaDFR1 and GlaDFR2 Encoding Dihydroflavonol 4-Reductase (DFR) in Gentiana lutea L. Var. Aurantiaca (M. Laínz) M. Laínz. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1382604. [PMID: 35047628 PMCID: PMC8763498 DOI: 10.1155/2022/1382604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/17/2021] [Indexed: 11/29/2022]
Abstract
Anthocyanins are important pigments for flower color, determining the ornamental and economic values of horticultural plants. As a key enzyme in the biosynthesis of anthocyanidins, dihydroflavonol 4-reductase (DFR) catalyzes the reduction of dihydroflavonols to generate the precursors for anthocyanidins (i.e., leucoanthocyanidins) and anthocyanins. To investigate the functions of DFRs in plants, we cloned the GlaDFR1 and GlaDFR2 genes from the petals of Gentiana lutea var. aurantiaca and transformed both genes into Nicotiana tabacum by Agrobacterium-mediated leaf disc method. We further investigated the molecular and phenotypic characteristics of T1 generation transgenic tobacco plants selected based on the hygromycin resistance and verified by both PCR and semiquantitative real-time PCR analyses. The phenotypic segregation was observed in the flower color of the transgenic tobacco plants, showing petals darker than those in the wild-type (WT) plants. Results of high-performance liquid chromatography (HPLC) analysis showed that the contents of gentiocyanin derivatives were decreased in the petals of transgenic plants in comparison to those of WT plants. Ours results revealed the molecular functions of GlaDFR1 and GlaDFR2 in the formation of coloration, providing solid theoretical foundation and candidate genes for further genetic improvement in flower color of plants.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Guojun Han
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Zhihui Luan
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Changfu Zhu
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Jinghua Zhao
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| | - Yanmin Sheng
- School of Life Sciences, Changchun Normal University, Changchun 130031, China
| |
Collapse
|
19
|
Ahmad S, Chen J, Chen G, Huang J, Zhou Y, Zhao K, Lan S, Liu Z, Peng D. Why Black Flowers? An Extreme Environment and Molecular Perspective of Black Color Accumulation in the Ornamental and Food Crops. FRONTIERS IN PLANT SCIENCE 2022; 13:885176. [PMID: 35498642 PMCID: PMC9047182 DOI: 10.3389/fpls.2022.885176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/23/2022] [Indexed: 05/04/2023]
Abstract
Pollinators are attracted to vibrant flower colors. That is why flower color is the key agent to allow successful fruit set in food or ornamental crops. However, black flower color is the least attractive to pollinators, although a number of plant species produce black flowers. Cyanidin-based anthocyanins are thought to be the key agents to induce black color in the ornamental and fruit crops. R2R3-MYB transcription factors (TFs) play key roles for the tissue-specific accumulation of anthocyanin. MYB1 and MYB11 are the key TFs regulating the expression of anthocyanin biosynthesis genes for black color accumulation. Post-transcriptional silencing of flavone synthase II (FNS) gene is the technological method to stimulate the accumulation of cyanidin-based anthocyanins in black cultivars. Type 1 promoter of DvIVS takes the advantage of FNS silencing to produce large amounts of black anthocyanins. Exogenous ethylene application triggers anthocyanin accumulation in the fruit skin at ripening. Environment cues have been the pivotal regulators to allow differential accumulation of anthocyanins to regulate black color. Heat stress is one of the most important environmental stimulus that regulates concentration gradient of anthocyanins in various plant parts, thereby affecting the color pattern of flowers. Stability of black anthocyanins in the extreme environments can save the damage, especially in fruits, caused by abiotic stress. White flowers without anthocyanin face more damages from abiotic stress than dark color flowers. The intensity and pattern of flower color accumulation determine the overall fruit set, thereby controlling crop yield and human food needs. This review paper presents comprehensive knowledge of black flower regulation as affected by high temperature stress, and the molecular regulators of anthocyanin for black color in ornamental and food crops. It also discusses the black color-pollination interaction pattern affected by heat stress for food and ornamental crops.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinliao Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guizhen Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Huang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuzhen Zhou
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kai Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Siren Lan
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhongjian Liu
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Zhongjian Liu,
| | - Donghui Peng
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China
- Donghui Peng,
| |
Collapse
|
20
|
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H. The Flavonoid Biosynthesis Network in Plants. Int J Mol Sci 2021; 22:ijms222312824. [PMID: 34884627 PMCID: PMC8657439 DOI: 10.3390/ijms222312824] [Citation(s) in RCA: 335] [Impact Index Per Article: 83.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
Flavonoids are an important class of secondary metabolites widely found in plants, contributing to plant growth and development and having prominent applications in food and medicine. The biosynthesis of flavonoids has long been the focus of intense research in plant biology. Flavonoids are derived from the phenylpropanoid metabolic pathway, and have a basic structure that comprises a C15 benzene ring structure of C6-C3-C6. Over recent decades, a considerable number of studies have been directed at elucidating the mechanisms involved in flavonoid biosynthesis in plants. In this review, we systematically summarize the flavonoid biosynthetic pathway. We further assemble an exhaustive map of flavonoid biosynthesis in plants comprising eight branches (stilbene, aurone, flavone, isoflavone, flavonol, phlobaphene, proanthocyanidin, and anthocyanin biosynthesis) and four important intermediate metabolites (chalcone, flavanone, dihydroflavonol, and leucoanthocyanidin). This review affords a comprehensive overview of the current knowledge regarding flavonoid biosynthesis, and provides the theoretical basis for further elucidating the pathways involved in the biosynthesis of flavonoids, which will aid in better understanding their functions and potential uses.
Collapse
Affiliation(s)
- Weixin Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yi Feng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Suhang Yu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengqi Fan
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinlei Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Jiyuan Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| | - Hengfu Yin
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China; (W.L.); (Y.F.); (S.Y.); (Z.F.); (X.L.)
- Key Laboratory of Forest Genetics and Breeding, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
- Correspondence: (J.L.); (H.Y.); Tel.: +86-571-6334-6372 (J.L.)
| |
Collapse
|
21
|
Lam PY, Lui ACW, Wang L, Liu H, Umezawa T, Tobimatsu Y, Lo C. Tricin Biosynthesis and Bioengineering. FRONTIERS IN PLANT SCIENCE 2021; 12:733198. [PMID: 34512707 PMCID: PMC8426635 DOI: 10.3389/fpls.2021.733198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/28/2021] [Indexed: 05/23/2023]
Abstract
Tricin (3',5'-dimethoxyflavone) is a specialized metabolite which not only confers stress tolerance and involves in defense responses in plants but also represents a promising nutraceutical. Tricin-type metabolites are widely present as soluble tricin O-glycosides and tricin-oligolignols in all grass species examined, but only show patchy occurrences in unrelated lineages in dicots. More strikingly, tricin is a lignin monomer in grasses and several other angiosperm species, representing one of the "non-monolignol" lignin monomers identified in nature. The unique biological functions of tricin especially as a lignin monomer have driven the identification and characterization of tricin biosynthetic enzymes in the past decade. This review summarizes the current understanding of tricin biosynthetic pathway in grasses and tricin-accumulating dicots. The characterized and potential enzymes involved in tricin biosynthesis are highlighted along with discussion on the debatable and uncharacterized steps. Finally, current developments of bioengineering on manipulating tricin biosynthesis toward the generation of functional food as well as modifications of lignin for improving biorefinery applications are summarized.
Collapse
Affiliation(s)
- Pui Ying Lam
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Andy C. W. Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hongjia Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
22
|
Wang R, Lenka SK, Kumar V, Sikron-Persi N, Dynkin I, Weiss D, Perl A, Fait A, Oren-Shamir M. A Synchronized Increase of Stilbenes and Flavonoids in Metabolically Engineered Vitis vinifera cv. Gamay Red Cell Culture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7922-7931. [PMID: 34236173 DOI: 10.1021/acs.jafc.1c02119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stilbenes and flavonoids are two major health-promoting phenylpropanoid groups in grapes. Attempts to promote the accumulation of one group usually resulted in a decrease in the other. This study presents a unique strategy for simultaneously increasing metabolites in both groups in V. vinifera cv. Gamay Red grape cell culture, by overexpression of flavonol synthase (FLS) and increasing Phe availability. Increased Phe availability was achieved by transforming the cell culture with a second gene, the feedback-insensitive E. coli DAHP synthase (AroG*), and feeding them with Phe. A combined metabolomic and transcriptomic analysis reveals that the increase in both phenylpropanoid groups is accompanied by an induction of many of the flavonoid biosynthetic genes and no change in the expression levels of stilbene synthase. Furthermore, FLS overexpression with increased Phe availability resulted in higher anthocyanin levels, mainly those derived from delphinidin, due to the induction of F3'5'H. These insights may contribute to the development of grape berries with increased health benefits.
Collapse
Affiliation(s)
- Ru Wang
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Sangram Keshari Lenka
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Varun Kumar
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Noga Sikron-Persi
- French Associates Institute for Agriculture & Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel
| | - Irena Dynkin
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Avichai Perl
- Department of Fruit Tree Sciences, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| | - Aaron Fait
- French Associates Institute for Agriculture & Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 849900, Israel
| | - Michal Oren-Shamir
- Department of Ornamental Plants and Agricultural Biotechnology, Agricultural Research Organization, The Volcani Center, 68 HaMaccabim Road, P.O.B 15159 Rishon LeZion 7505101, Israel
| |
Collapse
|
23
|
Tian Y, Li Q, Rao S, Wang A, Zhang H, Wang L, Li Y, Chen J. Metabolic profiling and gene expression analysis provides insights into flavonoid and anthocyanin metabolism in poplar. TREE PHYSIOLOGY 2021; 41:1046-1064. [PMID: 33169130 DOI: 10.1093/treephys/tpaa152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Poplar, a woody perennial model, is a common and widespread tree genus. We cultivated two red leaf poplar varieties from bud mutation of Populus sp. Linn. '2025' (also known as Zhonglin 2025, L2025 for shot): Populus deltoides varieties with bright red leaves (LHY) and completely red leaves (QHY). After measuring total contents of flavonoid, anthocyanin, chlorophyll and carotenoid metabolites, a liquid chromatography-electrospray ionization-tandem mass spectrometry system was used for the relative quantification of widely targeted metabolites in leaves of three poplar varieties. A total of 210 flavonoid metabolites (89 flavones, 40 flavonols, 25 flavanones, 18 anthocyanins, 16 isoflavones, 7 dihydroflavonols, 7 chalcones, 5 proanthocyanidins and 3 other flavonoid metabolites) were identified. Compared with L2025, 48 and 8 flavonoids were more and less abundant, respectively, in LHY, whereas 51 and 9 flavonoids were more and less abundant in QHY, respectively. On the basis of a comprehensive analysis of the metabolic network, gene expression levels were analyzed by deep sequencing to screen for potential reference genes for the red leaves. Most phenylpropanoid biosynthesis pathway-involved genes were differentially expressed among the examined varieties. Gene expression analysis also revealed several potential anthocyanin biosynthesis regulators including three MYB genes. The study results provide new insights into poplar flavonoid metabolites and represent the theoretical basis for future studies on leaf coloration in this model tree species.
Collapse
Affiliation(s)
- Yuru Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Qianqian Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shupei Rao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Aike Wang
- Yucheng Institute of Agricultural Sciences, Shangqiu, Henan 476000, China
- Shangqiu Zhongxing Seedling Planting Co., Ltd, Shangqiu, Henan 476000, China
| | - Hechen Zhang
- Henan Academy of Agricultural Sciences, Horticultural Research Institute, Zhengzhou, Henan 450002, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Chinese Academy of Sciences, Institute of Botany, No.20 Nanxincun, Haidian District, Beijing 100093, China
| | - Yue Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Jinhuan Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
24
|
Houghton A, Appelhagen I, Martin C. Natural Blues: Structure Meets Function in Anthocyanins. PLANTS (BASEL, SWITZERLAND) 2021; 10:726. [PMID: 33917946 PMCID: PMC8068391 DOI: 10.3390/plants10040726] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/21/2022]
Abstract
Choices of blue food colourants are extremely limited, with only two options in the USA, synthetic blue no. 1 and no. 2, and a third available in Europe, patent blue V. The food industry is investing heavily in finding naturally derived replacements, with limited success to date. Here, we review the complex and multifold mechanisms whereby blue pigmentation by anthocyanins is achieved in nature. Our aim is to explain how structure determines the functionality of anthocyanin pigments, particularly their colour and their stability. Where possible, we describe the impact of progressive decorations on colour and stability, drawn from extensive but diverse physico-chemical studies. We also consider briefly how this understanding could be harnessed to develop blue food colourants on the basis of the understanding of how anthocyanins create blues in nature.
Collapse
Affiliation(s)
- Alan Houghton
- John Innes Centre, Department of Metabolic Biology and Biological Chemistry, Norwich Research Park, Norwich NR4 7UH, UK;
| | | | - Cathie Martin
- John Innes Centre, Department of Metabolic Biology and Biological Chemistry, Norwich Research Park, Norwich NR4 7UH, UK;
| |
Collapse
|
25
|
Mekapogu M, Vasamsetti BMK, Kwon OK, Ahn MS, Lim SH, Jung JA. Anthocyanins in Floral Colors: Biosynthesis and Regulation in Chrysanthemum Flowers. Int J Mol Sci 2020; 21:ijms21186537. [PMID: 32906764 PMCID: PMC7554973 DOI: 10.3390/ijms21186537] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022] Open
Abstract
Chrysanthemum (Chrysanthemum morifolium) is an economically important ornamental crop across the globe. As floral color is the major factor determining customer selection, manipulation of floral color has been a major objective for breeders. Anthocyanins are one of the main pigments contributing to a broad variety of colors in the ray florets of chrysanthemum. Manipulating petal pigments has resulted in the development of a vast range of floral colors. Although the candidate genes involved in anthocyanin biosynthesis have been well studied, the genetic and transcriptional control of floral color remains unclear. Despite advances in multi-omics technology, these methods remain in their infancy in chrysanthemum, owing to its large complex genome and hexaploidy. Hence, there is a need to further elucidate and better understand the genetic and molecular regulatory mechanisms in chrysanthemum, which can provide a basis for future advances in breeding for novel and diverse floral colors in this commercially beneficial crop. Therefore, this review describes the significance of anthocyanins in chrysanthemum flowers, and the mechanism of anthocyanin biosynthesis under genetic and environmental factors, providing insight into the development of novel colored ray florets. Genetic and molecular regulatory mechanisms that control anthocyanin biosynthesis and the various breeding efforts to modify floral color in chrysanthemum are detailed.
Collapse
Affiliation(s)
- Manjulatha Mekapogu
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Bala Murali Krishna Vasamsetti
- Chemical Safety Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea;
| | - Oh-Keun Kwon
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Myung-Suk Ahn
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
| | - Sun-Hyung Lim
- Division of Horticultural Biotechnology, School of Biotechnology, Hankyoung National University, Anseong 17579, Korea;
| | - Jae-A Jung
- Floriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration, Wanju 55365, Korea; (M.M.); (O.-K.K.); (M.-S.A.)
- Correspondence:
| |
Collapse
|
26
|
Qi Y, Zhou L, Han L, Zou H, Miao K, Wang Y. PsbHLH1, a novel transcription factor involved in regulating anthocyanin biosynthesis in tree peony (Paeonia suffruticosa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:396-408. [PMID: 32645590 DOI: 10.1016/j.plaphy.2020.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
Flower color is one of the most important features of ornamental plants. Anthocyanin composition and concentration are usually closely related to flower color formation. The biosynthesis of anthocyanin is regulated by a series of structural genes and regulatory genes. The basic helix-loop-helix proteins (bHLHs) are considered as one of the key transcription factors known as the regulators of anthocyanin biosynthesis. However, the bHLH transcription factor family of tree peony (Paeonia suffruticosa) has not been systematically studied in previous studies, especially for the regulation of petal pigmentation. The aim of this study was to identify bHLH genes and unravel their underlying molecular mechanism involved in the regulation of anthocyanin biosynthesis in tree peony. Based on transcriptome profiling analysis, we identified three bHLHs candidate anthocyanin regulators, PsbHLH1, PsbHLH2, and PsbHLH3. PsbHLH1-3 were phylogenetically clustered in the IIIf bHLH subgroup, which is involved in anthocyanin biosynthesis in other plant species. In addition, three bHLH proteins were localized in the nucleus and displayed transcriptional activation activity in a yeast hybrid system. Through a series of functional experiments, we further demonstrated that PsbHLH1 could transcriptionally activate the expression of PsDFR and PsANS via directly binding to their promoters. These results laid a solid foundation to better understand the regulatory mechanisms of anthocyanin biosynthesis in P. suffruticosa and to benefit molecular breeding of tree peony cultivars with novel color.
Collapse
Affiliation(s)
- Yu Qi
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Lulu Han
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Hongzhu Zou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Kun Miao
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
27
|
Iorizzo M, Curaba J, Pottorff M, Ferruzzi MG, Simon P, Cavagnaro PF. Carrot Anthocyanins Genetics and Genomics: Status and Perspectives to Improve Its Application for the Food Colorant Industry. Genes (Basel) 2020; 11:E906. [PMID: 32784714 PMCID: PMC7465225 DOI: 10.3390/genes11080906] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Purple or black carrots (Daucus carota ssp. sativus var. atrorubens Alef) are characterized by their dark purple- to black-colored roots, owing their appearance to high anthocyanin concentrations. In recent years, there has been increasing interest in the use of black carrot anthocyanins as natural food dyes. Black carrot roots contain large quantities of mono-acylated anthocyanins, which impart a measure of heat-, light- and pH-stability, enhancing the color-stability of food products over their shelf-life. The genetic pathway controlling anthocyanin biosynthesis appears well conserved among land plants; however, different variants of anthocyanin-related genes between cultivars results in tissue-specific accumulations of purple pigments. Thus, broad genetic variations of anthocyanin profile, and tissue-specific distributions in carrot tissues and organs, can be observed, and the ratio of acylated to non-acylated anthocyanins varies significantly in the purple carrot germplasm. Additionally, anthocyanins synthesis can also be influenced by a wide range of external factors, such as abiotic stressors and/or chemical elicitors, directly affecting the anthocyanin yield and stability potential in food and beverage applications. In this study, we critically review and discuss the current knowledge on anthocyanin diversity, genetics and the molecular mechanisms controlling anthocyanin accumulation in carrots. We also provide a view of the current knowledge gaps and advancement needs as regards developing and applying innovative molecular tools to improve the yield, product performance and stability of carrot anthocyanin for use as a natural food colorant.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Julien Curaba
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Marti Pottorff
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC 28081, USA; (J.C.); (M.P.); (M.G.F.)
| | - Philipp Simon
- Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706, USA;
- Vegetable Crops Research Unit, US Department of Agriculture–Agricultural Research Service, Madison, WI 53706, USA
| | - Pablo F. Cavagnaro
- National Scientific and Technical Research Council (CONICET), National Agricultural Technology Institute (INTA) E.E.A. La Consulta, Mendoza 5567, Argentina;
- Faculty of Agricultural Sciences, National University of Cuyo, Mendoza 5505, Argentina
| |
Collapse
|
28
|
Jo YD, Ryu J, Kim YS, Kang KY, Hong MJ, Choi HI, Lim GH, Kim JB, Kim SH. Dramatic Increase in Content of Diverse Flavonoids Accompanied with Down-Regulation of F-Box Genes in a Chrysanthemum ( Chrysanthemum × morifolium (Ramat.) Hemsl.) Mutant Cultivar Producing Dark-Purple Ray Florets. Genes (Basel) 2020; 11:E865. [PMID: 32751443 PMCID: PMC7464468 DOI: 10.3390/genes11080865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins (a subclass of flavonoids) and flavonoids are crucial determinants of flower color and substances of pharmacological efficacy, respectively, in chrysanthemum. However, metabolic and transcriptomic profiling regarding flavonoid accumulation has not been performed simultaneously, thus the understanding of mechanisms gained has been limited. We performed HPLC-DAD-ESI-MS (high-performance liquid chromatography coupled with photodiode array detection and electrospray ionization mass spectrometry) and transcriptome analyses using "ARTI-Dark Chocolate" (AD), which is a chrysanthemum mutant cultivar producing dark-purple ray florets, and the parental cultivar "Noble Wine" for metabolic characterization and elucidation of the genetic mechanism determining flavonoid content. Among 26 phenolic compounds identified, three cyanidins and eight other flavonoids were detected only in AD. The total amounts of diverse flavonoids were 8.0 to 10.3 times higher in AD. Transcriptome analysis showed that genes in the flavonoid biosynthetic pathway were not up-regulated in AD at the early flower stage, implying that the transcriptional regulation of the pathway did not cause flavonoid accumulation. However, genes encoding post-translational regulation-related proteins, especially F-box genes in the mutated gene, were enriched among down-regulated genes in AD. From the combination of metabolic and transcriptomic data, we suggest that the suppression of post-translational regulation is a possible mechanism for flavonoid accumulation in AD. These results will contribute to research on the regulation and manipulation of flavonoid biosynthesis in chrysanthemum.
Collapse
Affiliation(s)
- Yeong Deuk Jo
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Jaihyunk Ryu
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Ye-Sol Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Kyung-Yun Kang
- Suncheon Research Center for Natural Medicines, Suncheon 57922, Korea;
| | - Min Jeong Hong
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Hong-Il Choi
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Gah-Hyun Lim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Jin-Baek Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| | - Sang Hoon Kim
- Radiation Breeding Research Team, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea; (Y.D.J.); (J.R.); (Y.-S.K.); (M.J.H.); (H.-I.C.); (G.-H.L.); (J.-B.K.)
| |
Collapse
|
29
|
Liang CY, Rengasamy KP, Huang LM, Hsu CC, Jeng MF, Chen WH, Chen HH. Assessment of violet-blue color formation in Phalaenopsis orchids. BMC PLANT BIOLOGY 2020; 20:212. [PMID: 32397954 PMCID: PMC7218627 DOI: 10.1186/s12870-020-02402-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/22/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND Phalaenopsis represents an important cash crop worldwide. Abundant flower colors observed in Phalaenopsis orchids range from red-purple, purple, purple-violet, violet, and violet-blue. However, violet-blue orchids are less bred than are those of other colors. Anthocyanin, vacuolar pH and metal ions are three major factors influencing flower color. This study aimed to identify the factors causing the violet-blue color in Phalaenopsis flowers and to analyze whether delphinidin accumulation and blue pigmentation formation can be achieved by transient overexpression of heterologous F3'5'H in Phalaenopsis. RESULTS Cyanidin-based anthocyanin was highly accumulated in Phalaenopsis flowers with red-purple, purple, purple-violet, and violet to violet-blue color, but no true-blue color and no delphinidin was detected. Concomitantly, the expression of PeF3'H (Phalaenopsis equestrsis) was high, but that of PhF3'5'H (Phalaenopsis hybrid) was low or absent in various-colored Phalaenopsis flowers. Transient overexpression of DgF3'5'H (Delphinium grandiflorum) and PeMYB2 in a white Phalaenopsis cultivar resulted a 53.6% delphinidin accumulation and a novel blue color formation. In contrast, transient overexpression of both PhF3'5'H and PeMYB2 did not lead to delphinidin accumulation. Sequence analysis showed that the substrate recognition site 6 (SRS6) of PhF3'5'H was consistently different from DgF3'5'Hs at positions 5, 8 and 10. Prediction of molecular docking of the substrates showed a contrary binding direction of aromatic rings (B-ring) with the SRS6 domain of DgF3'5'H and PhF3'5'H. In addition, the pH values of violet-blue and purple Phalaenopsis flowers ranged from 5.33 to 5.54 and 4.77 to 5.04, respectively. Furthermore, the molar ratio of metal ions (including Al3+, Ca2+ and Fe3+) to anthocyanin in violet-blue color Phalaenopsis was 190-, 49-, and 51-fold higher, respectively, than those in purple-color Phalaenopsis. CONCLUSION Cyanidin-based anthocyanin was detected in violet-blue color Phalaenopsis and was concomitant with a high pH value and high molar ratio of Al3+, Ca2+ and Fe3+ to anthocyanin content. Enhanced expression of delphinidin is needed to produce true-blue Phalaenopsis.
Collapse
Affiliation(s)
- Che-Yu Liang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | | | - Li-Min Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chia-Chi Hsu
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Mei-Fen Jeng
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Huei Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan.
- , Nantou City, Taiwan.
| |
Collapse
|
30
|
Boutigny AL, Dohin N, Pornin D, Rolland M. Overview and detectability of the genetic modifications in ornamental plants. HORTICULTURE RESEARCH 2020; 7:11. [PMID: 32025314 PMCID: PMC6994484 DOI: 10.1038/s41438-019-0232-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 05/04/2023]
Abstract
The market of ornamental plants is extremely competitive, and for many species genetic engineering can be used to introduce original traits of high commercial interest. However, very few genetically modified (GM) ornamental varieties have reached the market so far. Indeed, the authorization process required for such plants has a strong impact on the profitability of the development of such products. Considering the numerous scientific studies using genetic modification on ornamental species of interest, a lot of transformed material has been produced, could be of commercial interest and could therefore be unintentionally released on the market. The unintentional use of GM petunia in breeding programs has indeed recently been observed. This review lists scientific publications using GM ornamental plants and tries to identify whether these plants could be detected by molecular biology tools commonly used by control laboratories.
Collapse
Affiliation(s)
- Anne-Laure Boutigny
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - Nicolas Dohin
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - David Pornin
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| | - Mathieu Rolland
- Anses, Plant Health Laboratory, Bacteriology Virology GMO Unit, 7 rue Jean Dixméras, 49044 Angers, cedex 01, France
| |
Collapse
|
31
|
Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, Chen F. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. HORTICULTURE RESEARCH 2019; 6:109. [PMID: 31666962 PMCID: PMC6804895 DOI: 10.1038/s41438-019-0193-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 08/11/2019] [Accepted: 08/14/2019] [Indexed: 05/05/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a leading flower with applied value worldwide. Developing new chrysanthemum cultivars with novel characteristics such as new flower colors and shapes, plant architectures, flowering times, postharvest quality, and biotic and abiotic stress tolerance in a time- and cost-efficient manner is the ultimate goal for breeders. Various breeding strategies have been employed to improve the aforementioned traits, ranging from conventional techniques, including crossbreeding and mutation breeding, to a series of molecular breeding methods, including transgenic technology, genome editing, and marker-assisted selection (MAS). In addition, the recent extensive advances in high-throughput technologies, especially genomics, transcriptomics, proteomics, metabolomics, and microbiomics, which are collectively referred to as omics platforms, have led to the collection of substantial amounts of data. Integration of these omics data with phenotypic information will enable the identification of genes/pathways responsible for important traits. Several attempts have been made to use emerging molecular and omics methods with the aim of accelerating the breeding of chrysanthemum. However, applying the findings of such studies to practical chrysanthemum breeding remains a considerable challenge, primarily due to the high heterozygosity and polyploidy of the species. This review summarizes the recent achievements in conventional and modern molecular breeding methods and emerging omics technologies and discusses their future applications for improving the agronomic and horticultural characteristics of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| |
Collapse
|
32
|
Chen K, Du L, Liu H, Liu Y. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco. BMC PLANT BIOLOGY 2019; 19:390. [PMID: 31500571 PMCID: PMC6734322 DOI: 10.1186/s12870-019-1999-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/29/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The primary pigments in flowers are anthocyanins, the biosynthesis of which is mainly regulated by R2R3-MYBs. Muscari armeniacum is an ornamental garden plant with deep cobalt blue flowers containing delphinidin-based anthocyanins. An anthocyanin-related R2R3-MYB MaAN2 has previously been identified in M. armeniacum flowers; here, we also characterized a novel R2R3-MYB MaMybA, to determine its function and highlight similarities and differences between MaMybA and MaAN2. RESULTS In this study, a novel anthocyanin-related R2R3-MYB gene was isolated from M. armeniacum flowers and functionally identified. A sequence alignment showed that MaMybA contained motifs typically conserved with MaAN2 and its orthologs. However, the shared identity of the entire amino acid sequence between MaMybA and MaAN2 was 43.5%. Phylogenetic analysis showed that they were both clustered into the AN2 subgroup of the R2R3-MYB family, but not in the same branch. We also identified a IIIf bHLH protein, MabHLH1, in M. armeniacum flowers. A bimolecular fluorescence complementation assay showed that MabHLH1 interacted with MaMybA or MaAN2 in vivo; a dual luciferase assay indicated that MaMybA alone or in interaction with MabHLH1 could regulate the expression of MaDFR and AtDFR, but MaAN2 required MabHLH1 to do so. When overexpressing MaMybA in Nicotiana tabacum 'NC89', the leaves, petals, anthers, and calyx of transgenic tobacco showed intense and magenta anthocyanin pigments, whereas those of OE-MaAN2 plants had lighter pigmentation. However, the ovary wall and seed skin of OE-MaMybA tobacco were barely pigmented, while those of OE-MaAN2 tobacco were reddish-purple. Moreover, overexpressing MaMybA in tobacco obviously improved anthocyanin pigmentation, compared to the OE-MaAN2 and control plants, by largely upregulating anthocyanin biosynthetic and endogenous bHLH genes. Notably, the increased transcription of NtF3'5'H in OE-MaMybA tobacco might lead to additional accumulation of delphinidin 3-rutinoside, which was barely detected in OE-MaAN2 and control plants. We concluded that the high concentration of anthocyanin and the newly produced Dp3R caused the darker color of OE-MaMybA compared to OE-MaAN2 tobacco. CONCLUSION The newly identified R2R3-MYB transcription factor MaMybA functions in anthocyanin biosynthesis, but has some differences from MaAN2; MaMybA could also be useful in modifying flower color in ornamental plants.
Collapse
Affiliation(s)
- Kaili Chen
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Lingjuan Du
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Hongli Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| | - Yali Liu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100 Shaanxi People’s Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100 Shaanxi People’s Republic of China
| |
Collapse
|
33
|
Kishi-Kaboshi M, Aida R, Sasaki K. Parsley ubiquitin promoter displays higher activity than the CaMV 35S promoter and the chrysanthemum actin 2 promoter for productive, constitutive, and durable expression of a transgene in Chrysanthemum morifolium. BREEDING SCIENCE 2019; 69:536-544. [PMID: 31598089 PMCID: PMC6776152 DOI: 10.1270/jsbbs.19036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/04/2019] [Indexed: 05/30/2023]
Abstract
The chrysanthemum (Chrysanthemum morifolium) is one of the most popular ornamental plants in the world. Genetic transformation is a promising tool for improving traits, editing genomes, and studying plant physiology. Promoters are vital components for efficient transformation, determining the level, location, and timing of transgene expression. The cauliflower mosaic virus (CaMV) 35S promoter is most frequently used in dicotyledonous plants but is less efficient in chrysanthemums than in tobacco or torenia plants. Previously, we used the parsley ubiquitin (PcUbi) promoter in chrysanthemums for the first time and analyzed its activity in transgenic calli. To expand the variety of constitutive promoters in chrysanthemums, we cloned the upstream region of the actin 2 (CmACT2) gene and compared its promoter activity with the 35S and PcUbi promoters in several organs, as well as its durability for long-term cultivation. The CmACT2 promoter has higher activity than the 35S promoter in calli but is less durable. The PcUbi promoter has the highest activity not only in calli but also in leaves, ray florets, and disk florets, and retains its activity after long-term cultivation. In conclusion, we have provided useful information and an additional type of promoter available for transgene expression in chrysanthemums.
Collapse
|
34
|
Deng C, Li S, Feng C, Hong Y, Huang H, Wang J, Wang L, Dai S. Metabolite and gene expression analysis reveal the molecular mechanism for petal colour variation in six Centaurea cyanus cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:22-33. [PMID: 31255906 DOI: 10.1016/j.plaphy.2019.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/09/2019] [Accepted: 06/13/2019] [Indexed: 06/09/2023]
Abstract
Centaurea cyanus is a popular garden plant native to Europe. Although their petals show abundant colour variations, the flavonoid profiling and the potential molecular mechanisms remain unclear. In the present study, we collected six cornflower cultivars with white, pink, red, blue, mauve and black petals. Ultra-performance liquid chromatography coupled with photodiode array and tandem mass spectrometry (UPLC-MS/MS) was used to investigate the comparative profiling of flavonoids both qualitatively and quantitatively. Ten anthocyanins, six flavones and two flavonols were separated and putatively identified. Except for white petals without any anthocyanins, both pink and red flowers contained pelargonidin derivatives, whereas blue, mauve and black petals accumulated cyanidins. The expression patterns of genes involved in the flavonoid biosynthesis were performed by real-time quantitative reverse transcription-PCR. The anthocyanin biosynthetic pathway in white petals was inhibited starting from flavanone 3-hydroxylase, resulting in the absence of anthocyanin accumulation. The open reading frame of flavonoid 3'-hydroxylase in pink and red petals was truncated; this led to loss of a haem binding site, a conserved motif in the cytochrome P450 family, and loss of conversion from dihydrokaempferol to dihydroquercetin. The significantly higher expression of structural genes corresponding to the hyper-accumulation of flavonoids in black petals may play an important role in black coloration. Remarkably, the mauve and blue petals accumulated the same cyanidin derivative but contained apigenin with different modifications on the 4' position, which may cause the coloration differences. The results obtained in this study will provide insights into the mechanisms of vivid colour diversities in cornflower.
Collapse
Affiliation(s)
- Chengyan Deng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Shanshan Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chengyong Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Hong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Jiaying Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, The Chinese Academy of Sciences, Beijing, 100093, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
35
|
Hoshino A, Mizuno T, Shimizu K, Mori S, Fukada-Tanaka S, Furukawa K, Ishiguro K, Tanaka Y, Iida S. Generation of Yellow Flowers of the Japanese Morning Glory by Engineering Its Flavonoid Biosynthetic Pathway toward Aurones. PLANT & CELL PHYSIOLOGY 2019; 60:1871-1879. [PMID: 31135027 DOI: 10.1093/pcp/pcz101] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Wild-type plants of the Japanese morning glory (Ipomoea nil) produce blue flowers that accumulate anthocyanin pigments, whereas its mutant cultivars show wide range flower color such as red, magenta and white. However, I. nil lacks yellow color varieties even though yellow flowers were curiously described in words and woodblocks printed in the 19th century. Such yellow flowers have been regarded as 'phantom morning glories', and their production has not been achieved despite efforts by breeders of I. nil. The chalcone isomerase (CHI) mutants (including line 54Y) bloom very pale yellow or cream-colored flowers conferred by the accumulation of 2', 4', 6', 4-tetrahydoroxychalcone (THC) 2'-O-glucoside. To produce yellow phantom morning glories, we introduced two snapdragon (Antirrhinum majus) genes to the 54Y line by encoding aureusidin synthase (AmAS1) and chalcone 4'-O-glucosyltransferase (Am4'CGT), which are necessary for the accumulation of aureusidin 6-O-glucoside and yellow coloration in A. majus. The transgenic plants expressing both genes exhibit yellow flowers, a character sought for many years. The flower petals of the transgenic plants contained aureusidin 6-O-glucoside, as well as a reduced amount of THC 2'-O-glucoside. In addition, we identified a novel aurone compound, aureusidin 6-O-(6″-O-malonyl)-glucoside, in the yellow petals. A combination of the coexpression of AmAS1 and Am4'CGT and suppression of CHI is an effective strategy for generating yellow varieties in horticultural plants.
Collapse
Affiliation(s)
- Atsushi Hoshino
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Takayuki Mizuno
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki, Japan
| | - Keiichi Shimizu
- Faculty of Agriculture, Kagoshima University, Kagoshima, Japan
| | - Shoko Mori
- Suntory Foundation for Life Sciences, Seika, Kyoto, Japan
| | | | - Kazuhiko Furukawa
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
| | - Kanako Ishiguro
- Research Institute, Suntory Global Innovation Center Ltd, Seika, Kyoto, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, Seika, Kyoto, Japan
| | - Shigeru Iida
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Japan
| |
Collapse
|
36
|
Analysis of Flavonoid Metabolites in Buckwheat Leaves Using UPLC-ESI-MS/MS. Molecules 2019; 24:molecules24071310. [PMID: 30987158 PMCID: PMC6479795 DOI: 10.3390/molecules24071310] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/22/2022] Open
Abstract
Flavonoids from plants are particularly important in our diet. Buckwheat is a special crop that is rich in flavonoids. In this study, four important buckwheat varieties, including one tartary buckwheat and three common buckwheat varieties, were selected as experimental materials. The total flavonoid content of leaves from red-flowered common buckwheat was the highest, followed by tartary buckwheat leaves. A total of 182 flavonoid metabolites (including 53 flavone, 37 flavonol, 32 flavone C-glycosides, 24 flavanone, 18 anthocyanins, 7 isoflavone, 6 flavonolignan, and 5 proanthocyanidins) were identified based on Ultra Performance Liquid Chromatography–Electrospray Ionization–Tandem Mass Spectrometry (UPLC-ESI-MS/MS) system. Through clustering analysis, principal component analysis (PCA), and orthogonal signal correction and partial least squares-discriminant analysis (OPLS-DA), different samples were clearly separated. Considerable differences were observed in the flavonoid metabolites between tartary buckwheat leaves and common buckwheat leaves, and both displayed unique metabolites with important biological functions. This study provides new insights into the differences of flavonoid metabolites between tartary buckwheat and common buckwheat leaves and provides theoretical basis for the sufficient utilization of buckwheat.
Collapse
|
37
|
Han F, Cui H, Zhang B, Liu X, Yang L, Zhuang M, Lv H, Li Z, Wang Y, Fang Z, Song J, Zhang Y. Map-based cloning and characterization of BoCCD4, a gene responsible for white/yellow petal color in B. oleracea. BMC Genomics 2019; 20:242. [PMID: 30909886 PMCID: PMC6434876 DOI: 10.1186/s12864-019-5596-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Brassica oleracea exhibits extensive phenotypic diversity. As an important trait, petal color varies among different B. oleracea cultivars, enabling the study of the genetic basis of this trait. In a previous study, the gene responsible for petal color in B. oleracea was mapped to a 503-kb region on chromosome 3, but the candidate gene has not yet been identified. Results In the present study, we report that the candidate gene was further delineated to a 207-kb fragment. BoCCD4, a homolog of the Arabidopsis carotenoid cleavage dioxygenase 4 (CCD4) gene, was selected for evaluation as the candidate gene. Sequence analysis of the YL-1 inbred line revealed three insertions/deletions and 34 single-nucleotide polymorphisms in the coding region of BoCCD4. Functional complementation showed that BoCCD4 from the white-petal inbred line 11–192 can rescue the yellow-petal trait of YL-1. Expression analysis revealed that BoCCD4 is exclusively expressed in petal tissue of white-petal plants, and phylogenetic analysis indicated that CCD4 homologs may share evolutionarily conserved roles in carotenoid metabolism. These findings demonstrate that BoCCD4 is responsible for white/yellow petal color variation in B. oleracea. Conclusions This study demonstrated that function loss of BoCCD4, a homolog of Arabidopsis CCD4, is responsible for yellow petal color in B. oleracea. Electronic supplementary material The online version of this article (10.1186/s12864-019-5596-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fengqing Han
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Huilin Cui
- College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Bin Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Xiaoping Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Limei Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Mu Zhuang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Honghao Lv
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhansheng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Yong Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Zhiyuan Fang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China
| | - Jianghua Song
- College of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yangyong Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, #12 Zhong Guan Cun Nandajie Street, Beijing, 100081, China.
| |
Collapse
|
38
|
Kasajima I. Measuring plant colors. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:63-75. [PMID: 31768106 PMCID: PMC6847779 DOI: 10.5511/plantbiotechnology.19.0322a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/22/2019] [Indexed: 06/01/2023]
Abstract
Plant colors such as 'green leaf' and 'red apple' are often described based on human sense, even in scientific papers. On the other hand, colors are measured based on colorimetric principles in some papers, especially in the studies of horticultural plants. The science of color measurements ('colorimetry') is not included in any of the popular lectures in schools and universities, thus the principles of color measurements would not be understood by most researchers. The present review will overview the principles of colorimetry, and will introduce colorimetric methods which can be used for scientific measurement of plant colors. That is to say, the reflection spectrum of visible light (380-780 nm) is measured at 5-nm intervals on the surface of leaves or petals in 'Spectrometric Color Measurement' (SCM). The spectral data is multiplied with RGB or XYZ color matching functions and integrated to obtain RGB or XYZ intensities. Alternatively, approximate RGB values are directly obtained in 'Photographic Color Measurement' (PCM). RGB/XYZ intensities are further calculated to obtain 'hue', 'saturation', and 'lightness', the three factors of colors. Colorimetric insights into genetic regulations (such as MYB gene) and physiological regulations (such as alexandrite effect) of plant colors are also described.
Collapse
Affiliation(s)
- Ichiro Kasajima
- Agri-Innovation Research Center, Iwate University, 3-18-8 Ueda, Morioka, Iwate 020-8550, Japan
| |
Collapse
|
39
|
Effects on the color, taste, and anthocyanins stability of blueberry wine by different contents of mannoprotein. Food Chem 2018; 279:63-69. [PMID: 30611513 DOI: 10.1016/j.foodchem.2018.11.139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022]
Abstract
Blueberry wine is a new fruit wine with good taste and rich nutrition, but color change and anthocyanins (ACNs) content readily decrease during the production process. The effects of different content (0.2 g/L, 0.25 g/L, and 0.3 g/L) of mannoprotein (MP) on the blueberry wine were investigated in this study. The result showed that MP treatment inhibited the decrease in ACN content, reduced the content of total acid, increased the content of alcohol content in blueberry wine, maintained the color and improved the taste of blueberry wine. In addition, the effect was more pronounced as the MP concentration increased, with the optimum effect at 0.3 g/L. However, MP has no significant effect on the total sugar in blueberry wine. The results arising from this study provide new insights into blueberry wine production, by which treatment with MP maintain the color and ACNs contents, and improve the taste of blueberry wine.
Collapse
|
40
|
Okitsu N, Matsui K, Horikawa M, Sugahara K, Tanaka Y. Identification and Characterization of Novel Nemophila menziesii Flavone Glucosyltransferases that Catalyze Biosynthesis of Flavone 7,4'-O-Diglucoside, a Key Component of Blue Metalloanthocyanins. PLANT & CELL PHYSIOLOGY 2018; 59:2075-2085. [PMID: 29986079 DOI: 10.1093/pcp/pcy129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 05/23/2023]
Abstract
The brilliant blue color of the Nemophila menziesii flower is derived from metalloanthocyanin, which consists of anthocyanin {petunidin 3-O-[6-O-(trans-p-coumaroyl)-β-glucoside]-5-O-[6-O-(malonyl)-β-glucoside]}, flavone [apigenin 7-O-β-glucoside-4'-O-(6-O-malonyl)-O-β-glucoside] and metal ions (Mg2+, Fe3+). Although the two glucosyl moieties at the apigenin 7-O and 4'-O positions are essential for metalloanthocyanin formation, the mechanism of glucosylation has not yet been clarified. In this study, we used crude protein extract prepared from N. menziesii petals to determine that apigenin is sequentially glucosylated by the catalysis of UDP-glucose:flavone 4'-O-glucosyltrasferase (F4'GT) and UDP-glucose:flavone 4'-O-glucoside 7-O-glucosyltransferase (F4'G7GT). We identified 150 contigs exhibiting homology with a UDP-glucose-dependent GT in the N. menziesii petal transcriptome and isolated 24 putative full-length GT cDNAs which were then subjected to functional analysis. Two GT cDNAs, NmF4'GT and NmF4'G7GT, which are highly expressed during the early stages of petal development and rarely in leaves, were shown to encode F4'GT and F4'G7GT activities, respectively. Biochemical characterization of the recombinant enzymes revealed that NmF4'GT specifically catalyzed 4'-glucosylation of flavonoids and that NmF4'G7GT specifically catalyzed 7-glucosylation of flavone 4'-O-glucosides and flavones. Apigenin 7,4'-O-diglucoside was efficiently synthesized from apigenin in the presence of recombinant NmF4'GT and NmF4'G7GT. Transgenic tobacco BY-2 cells expressing NmF4'GT and NmF4'G7GT converted apigenin into apigenin 7,4'-O-diglucoside, confirming their activities in vivo. Based on these results, we conclude that these two GTs act co-ordinately to catalyze apigenin 7,4'-O-diglucoside biosynthesis in N. menziesii.
Collapse
Affiliation(s)
- Naoko Okitsu
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Keisuke Matsui
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Manabu Horikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Kohtaro Sugahara
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd, 8-1-1 Seikadai, Seika-cho, Soraku-Gun, Kyoto, Japan
| |
Collapse
|
41
|
Wu Q, Li PC, Zhang HJ, Feng CY, Li SS, Yin DD, Tian J, Xu WZ, Wang LS. Relationship between the flavonoid composition and flower colour variation in Victoria. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:674-681. [PMID: 29683547 DOI: 10.1111/plb.12835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/17/2018] [Indexed: 05/07/2023]
Abstract
Victoria (Nymphaeaceae), an annual or perennial aquatic plant genus, contains only two species: V. amazonica (Poepp.) J. C. Sowerby and V. cruziana A. D. Orb. Both species have large floating leaves and variable flower colour. Both Victoria species are night bloomers, which have white petals on the first blooming night that then turn pink or ruby red on the second blooming day. The mechanism of the colour change of Victoria petals during anthesis is still unclear. In this study, flavonoids in Victoria petals of both species were evaluated and quantified by high-performance liquid chromatography with photodiode array detection (HPLC-DAD) and by ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) for the first time. In total, 14 flavonoids were detected in Victoria petals, including 4 anthocyanins and 10 flavonols. The flavonoid compositions differed across the two species, resulting in different colours between the inner and outer petals. With increased anthocyanin content across blooming days, the colour of Victoria flowers changed over time. The results of this study will improve understanding of the chemical mechanism of colour formation and lay the foundation for selective colour breeding in Victoria.
Collapse
Affiliation(s)
- Q Wu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - P-C Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - H-J Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - C-Y Feng
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - S-S Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - D-D Yin
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| | - J Tian
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - W-Z Xu
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - L-S Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Agriculture, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Okitsu N, Mizuno T, Matsui K, Choi SH, Tanaka Y. Molecular cloning of flavonoid biosynthetic genes and biochemical characterization of anthocyanin O-methyltransferase of Nemophila menziesii Hook. and Arn. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:9-16. [PMID: 31275032 PMCID: PMC6543731 DOI: 10.5511/plantbiotechnology.18.0104a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/04/2018] [Indexed: 05/27/2023]
Abstract
Blue flower color of Nemophila menziesii Hook. and Arn. is derived from a metalloanthocyanin, nemophilin, which comprises petunidin-3-O-[6-O-(trans-p-coumaroyl)-β-glucoside]-5-O-[6-O-(malonyl)-β-glucoside], apigenin-7-O-β-glucoside-4'-O-(6-O-malonyl)-β-glucoside, and Mg2+ and Fe3+ ions. The flavonoid biosynthetic pathway of nemophilin has not yet been characterized. RNA-Seq analysis of the petals yielded 61,491 contigs. These were searched using BLAST against petunia or torenia flavonoid biosynthetic proteins, which identified 11 putative full-length protein sequences belonging to the flavonoid biosynthetic pathway. RT-PCR using primers designed on the basis of these sequences yielded 14 sequences. Spatio-temporal transcriptome analysis indicated that genes involved in the early part of the pathway are strongly expressed during early-petal development and that those in the late part at late-flower opening stages, but they are rarely expressed in leaves. Flavanone 3-hydroxylase and flavonoid 3',5'-hydroxylase cDNAs were successfully expressed in yeast to confirm their activities. Recombinant anthocyanin O-methyltransferase cDNA (NmAMT6) produced using Escherichia coli was subjected to biochemical characterization. Km of NmAMT6 toward delphinidin 3-O-glucoside was 22 µM, which is comparable with Km values of anthocyanin O-methyltransferases from other plants. With delphinidin 3-O-glucoside as substrate, NmAMT6 almost exclusively yielded petunidin 3-O-glucoside rather than malvidin 3-O-glucoside. This specificity is consistent with the anthocyanin composition of Nemophila petals.
Collapse
Affiliation(s)
- Naoko Okitsu
- Research Institute, Suntory Global Innovation Center Ltd., Soraku-Gun, Kyoto 619-0284, Japan
| | - Takayuki Mizuno
- Department of Botany, National Museum of Nature and Science, Tsukuba, Ibaraki 305-0005, Japan
| | - Keisuke Matsui
- Research Institute, Suntory Global Innovation Center Ltd., Soraku-Gun, Kyoto 619-0284, Japan
| | - Sun Hee Choi
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd., Soraku-Gun, Kyoto 619-0284, Japan
| |
Collapse
|
43
|
Fu W, Chen D, Pan Q, Li F, Zhao Z, Ge X, Li Z. Production of red-flowered oilseed rape via the ectopic expression of Orychophragmus violaceus OvPAP2. PLANT BIOTECHNOLOGY JOURNAL 2018; 16. [PMID: 28640973 PMCID: PMC5787836 DOI: 10.1111/pbi.12777] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Oilseed rape (Brassica napus L.), which has yellow flowers, is both an important oil crop and a traditional tourism resource in China, whereas the Orychophragmus violaceus, which has purple flowers, likely possesses a candidate gene or genes to alter the flower colour of oilseed rape. A previously established B. napus line has a particular pair of O. violaceus chromosomes (M4) and exhibits slightly red petals. In this study, the transcriptomic analysis of M4, B. napus (H3), and O. violaceus with purple petals (OvP) and with white petals (OvW) revealed that most anthocyanin biosynthesis genes were up-regulated in both M4 and OvP. Read assembly and sequence alignment identified a homolog of AtPAP2 in M4, which produced the O. violaceus transcript (OvPAP2). The overexpression of OvPAP2 via the CaMV35S promoter in Arabidopsis thaliana led to different levels of anthocyanin accumulation in most organs, including the petals. However, the B. napus overexpression plants showed anthocyanin accumulation primarily in the anthers, but not the petals. However, when OvPAP2 was driven by the petal-specific promoter XY355, the transgenic B. napus plants produced red anthers and red petals. The results of metabolomic experiments showed that specific anthocyanins accumulated to high levels in the red petals. This study illustrates the feasibility of producing red-flowered oilseed rape, thereby enhancing its ornamental value, via the ectopic expression of the OvPAP2 gene. Moreover, the practical application of this study for insect pest management in the crop is discussed.
Collapse
Affiliation(s)
- Wenqin Fu
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Daozong Chen
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Qi Pan
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Fengfeng Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zhigang Zhao
- Qinghai Academy of Agricultural and Forestry SciencesQinghai UniversityXiningChina
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zaiyun Li
- National Key Laboratory of Crop Genetic ImprovementNational Center of Oil Crop Improvement (Wuhan)College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
44
|
Ohmiya A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. BREEDING SCIENCE 2018; 68:119-127. [PMID: 29681754 PMCID: PMC5903973 DOI: 10.1270/jsbbs.17075] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/14/2017] [Indexed: 05/21/2023]
Abstract
Chrysanthemum (Chrysanthemum morifolium Ramat.) is one of the most important floricultural crops in the world. Although the origin of modern chrysanthemum cultivars is uncertain, several species belonging to the family Asteraceae are considered to have been integrated during the long history of breeding. The flower color of ancestral species is limited to yellow, pink, and white, and is derived from carotenoids, anthocyanins, and the absence of both pigments, respectively. A wide range of flower colors, including purplish-red, orange, red, and dark red, has been developed by increasing the range of pigment content or the combination of both pigments. Recently, green-flowered cultivars containing chlorophylls in their ray petals have been produced, and have gained popularity. In addition, blue/violet flowers have been developed using a transgenic approach. Flower color is an important trait that influences the commercial value of chrysanthemum cultivars. Understanding the molecular mechanisms that regulate flower pigmentation may provide important implications for the rationale manipulation of flower color. This review describes the pigment composition, genetics, and molecular basis of ray petal color formation in chrysanthemum cultivars.
Collapse
|
45
|
Okitsu N, Noda N, Chandler S, Tanaka Y. Flower Color and Its Engineering by Genetic Modification. HANDBOOK OF PLANT BREEDING 2018. [DOI: 10.1007/978-3-319-90698-0_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
46
|
Noda N. Recent advances in the research and development of blue flowers. BREEDING SCIENCE 2018; 68:79-87. [PMID: 29681750 PMCID: PMC5903984 DOI: 10.1270/jsbbs.17132] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/18/2017] [Indexed: 05/22/2023]
Abstract
Flower color is the most important trait in the breeding of ornamental plants. In the floriculture industry, however, bluish colored flowers of desirable plants have proved difficult to breed. Many ornamental plants with a high production volume, such as rose and chrysanthemum, lack the key genes for producing the blue delphinidin pigment or do not have an intracellular environment suitable for developing blue color. Recently, it has become possible to incorporate a blue flower color trait through progress in molecular biological analysis of pigment biosynthesis genes and genetic engineering. For example, introduction of the F3'5'H gene encoding flavonoid 3',5'-hydroxylase can produce delphinidin in various flowers such as roses and carnations, turning the flower color purple or violet. Furthermore, the world's first blue chrysanthemum was recently produced by introducing the A3'5'GT gene encoding anthocyanin 3',5'-O-glucosyltransferase, in addition to F3'5'H, into the host plant. The B-ring glucosylated delphinidin-based anthocyanin that is synthesized by the two transgenes develops blue coloration by co-pigmentation with colorless flavone glycosides naturally present in the ray floret of chrysanthemum. This review focuses on the biotechnological efforts to develop blue flowers, and describes future prospects for blue flower breeding and commercialization.
Collapse
|
47
|
Watanabe K, Oda-Yamamizo C, Sage-Ono K, Ohmiya A, Ono M. Overexpression of carotenogenic genes in the Japanese morning glory Ipomoea ( Pharbitis) nil. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2017; 34:177-185. [PMID: 31275025 PMCID: PMC6543692 DOI: 10.5511/plantbiotechnology.17.1016a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/16/2017] [Indexed: 06/09/2023]
Abstract
Japanese morning glory, Ipomoea nil, has several coloured flowers except yellow, because it can accumulate only trace amounts of carotenoids in the petal. To make the petal yellow with carotenoids, we introduced five carotenogenic genes (geranylgeranyl pyrophosphate synthase, phytoene synthase, lycopene β-cyclase and β-ring hydroxylase from Ipomoea obscura var. lutea and bacterial phytoene desaturase from Pantoea ananatis) to white-flowered I. nil cv. AK77 with a petal-specific promoter by Rhizobium (Agrobacterium)-mediated transformation method. We succeeded to produce transgenic plants overexpressing carotenogenic genes. In the petal of the transgenic plants, mRNA levels of the carotenogenic genes were 10 to 1,000 times higher than those of non-transgenic control. The petal colour did not change visually; however, carotenoid concentration in the petal was increased up to about ten-fold relative to non-transgenic control. Moreover, the components of carotenoids in the petal were diversified, in particular, several β-carotene derivatives, such as zeaxanthin and neoxanthin, were newly synthesized. This is the first report, to our knowledge, of changing the component and increasing the amount of carotenoid in petals that lack ability to biosynthesize carotenoids.
Collapse
Affiliation(s)
- Kenta Watanabe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Chihiro Oda-Yamamizo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba,Ibaraki 305-0852, Japan
| | - Kimiyo Sage-Ono
- Gene Research Center, Tsukuba Plant Innovation Research Center (T-PIRC), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Akemi Ohmiya
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba,Ibaraki 305-0852, Japan
| | - Michiyuki Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Gene Research Center, Tsukuba Plant Innovation Research Center (T-PIRC), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
48
|
‘True blue’ chrysanthemum flowers produced with genetic engineering. Nature 2017. [DOI: 10.1038/nature.2017.22365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Noda N, Yoshioka S, Kishimoto S, Nakayama M, Douzono M, Tanaka Y, Aida R. Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism. SCIENCE ADVANCES 2017; 3:e1602785. [PMID: 28782017 PMCID: PMC5529055 DOI: 10.1126/sciadv.1602785] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 06/16/2017] [Indexed: 05/21/2023]
Abstract
Various colored cultivars of ornamental flowers have been bred by hybridization and mutation breeding; however, the generation of blue flowers for major cut flower plants, such as roses, chrysanthemums, and carnations, has not been achieved by conventional breeding or genetic engineering. Most blue-hued flowers contain delphinidin-based anthocyanins; therefore, delphinidin-producing carnation, rose, and chrysanthemum flowers have been generated by overexpression of the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the key enzyme for delphinidin biosynthesis. Even so, the flowers are purple/violet rather than blue. To generate true blue flowers, blue pigments, such as polyacylated anthocyanins and metal complexes, must be introduced by metabolic engineering; however, introducing and controlling multiple transgenes in plants are complicated processes. We succeeded in generating blue chrysanthemum flowers by introduction of butterfly pea UDP (uridine diphosphate)-glucose:anthocyanin 3',5'-O-glucosyltransferase gene, in addition to the expression of the Canterbury bells F3'5'H. Newly synthesized 3',5'-diglucosylated delphinidin-based anthocyanins exhibited a violet color under the weakly acidic pH conditions of flower petal juice and showed a blue color only through intermolecular association, termed "copigmentation," with flavone glucosides in planta. Thus, we achieved the development of blue color by a two-step modification of the anthocyanin structure. This simple method is a promising approach to generate blue flowers in various ornamental plants by metabolic engineering.
Collapse
Affiliation(s)
- Naonobu Noda
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
- Corresponding author.
| | - Satoshi Yoshioka
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| | - Sanae Kishimoto
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| | - Masayoshi Nakayama
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| | - Mitsuru Douzono
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Limited, Suntory World Research Center, 8-1-1 Seikadai, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan
| | - Ryutaro Aida
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization, 2-1 Fujimoto, Tsukuba, Ibaraki 305-0852, Japan
| |
Collapse
|
50
|
Kasajima I, Ohtsubo N, Sasaki K. Combination of Cyclamen persicum Mill. floral gene promoters and chimeric repressors for the modification of ornamental traits in Torenia fournieri Lind. HORTICULTURE RESEARCH 2017; 4:17008. [PMID: 28446955 PMCID: PMC5386234 DOI: 10.1038/hortres.2017.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 05/24/2023]
Abstract
Although chimeric repressors such as the Arabidopsis TCP3 repressor are known to have significant effects on flower morphology and color, their cellular-level effects on flower petals are not understood. The promoter sequences of the genes expressed in the flowers of cyclamen, a representative potted flower grown during the winter season, are also unknown. Here, we isolated eight promoters from cyclamen genes that are reportedly expressed in the petals. These promoters were then fused to four chimeric repressors and introduced into the model flower torenia to screen for effective combinations of promoters and repressors for flower breeding. As expected, some of the constructs altered flower phenotypes upon transformation. We further analyzed the effects of chimeric repressors at the cellular level. We observed that complicated petal and leaf serrations were accompanied by excessive vascular branching. Dichromatism in purple anthocyanin was inferred to result in bluish flowers, and imbalanced cell proliferation appeared to result in epinastic flowers. Thus, the genetic constructs and phenotypic changes described in this report will benefit the future breeding and characterization of ornamental flowers.
Collapse
Affiliation(s)
- Ichiro Kasajima
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8519, Japan
| | - Norihiro Ohtsubo
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8519, Japan
| | - Katsutomo Sasaki
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Ibaraki 305-8519, Japan
| |
Collapse
|