1
|
Xie J, Yang L, Hu W, Song J, Kuang L, Huang Y, Liu D, Liu Y. The CsMYB44-csi-miR0008-CsCER1 module regulates cuticular wax biosynthesis and drought tolerance in citrus. THE NEW PHYTOLOGIST 2025; 246:1757-1779. [PMID: 40149021 DOI: 10.1111/nph.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025]
Abstract
Cuticular wax covering aboveground organs serves as the first line of defense shielding plants from nonstomatal water loss and diverse environmental stresses. While there have been several wax-related genes identified, the molecular mechanisms responsible for the control of wax biosynthesis remain poorly understood in citrus, particularly at the posttranscriptional level. Here, we demonstrated that the CsMYB44-csi-miR0008-CsCER1 module is responsible for regulating drought tolerance in citrus through its control of cuticular wax biosynthesis. In this study, microRNA (miRNA) sequencing analyses of 'Newhall' navel oranges and the wax-deficient 'Ganqi 3' mutant variety led to the identification of a novel cuticular wax biosynthesis-related miRNA, csi-miR0008. csi-miR0008 suppresses the expression of CsCER1, an aldehyde decarbonylase-encoding gene associated with n-alkane biosynthesis. The leaves of csi-miR0008-silencing and CsCER1-overexpressing plants exhibited increases in total wax levels, with particularly pronounced increases in n-alkane levels, contributing to enhanced drought tolerance. csi-miR0008-overexpressing and CsCER1-silencing plants exhibited the opposite phenotypes. CsMYB44 was confirmed to promote wax accumulation by directly inhibiting the expression of csi-miR0008. Taken together, our study offers new insight into the mechanisms responsible for the posttranscriptional control of citrus cuticular wax biosynthesis, while also providing a foundation for the breeding of novel citrus varieties exhibiting enhanced drought tolerance.
Collapse
Affiliation(s)
- Jingheng Xie
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Li Yang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wei Hu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jie Song
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liuqing Kuang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingjie Huang
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Dechun Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yong Liu
- Department of Pomology, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
2
|
Niu F, Liu Z, Bai J, Liu Y, Yuan S, Zhai N, Geng Q, Hu L, Zhang L, Gao X, Liu J, Zhao C, Zhang L, Song X. TaFAR9 and TaFAR10 synergistically regulate fertility conversion of photo-thermo-sensitive genic male sterility lines in wheat by modulating ROS homeostasis. Int J Biol Macromol 2024; 285:138269. [PMID: 39638190 DOI: 10.1016/j.ijbiomac.2024.138269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
Photo-thermo-sensitive genic male sterility (PTGMS), which exhibits varying fertility levels under different environmental conditions, is a crucial method for heterosis utilization in wheat. However, the mechanisms underlying fertility conversion remain unclear. In the study, three BS type PTGMS lines were analyzed to study fertility conversion characteristics. The results indicated that the fertility conversion occurred during meiosis and was accompanied by an increase in reactive oxygen species (ROS) under a sterile environment. TaFAR9 encoding a novel fatty acyl CoA reductase was identified using transcriptome sequencing. Expression analysis suggested that TaFAR9 was localized in the endoplasmic reticulum (ER), with high expression levels in anthers. Furthermore, the down-regulation of TaFAR9 expression displayed characteristics of male sterility, accompanied by the accumulation of ROS. Cytological analysis revealed abnormal development in the anther and pollen walls of TaFAR9-silenced lines. Additionally, TaFAR9 and TaFAR10 were confirmed to physically interact using molecular docking simulation, yeast two-hybrid, luciferase complementation, and bimolecular fluorescence complementation assays. The reduced expression of TaFAR10 also exhibited male sterility and ROS burst. Moreover, the co-silencing of TaFAR9 and TaFAR10 produced sterility phenotypes that were similar to those observed when silencing TaFAR9 or TaFAR10 individually. Transcriptome analysis suggested that the ROS burst in BSMV: TaFAR9/10 anthers can result in cellular metabolic disorders. These findings indicate that TaFAR9 and TaFAR10 may form heterodimers that synergistically regulate fertility conversion in PTGMS lines by modulating ROS metabolism. And this study offers a fresh insight into the regulatory processes involved in fertility conversion in PTGMS lines.
Collapse
Affiliation(s)
- Fuqiang Niu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zihan Liu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jianfang Bai
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yongjie Liu
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Shaohua Yuan
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Nuo Zhai
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qiang Geng
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingling Hu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Zhang
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoran Gao
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jinke Liu
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changping Zhao
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Liping Zhang
- Beijing Key Laboratory of Molecular Genetics in Hybrid Wheat, Institute of Hybrid Wheat Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Zhou D, Ding M, Wen S, Tian Q, Zhang X, Fang Y, Xue D. Characterization of the Fatty Acyl-CoA Reductase (FAR) Gene Family and Its Response to Abiotic Stress in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1010. [PMID: 38611539 PMCID: PMC11013768 DOI: 10.3390/plants13071010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024]
Abstract
Fatty acyl-CoA reductase (FAR) is an important NADPH-dependent enzyme that can produce primary alcohol from fatty acyl-CoA or fatty acyl-carrier proteins as substrates. It plays a pivotal role in plant growth, development, and stress resistance. Herein, we performed genome-wide identification and expression analysis of FAR members in rice using bioinformatics methods. A total of eight OsFAR genes were identified, and the OsFARs were comprehensively analyzed in terms of phylogenetic relationships, duplication events, protein motifs, etc. The cis-elements of the OsFARs were predicted to respond to growth and development, light, hormones, and abiotic stresses. Gene ontology annotation analysis revealed that OsFAR proteins participate in biological processes as fatty acyl-CoA reductase during lipid metabolism. Numerous microRNA target sites were present in OsFARs mRNAs. The expression analysis showed that OsFARs were expressed at different levels during different developmental periods and in various tissues. Furthermore, the expression levels of OsFARs were altered under abiotic stresses, suggesting that FARs may be involved in abiotic stress tolerance in rice. The findings presented here serve as a solid basis for further exploring the functions of OsFARs.
Collapse
Affiliation(s)
- Danni Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (D.Z.); (M.D.); (S.W.); (Q.T.); (X.Z.)
| | - Mingyu Ding
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (D.Z.); (M.D.); (S.W.); (Q.T.); (X.Z.)
| | - Shuting Wen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (D.Z.); (M.D.); (S.W.); (Q.T.); (X.Z.)
| | - Quanxiang Tian
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (D.Z.); (M.D.); (S.W.); (Q.T.); (X.Z.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (D.Z.); (M.D.); (S.W.); (Q.T.); (X.Z.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Yunxia Fang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (D.Z.); (M.D.); (S.W.); (Q.T.); (X.Z.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (D.Z.); (M.D.); (S.W.); (Q.T.); (X.Z.)
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
4
|
Moy A, Czajka K, Michael P, Nkongolo K. Gene expression profiling of Jack Pine (Pinus banksiana) under copper stress: Identification of genes associated with copper resistance. PLoS One 2024; 19:e0296027. [PMID: 38452110 PMCID: PMC10919686 DOI: 10.1371/journal.pone.0296027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/05/2023] [Indexed: 03/09/2024] Open
Abstract
Understanding the genetic response of plants to copper stress is a necessary step to improving the utility of plants for environmental remediation and restoration. The objectives of this study were to: 1) characterize the transcriptome of Jack Pine (Pinus banksiana) under copper stress, 2) analyze the gene expression profile shifts of genotypes exposed to copper ion toxicity, and 3) identify genes associated with copper resistance. Pinus banksiana seedlings were treated with 10 mmoles of copper and screened in a growth chamber. There were 6,213 upregulated and 29,038 downregulated genes expressed in the copper resistant genotypes compared to the susceptible genotypes at a high stringency based on the false discovery rate (FDR). Overall, 25,552 transcripts were assigned gene ontology. Among the top upregulated genes, the response to stress, the biosynthetic process, and the response to chemical stimuli terms represented the highest proportion of gene expression for the biological processes. For the molecular function category, the majority of expressed genes were associated with nucleotide binding followed by transporter activity, and kinase activity. The majority of upregulated genes were located in the plasma membrane while half of the total downregulated genes were associated with the extracellular region. Two candidate genes associated with copper resistance were identified including genes encoding for heavy metal-associated isoprenylated plant proteins (AtHIP20 and AtHIP26) and a gene encoding the pleiotropic drug resistance protein 1 (NtPDR1). This study represents the first report of transcriptomic responses of a conifer species to copper ions.
Collapse
Affiliation(s)
- Alistar Moy
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Karolina Czajka
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Paul Michael
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| | - Kabwe Nkongolo
- Biomolecular Sciences Program, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
- Department of Biology, School of Natural Sciences, Laurentian University, Sudbury, Ontario, Canada
| |
Collapse
|
5
|
Han AR, Choi E, Park J, Jo SH, Hong MJ, Kim JB, Ryoo GH, Jin CH. Comparison of Policosanol Profiles of the Sprouts of Wheat Mutant Lines and the Effect of Differential LED Lights on Selected Lines. PLANTS (BASEL, SWITZERLAND) 2023; 12:3377. [PMID: 37836116 PMCID: PMC10574449 DOI: 10.3390/plants12193377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Policosanols (PCs) are long-chain linear aliphatic alcohols that are present in the primary leaves of cereal crops, such as barley and wheat, sugar cane wax, and beeswax. PCs have been used as a nutraceutical for improving hyperlipidemia and hypercholesterolemia. However, the PC content in mutant wheat lines has not been investigated. To select highly functional wheat sprouts with a high content of PCs in wheat mutant lines developed via gamma-irradiated mutation breeding, we cultivated the sprouts of wheat mutant lines in a growth chamber with white LED light (6000 K) and analyzed the PC content in these samples using GC-MS. We studied the PC content in 91 wheat sprout samples: the original variety (Woori-mil × D-7; WS01), commercially available cv. Geumgang (WS87) and cv. Cheongwoo (WS91), and mutant lines (WS02-WS86 and WS88-WS90) developed from WS01 and WS87. Compared to WS01, 18 mutant lines exhibited a high total PC content (506.08-873.24 mg/100 g dry weight). Among them, the top 10 mutant lines were evaluated for their PC production after cultivating under blue (440 nm), green (520 nm), and red (660 nm) LED light irradiation; however, these colored LED lights reduced the total PC production by 35.8-49.7%, suggesting that the cultivation with white LED lights was more efficient in promoting PCs' yield, compared to different LED lights. Therefore, our findings show the potential of radiation-bred wheat varieties as functional foods against hyperlipidemia and obesity and the optimal light conditions for high PC production.
Collapse
Affiliation(s)
- Ah-Reum Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si 56212, Republic of Korea; (E.C.); (J.P.); (S.-H.J.); (M.J.H.); (J.-B.K.); (G.-H.R.); (C.H.J.)
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Guan L, Xia D, Hu N, Zhang H, Wu H, Jiang Q, Li X, Sun Y, Wang Y, Wang Z. OsFAR1 is involved in primary fatty alcohol biosynthesis and promotes drought tolerance in rice. PLANTA 2023; 258:24. [PMID: 37344696 DOI: 10.1007/s00425-023-04164-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/17/2023] [Indexed: 06/23/2023]
Abstract
MAIN CONCLUSION OsFAR1 encodes a fatty acyl-CoA reductase involved in biosynthesis of primary alcohols and plays an important role in drought stress response in rice. Cuticular waxes cover the outermost surface of terrestrial plants and contribute to inhibiting nonstomatal water loss and improving plant drought resistance. Primary alcohols are the most abundant components in the leaf cuticular waxes of rice (Oryza sativa), but the biosynthesis and regulation of primary alcohol remain largely unknown in rice. Here, we identified and characterized an OsFAR1 gene belonging to the fatty acyl-CoA reductases (FARs) via a homology-based approach in rice. OsFAR1 was activated by abiotic stresses and abscisic acid, resulting in increased production of primary alcohol in rice. Heterologous expression of OsFAR1 enhanced the amounts of C22:0 and C24:0 primary alcohols in yeast (Saccharomyces cerevisiae) and C24:0 to C32:0 primary alcohols in Arabidopsis. Similarly, OsFAR1 overexpression significantly increased the content of C24:0 to C30:0 primary alcohols on rice leaves. Finally, OsFAR1 overexpression lines exhibited reduced cuticle permeability and enhanced drought tolerance in rice and Arabidopsis. Taken together, our results demonstrate that OsFAR1 is involved in rice primary alcohol biosynthesis and plays an important role in responding to drought and other environmental stresses.
Collapse
Affiliation(s)
- Lulu Guan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dongnan Xia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hanbing Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hongqi Wu
- College of Tobacco, Guizhou University, Guiyang, 550025, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiang Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingkai Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
7
|
Hasanuzzaman M, Zhou M, Shabala S. How Does Stomatal Density and Residual Transpiration Contribute to Osmotic Stress Tolerance? PLANTS (BASEL, SWITZERLAND) 2023; 12:494. [PMID: 36771579 PMCID: PMC9919688 DOI: 10.3390/plants12030494] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Osmotic stress that is induced by salinity and drought affects plant growth and development, resulting in significant losses to global crop production. Consequently, there is a strong need to develop stress-tolerant crops with a higher water use efficiency through breeding programs. Water use efficiency could be improved by decreasing stomatal transpiration without causing a reduction in CO2 uptake under osmotic stress conditions. The genetic manipulation of stomatal density could be one of the most promising strategies for breeders to achieve this goal. On the other hand, a substantial amount of water loss occurs across the cuticle without any contribution to carbon gain when the stomata are closed and under osmotic stress. The minimization of cuticular (otherwise known as residual) transpiration also determines the fitness and survival capacity of the plant under the conditions of a water deficit. The deposition of cuticular wax on the leaf epidermis acts as a limiting barrier for residual transpiration. However, the causal relationship between the frequency of stomatal density and plant osmotic stress tolerance and the link between residual transpiration and cuticular wax is not always straightforward, with controversial reports available in the literature. In this review, we focus on these controversies and explore the potential physiological and molecular aspects of controlling stomatal and residual transpiration water loss for improving water use efficiency under osmotic stress conditions via a comparative analysis of the performance of domesticated crops and their wild relatives.
Collapse
Affiliation(s)
- Md. Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka 1207, Bangladesh
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- School of Biological Science, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
8
|
The Plant Fatty Acyl Reductases. Int J Mol Sci 2022; 23:ijms232416156. [PMID: 36555796 PMCID: PMC9783961 DOI: 10.3390/ijms232416156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Fatty acyl reductase (FAR) is a crucial enzyme that catalyzes the NADPH-dependent reduction of fatty acyl-CoA or acyl-ACP substrates to primary fatty alcohols, which in turn acts as intermediate metabolites or metabolic end products to participate in the formation of plant extracellular lipid protective barriers (e.g., cuticular wax, sporopollenin, suberin, and taproot wax). FARs are widely present across plant evolution processes and play conserved roles during lipid synthesis. In this review, we provide a comprehensive view of FAR family enzymes, including phylogenetic analysis, conserved structural domains, substrate specificity, subcellular localization, tissue-specific expression patterns, their varied functions in lipid biosynthesis, and the regulation mechanism of FAR activity. Finally, we pose several questions to be addressed, such as the roles of FARs in tryphine, the interactions between transcription factors (TFs) and FARs in various environments, and the identification of post-transcriptional, translational, and post-translational regulators.
Collapse
|
9
|
He J, Li C, Hu N, Zhu Y, He Z, Sun Y, Wang Z, Wang Y. ECERIFERUM1-6A is required for the synthesis of cuticular wax alkanes and promotes drought tolerance in wheat. PLANT PHYSIOLOGY 2022; 190:1640-1657. [PMID: 36000923 PMCID: PMC9614490 DOI: 10.1093/plphys/kiac394] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/03/2022] [Indexed: 05/27/2023]
Abstract
Cuticular waxes cover the aerial surfaces of land plants and protect them from various environmental stresses. Alkanes are major wax components and contribute to plant drought tolerance, but the biosynthesis and regulation of alkanes remain largely unknown in wheat (Triticum aestivum L.). Here, we identified and functionally characterized a key alkane biosynthesis gene ECERIFERUM1-6A (TaCER1-6A) from wheat. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated knockout mutation in TaCER1-6A greatly reduced the contents of C27, C29, C31, and C33 alkanes in wheat leaves, while TaCER1-6A overexpression significantly increased the contents of these alkanes in wheat leaves, suggesting that TaCER1-6A is specifically involved in the biosynthesis of C27, C29, C31, and C33 alkanes on wheat leaf surfaces. TaCER1-6A knockout lines exhibited increased cuticle permeability and reduced drought tolerance, whereas TaCER1-6A overexpression lines displayed reduced cuticle permeability and enhanced drought tolerance. TaCER1-6A was highly expressed in flag leaf blades and seedling leaf blades and could respond to abiotic stresses and abscisic acid. TaCER1-6A was located in the endoplasmic reticulum, which is the subcellular compartment responsible for wax biosynthesis. A total of three haplotypes (HapI/II/III) of TaCER1-6A were identified in 43 wheat accessions, and HapI was the dominant haplotype (95%) in these wheat varieties. Additionally, we identified two R2R3-MYB transcription factors TaMYB96-2D and TaMYB96-5D that bound directly to the conserved motif CAACCA in promoters of the cuticular wax biosynthesis genes TaCER1-6A, TaCER1-1A, and fatty acyl-CoA reductase4. Collectively, these results suggest that TaCER1-6A is required for C27, C29, C31, and C33 alkanes biosynthesis and improves drought tolerance in wheat.
Collapse
Affiliation(s)
- Jiajia He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chongzhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuyao Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhaofeng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yulin Sun
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, V6T 1Z4 Canada
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
10
|
Liu L, Wang X, Chang C. Toward a smart skin: Harnessing cuticle biosynthesis for crop adaptation to drought, salinity, temperature, and ultraviolet stress. FRONTIERS IN PLANT SCIENCE 2022; 13:961829. [PMID: 35958191 PMCID: PMC9358614 DOI: 10.3389/fpls.2022.961829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Drought, salinity, extreme temperatures, and ultraviolet (UV) radiation are major environmental factors that adversely affect plant growth and crop production. As a protective shield covering the outer epidermal cell wall of plant aerial organs, the cuticle is mainly composed of cutin matrix impregnated and sealed with cuticular waxes, and greatly contributes to the plant adaption to environmental stresses. Past decades have seen considerable progress in uncovering the molecular mechanism of plant cutin and cuticular wax biosynthesis, as well as their important roles in plant stress adaptation, which provides a new direction to drive strategies for stress-resilient crop breeding. In this review, we highlighted the recent advances in cuticle biosynthesis in plant adaptation to drought, salinity, extreme temperatures, and UV radiation stress, and discussed the current status and future directions in harnessing cuticle biosynthesis for crop improvement.
Collapse
|
11
|
Meng Y, Varshney K, Incze N, Badics E, Kamran M, Davies SF, Oppermann LMF, Magne K, Dalmais M, Bendahmane A, Sibout R, Vogel J, Laudencia-Chingcuanco D, Bond CS, Soós V, Gutjahr C, Waters MT. KARRIKIN INSENSITIVE2 regulates leaf development, root system architecture and arbuscular-mycorrhizal symbiosis in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1559-1574. [PMID: 34953105 DOI: 10.1111/tpj.15651] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
KARRIKIN INSENSITIVE2 (KAI2) is an α/β-hydrolase required for plant responses to karrikins, which are abiotic butenolides that can influence seed germination and seedling growth. Although represented by four angiosperm species, loss-of-function kai2 mutants are phenotypically inconsistent and incompletely characterised, resulting in uncertainties about the core functions of KAI2 in plant development. Here we characterised the developmental functions of KAI2 in the grass Brachypodium distachyon using molecular, physiological and biochemical approaches. Bdkai2 mutants exhibit increased internode elongation and reduced leaf chlorophyll levels, but only a modest increase in water loss from detached leaves. Bdkai2 shows increased numbers of lateral roots and reduced root hair growth, and fails to support normal root colonisation by arbuscular-mycorrhizal (AM) fungi. The karrikins KAR1 and KAR2 , and the strigolactone (SL) analogue rac-GR24, each elicit overlapping but distinct changes to the shoot transcriptome via BdKAI2. Finally, we show that BdKAI2 exhibits a clear ligand preference for desmethyl butenolides and weak responses to methyl-substituted SL analogues such as GR24. Our findings suggest that KAI2 has multiple roles in shoot development, root system development and transcriptional regulation in grasses. Although KAI2-dependent AM symbiosis is likely conserved within monocots, the magnitude of the effect of KAI2 on water relations may vary across angiosperms.
Collapse
Affiliation(s)
- Yongjie Meng
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kartikye Varshney
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Norbert Incze
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Eszter Badics
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Muhammad Kamran
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Sabrina F Davies
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Larissa M F Oppermann
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Abdel Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Univ Evry, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
- Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Orsay, 91405, France
| | - Richard Sibout
- Institut Jean-Pierre Bourgin, UMR1318 INRAE-AgroParisTech, Versailles Cedex, F-78026, France
- UR1268 BIA, INRAE, Nantes, 44300, France
| | - John Vogel
- DOE Joint Genome Institute, Berkeley, California, 94720, USA
| | | | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Vilmos Soós
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Martonvásár, 2462, Hungary
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Mark T Waters
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
12
|
Wang Y, Xu J, He Z, Hu N, Luo W, Liu X, Shi X, Liu T, Jiang Q, An P, Liu L, Sun Y, Jetter R, Li C, Wang Z. BdFAR4, a root-specific fatty acyl-coenzyme A reductase, is involved in fatty alcohol synthesis of root suberin polyester in Brachypodium distachyon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1468-1483. [PMID: 33768632 DOI: 10.1111/tpj.15249] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/06/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Suberin is a complex hydrophobic polymer of aliphatic and phenolic compounds which controls the movement of gases, water, and solutes and protects plants from environmental stresses and pathogenic infection. The synthesis and regulatory pathways of suberin remain unknown in Brachypodium distachyon. Here we describe the identification of a B. distachyon gene, BdFAR4, encoding a fatty acyl-coenzyme A reductase (FAR) by a reverse genetic approach, and investigate the molecular relevance of BdFAR4 in the root suberin synthesis of B. distachyon. BdFAR4 is specifically expressed throughout root development. Heterologous expression of BdFAR4 in yeast (Saccharomyces cerevisiae) afforded the production of C20:0 and C22:0 fatty alcohols. The loss-of-function knockout of BdFAR4 by CRISPR/Cas9-mediated gene editing significantly reduced the content of C20:0 and C22:0 fatty alcohols associated with root suberin. In contrast, overexpression of BdFAR4 in B. distachyon and tomato (Solanum lycopersicum) resulted in the accumulation of root suberin-associated C20:0 and C22:0 fatty alcohols, suggesting that BdFAR4 preferentially accepts C20:0 and C22:0 fatty acyl-CoAs as substrates. The BdFAR4 protein was localized to the endoplasmic reticulum in Arabidopsis thaliana protoplasts and Nicotiana benthamiana leaf epidermal cells. BdFAR4 transcript levels can be increased by abiotic stresses and abscisic acid treatment. Furthermore, yeast one-hybrid, dual-luciferase activity, and electrophoretic mobility shift assays indicated that the R2R3-MYB transcription factor BdMYB41 directly binds to the promoter of BdFAR4. Taken together, these results imply that BdFAR4 is essential for the production of root suberin-associated fatty alcohols, especially under stress conditions, and that its activity is transcriptionally regulated by the BdMYB41 transcription factor.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiajing Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhaofeng He
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ning Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiao Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoyu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinqin Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Peipei An
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Le Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Sun
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Reinhard Jetter
- Department of Botany, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Lu Y, Cheng X, Jia M, Zhang X, Xue F, Li Y, Sun J, Liu F. Silencing GhFAR3.1 reduces wax accumulation in cotton leaves and leads to increased susceptibility to drought stress. PLANT DIRECT 2021; 5:e00313. [PMID: 33855256 PMCID: PMC8025989 DOI: 10.1002/pld3.313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
Fatty acyl-CoA reductases (FAR) are involved in plant wax synthesis and play important roles in plant growth and development. However, little information is available for cotton FAR genes. In this study, we carried out a genome-wide identification of FAR genes in Upland cotton (Gossypium hirsutum L.) and found 10 GhFARs that form five pairs of homoeologs (GhFAR2A to GhFAR3.4D) distributed on six chromosomes. The 10 GhFARs were separated into two subfamilies. Most GhFARs showed tissue-specific expression patterns, and at least one GhFAR of each pair of homoeologs was relatively highly expressed in at least one of the tissues investigated. GhFAR3.1 was highly expressed in leaves. The function of GhFAR3.1 in wax accumulation and drought tolerance was analyzed using virus-induced gene silencing (VIGS). Silencing GhFAR3.1 reduced the total wax content and relative water content of leaves by over 60% and 13%, respectively, suggesting a role of GhFAR3.1 in wax synthesis and protection against water loss. Compared to the well-watered conditions, drought stress induced significant accumulation of wax in leaves of wild-type plants but not in leaves of GhFAR3.1 silenced plants, leading to less water holding capacity in GhFAR3.1 silenced plants and plant wilting. Silencing GhFAR3.1 had no effect on the expression levels of the wax biosynthesis pathway genes KAS, KCS, and LACS (upstream GhFAR3.1), but reduced the transcript level of its downstream gene WSD. Together, these results suggest that leaf wax content is important for water retention and drought tolerance and that GhFAR3.1 is essential for wax synthesis in cotton leaves. These results also provide the basis for further study on the molecular regulation mechanism of GhFARs in cotton development and surface lipid synthesis.
Collapse
Affiliation(s)
- Yajie Lu
- Key Laboratory of Oasis Eco‐agricultureCollege of AgricultureShihezi UniversityShiheziXinjiangChina
| | - Xinqi Cheng
- Key Laboratory of Oasis Eco‐agricultureCollege of AgricultureShihezi UniversityShiheziXinjiangChina
| | - Mengjiao Jia
- Key Laboratory of Oasis Eco‐agricultureCollege of AgricultureShihezi UniversityShiheziXinjiangChina
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco‐agricultureCollege of AgricultureShihezi UniversityShiheziXinjiangChina
| | - Fei Xue
- Key Laboratory of Oasis Eco‐agricultureCollege of AgricultureShihezi UniversityShiheziXinjiangChina
| | - Yanjun Li
- Key Laboratory of Oasis Eco‐agricultureCollege of AgricultureShihezi UniversityShiheziXinjiangChina
| | - Jie Sun
- Key Laboratory of Oasis Eco‐agricultureCollege of AgricultureShihezi UniversityShiheziXinjiangChina
| | - Feng Liu
- Key Laboratory of Oasis Eco‐agricultureCollege of AgricultureShihezi UniversityShiheziXinjiangChina
| |
Collapse
|
14
|
Muthusamy M, Kim JH, Kim SH, Kim JY, Heo JW, Lee H, Lee KS, Seo WD, Park S, Kim JA, Lee SI. Changes in Beneficial C-glycosylflavones and Policosanol Content in Wheat and Barley Sprouts Subjected to Differential LED Light Conditions. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1502. [PMID: 33172036 PMCID: PMC7694615 DOI: 10.3390/plants9111502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 05/03/2023]
Abstract
The spectral quality and intensity of light, photoperiodism, and other environmental factors have profound impacts on the metabolic composition of light-dependent higher plants. Hence, we investigate the effects of fluorescent light (96 μmol m-2s-1) and white (100 μmol m-2s-1), blue (100 μmol m-2s-1), and red (93 μmol m-2s-1) light-emitting diode (LED) light irradiation on the C-glycosylflavone and policosanol contents in young seedlings of wheat and barley. Ultra-high-performance liquid chromatography (UHPLC) analyses of C-glycosylflavone contents in barley reveal that the saponarin content is significantly enhanced under blue LED light irradiation. Under similar conditions, isoorientin and isoschaftoside contents are improved in wheat seedlings. The contents of these C-glycosylflavones differed along with the light quality and growth period. The highest accumulation was observed in sprouts after three days under blue LED light irradiation. GC/MS analyses of policosanol contents showed that 1-hexacosanol (C26:o-OH) in barley and 1-octacosanol (C28:o-OH) in wheat seedlings were reduced under LED light irradiation, compared to seedlings under fluorescent light conditions. Nonetheless, the policosanol contents gradually improved with the extension of growth times and treatments, irrespective of the light quality. Additionally, a positive correlation was observed between the expression pattern of biosynthesis-related genes and the respective metabolite content in barley. This study demonstrates that blue LED light irradiation is useful in maximizing the C-glycosylflavone content in barley and wheat sprouts.
Collapse
Affiliation(s)
- Muthusamy Muthusamy
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jong Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
- Division of Horticultural Biotechnology, Hankyung National University, Anseong 17579, Korea
| | - Suk Hee Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Joo Yeol Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jeong Wook Heo
- Department of Agricultural Engineering, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea;
| | - HanGyeol Lee
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Kwang-Sik Lee
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Woo Duck Seo
- Division of Crop Foundation, National Institute of Crop Science (NICS), RDA, Wanju 55365, Korea; (H.L.); (K.-S.L.); (W.D.S.)
| | - Soyoung Park
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Jin A Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), RDA, Jeonju 54874, Korea; (M.M.); (J.H.K.); (S.H.K.); (J.Y.K.); (S.P.); (J.A.K.)
| |
Collapse
|
15
|
Wu H, Shi S, Lu X, Li T, Wang J, Liu T, Zhang Q, Sun W, Li C, Wang Z, Chen Y, Quan L. Expression Analysis and Functional Characterization of CER1 Family Genes Involved in Very-Long-Chain Alkanes Biosynthesis in Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2019; 10:1389. [PMID: 31737015 PMCID: PMC6838206 DOI: 10.3389/fpls.2019.01389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/08/2019] [Indexed: 05/08/2023]
Abstract
Cuticular wax accumulation and composition affects drought resistance in plants. Brachypodium distachyon plants subjected to water deficit and polyethylene glycol treatments resulted in a significant increase in total wax load, in which very-long-chain (VLC) alkanes were more sensitive to these treatments than other wax compounds, implying that VLC alkanes biosynthesis plays a more important role in drought resistance in B. distachyon. ECERIFERUM1 (CER1) has been reported to encode a core enzyme involved in VLC alkanes biosynthesis in Arabidopsis (Arabidopsis thaliana), but few corresponding genes are investigated in B. distachyon. Here, we identified eight CER1 homologous genes in B. distachyon, namely BdCER1-1 to BdCER1-8, and then analyzed their sequences feature, expression patterns, stress induction, and biochemical activities. These genes had similar protein structure to other reported CER1 and CER1-like genes, but displayed closer phylogenetic relationship to the rice OsGL1 genes. They were further found to exhibit various tissue expression patterns after being induced by abiotic stresses. Among them, BdCER1-8 gene showed extremely high expression in leaves. Heterologous introduction of BdCER1-8 into the Arabidopsis cer1 mutant rescued VLC alkanes biosynthesis. These results indicate that BdCER1 genes are likely to be involved in VLC alkanes biosynthesis of B. distachyon. Taken together, BdCER1-8 seems to play an explicit and predominant role in VLC alkanes biosynthesis in leaf. Our work provides important clues for further characterizing function of CER1 homologous genes in B. distachyon and also an option to improve drought resistance of cereal crops.
Collapse
Affiliation(s)
- Hongqi Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shandang Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoliang Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Tingting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Jiahuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Tianxiang Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- Shaanxi Province Tobacco Company of China National Tobacco Company, Xi’an, China
| | - Wei Sun
- Shaanxi Province Tobacco Company of China National Tobacco Company, Xi’an, China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yaofeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Li Quan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
16
|
Chai G, Li C, Xu F, Li Y, Shi X, Wang Y, Wang Z. Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2018; 18:41. [PMID: 29506473 PMCID: PMC5836450 DOI: 10.1186/s12870-018-1256-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/22/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. RESULTS We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. CONCLUSIONS These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary alcohols in hexaploid wheat and in response to multiple environmental stresses.
Collapse
Affiliation(s)
- Guaiqiang Chai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Chunlian Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Feng Xu
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yang Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100 China
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|