1
|
Lu X, Wu J, Shi Q, Sun S, Cheng Y, Zhou G, Li R, Wang H, van der Knaap E, Cui X. A feedback loop at the THERMOSENSITIVE PARTHENOCARPY 4 locus controls tomato fruit set under heat stress. Nat Commun 2025; 16:4184. [PMID: 40328814 PMCID: PMC12056112 DOI: 10.1038/s41467-025-59522-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
High temperatures compromise crop productivity worldwide, but breeding bottlenecks slow the delivery of climate-resilient crops. By investigating tomato fruit set under high temperatures, we discover a module comprising two linked genes, THERMOSENSITIVE PARTHENOCARPY 4a (TSP4a) and TSP4b, which encode the transcriptional regulators IAA9 and AINTEGUMENTA (ANT), respectively, to control thermosensitive parthenocarpy. TSP4a and TSP4b form a positive feedback loop upon heat stress to repress auxin signaling in ovaries. Natural TSP4a and TSP4b alleles bear regulatory-region polymorphisms and are differentially expressed to overcome the trade-off between fruit set and wider plant development. Gene editing of the TSP4a promoter and TSP4b 3' UTR in open-chromatin regions results in expression down-regulation, increased parthenocarpy without yield penalties and maintenance of fruit-sugar levels without broad auxin-related pleiotropic defects in greenhouse-grown plants. These mechanistic insights into heat-induced parthenocarpy and auxin signaling in reproductive organs demonstrate breeding utility to safeguard tomato yield under warming scenarios.
Collapse
Affiliation(s)
- Xiaonan Lu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jianxin Wu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - QianQian Shi
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuan Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Guozhi Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Esther van der Knaap
- Department of Horticulture and Institute of Plant Breeding, Genetics & Genomics University of Georgia, Athens, GA, 30602, USA
| | - Xia Cui
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Jiang M, Li J, Huang Y, Tao B, Wu L, Chen J, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. Mapping and molecular marker development for the BnaSBT gene controlling inflorescence and plant architectures in B. napus. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:45. [PMID: 40247998 PMCID: PMC12000495 DOI: 10.1007/s11032-025-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/15/2025] [Indexed: 04/19/2025]
Abstract
Exploring the molecular mechanism underlying plant architecture and breeding new varieties suitable for mechanized harvesting are primary objectives for rapeseed breeders in China. However, few genes controlling plant architecture have been cloned in Brassica napus. In this study, SX3, a scattered-bud B. napus line with a dwarf and compact plant architecture, was characterized. To identify the genes underlying bud arrangement, plant height and branch angle, segregating populations were constructed by crossing SX3 with two clustered-bud lines with a tall and loose plant architecture. Genetic analysis revealed that the scattered-bud trait (SBT) was controlled by a single dominant gene, BnaSBT. BnaSBT is likely a pleiotropic gene that simultaneously controls plant height and branch angle. Using BSA-seq analysis, BnaSBT was mapped to a 4.15 Mb region on ChrA10. Owing to the lack of recombinants within this region, it was infeasible to finely map BnaSBT. RNA-seq analysis of BC2 plants with contrasting inflorescence and plant architectures revealed that the upregulation of genes involved in amino acid and lipid metabolism and genes encoding MADS-box transcription factors is related to the the phenotype of SX3. These findings together with comparative sequencing indicated that BnaA10.SEP1, BnaA10.AGL15, BnaA10.GLN1-4 and BnaA10.AGP15 are candidate genes for BnaSBT. Markers closely linked to the scattered-bud trait were developed for selecting dwarf and compact plants. These findings provide molecular markers and germplasms for breeding new varieties with ideal plant types and lay a theoretical foundation for cloning key genes and elucidating the genetic basis of inflorescence and plant architectures in B. napus. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01556-2.
Collapse
Affiliation(s)
- Meng Jiang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jingming Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Yingying Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Baolong Tao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lumei Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Junlin Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Centre of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
3
|
Du M, Sun C, Deng L, Zhou M, Li J, Du Y, Ye Z, Huang S, Li T, Yu J, Li C, Li C. Molecular breeding of tomato: Advances and challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:669-721. [PMID: 40098531 PMCID: PMC11951411 DOI: 10.1111/jipb.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025]
Abstract
The modern cultivated tomato (Solanum lycopersicum) was domesticated from Solanum pimpinellifolium native to the Andes Mountains of South America through a "two-step domestication" process. It was introduced to Europe in the 16th century and later widely cultivated worldwide. Since the late 19th century, breeders, guided by modern genetics, breeding science, and statistical theory, have improved tomatoes into an important fruit and vegetable crop that serves both fresh consumption and processing needs, satisfying diverse consumer demands. Over the past three decades, advancements in modern crop molecular breeding technologies, represented by molecular marker technology, genome sequencing, and genome editing, have significantly transformed tomato breeding paradigms. This article reviews the research progress in the field of tomato molecular breeding, encompassing genome sequencing of germplasm resources, the identification of functional genes for agronomic traits, and the development of key molecular breeding technologies. Based on these advancements, we also discuss the major challenges and perspectives in this field.
Collapse
Affiliation(s)
- Minmin Du
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of HorticultureChina Agricultural UniversityBeijing100193China
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- Sanya Institute of China Agricultural UniversitySanya572025China
| | - Chuanlong Sun
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
| | - Lei Deng
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| | - Ming Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Junming Li
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Yongchen Du
- State Key Laboratory of Vegetable BiobreedingInstitute of Vegetables and Flowers, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Zhibiao Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518120China
- State Key Laboratory of Tropical Crop BreedingChinese Academy of Tropical Agricultural SciencesHaikou571101China
| | - Tianlai Li
- College of HorticultureShenyang Agricultural UniversityShenyang110866China
| | - Jingquan Yu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhou310058China
| | - Chang‐Bao Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China)Ministry of Agriculture, Beijing Institute of Vegetable Science, Beijing Academy of Agriculture and Forestry SciencesBeijing100097China
| | - Chuanyou Li
- Taishan Academy of Tomato InnovationShandong Agricultural UniversityTai'an271018China
- College of Horticulture Science and EngineeringShandong Agricultural UniversityTai'an271018China
- College of Life SciencesShandong Agricultural UniversityTai'an271018China
| |
Collapse
|
4
|
Song Y, Cheng Q, Li X, Ma S, Shen H, Sun L. The MADS-Box Transcription Factor CaRIN Positively Regulates Chlorophyll Degradation During Pepper ( Capsicum annuum L.) Fruit Ripening by Repressing the Expression of CaLhcb-P4. PLANTS (BASEL, SWITZERLAND) 2025; 14:445. [PMID: 39943007 PMCID: PMC11819861 DOI: 10.3390/plants14030445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025]
Abstract
Pepper (Capsicum spp.) is an important global vegetable and spice, with fruit color being a key determinant of its commercial quality. However, the regulatory mechanisms underlying pepper fruit color are still not fully understood. This study focuses on the MADS-RIPENING INHIBITOR (MADS-RIN), a MADS-box transcription factor that regulates various aspects of fruit ripening, including pigmentation. We identified CaRIN, a homolog of tomato's SlRIN, whose expression is closely associated with fruit ripening in pepper. Silencing CaRIN through virus-induced gene silencing (VIGS) resulted in increased chlorophyll and chlorophyll a content, reduced carotenoid accumulation, and uneven fruit coloration. Integrative analysis of the RNA-seq and DAP-seq data identified 77 target genes regulated by CaRIN, which was involved in processes such as chlorophyll metabolism and plant hormone signaling. Yeast one-hybrid (Y1H) and dual-luciferase (LUC) assays demonstrated that CaRIN directly bound to the promoter of CaLhcb-P4, repressing its expression. Downregulation of CaLhcb-P4 in pepper fruits via VIGS accelerated chlorophyll degradation. Additionally, CaRIN indirectly regulated multiple genes associated with chlorophyll and carotenoid metabolism, sugar transport, and cell wall degradation. These findings provide novel insights into the regulatory mechanisms of chlorophyll degradation during pepper fruit ripening, offering a foundation for further research and potential genetic improvement strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang Sun
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, Department of Vegetable Science, College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Pan C, Li X, Lu X, Hu J, Zhang C, Shi L, Zhu C, Guo Y, Wang X, Huang Z, Du Y, Liu L, Li J. Identification and Functional Analysis of the Ph-2 Gene Conferring Resistance to Late Blight ( Phytophthora infestans) in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:3572. [PMID: 39771270 PMCID: PMC11679936 DOI: 10.3390/plants13243572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Late blight is a destructive disease affecting tomato production. The identification and characterization of resistance (R) genes are critical for the breeding of late blight-resistant cultivars. The incompletely dominant gene Ph-2 confers resistance against the race T1 of Phytophthora infestans in tomatoes. Herein, we identified Solyc10g085460 (RGA1) as a candidate gene for Ph-2 through the analysis of sequences and post-inoculation expression levels of genes located within the fine mapping interval. The RGA1 was subsequently validated to be a Ph-2 gene through targeted knockout and complementation analyses. It encodes a CC-NBS-LRR disease resistance protein, and transient expression assays conducted in the leaves of Nicotiana benthamiana indicate that Ph-2 is predominantly localized within the nucleus. In comparison to its susceptible allele (ph-2), the transient expression of Ph-2 can elicit hypersensitive responses (HR) in N. benthamiana, and subsequent investigations indicate that the structural integrity of the Ph-2 protein is likely a requirement for inducing HR in this species. Furthermore, ethylene and salicylic acid hormonal signaling pathways may mediate the transmission of the Ph-2 resistance signal, with PR1- and HR-related genes potentially involved in the Ph-2-mediated resistance. Our results could provide a theoretical foundation for the molecular breeding of tomato varieties resistant to late blight and offer valuable insights into elucidating the interaction mechanism between tomatoes and P. infestans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Lei Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.P.); (X.L.); (X.L.); (J.H.); (C.Z.); (L.S.); (C.Z.); (Y.G.); (X.W.); (Z.H.); (Y.D.)
| | - Junming Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (C.P.); (X.L.); (X.L.); (J.H.); (C.Z.); (L.S.); (C.Z.); (Y.G.); (X.W.); (Z.H.); (Y.D.)
| |
Collapse
|
6
|
Sun S, Liu Z, Wang X, Song J, Fang S, Kong J, Li R, Wang H, Cui X. Genetic control of thermomorphogenesis in tomato inflorescences. Nat Commun 2024; 15:1472. [PMID: 38368437 PMCID: PMC10874430 DOI: 10.1038/s41467-024-45722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
Understanding how plants alter their development and architecture in response to ambient temperature is crucial for breeding resilient crops. Here, we identify the quantitative trait locus qMULTIPLE INFLORESCENCE BRANCH 2 (qMIB2), which modulates inflorescence branching in response to high ambient temperature in tomato (Solanum lycopersicum). The non-functional mib2 allele may have been selected in large-fruited varieties to ensure larger and more uniform fruits under varying temperatures. MIB2 gene encodes a homolog of the Arabidopsis thaliana transcription factor SPATULA; its expression is induced in meristems at high temperature. MIB2 directly binds to the promoter of its downstream gene CONSTANS-Like1 (SlCOL1) by recognizing the conserved G-box motif to activate SlCOL1 expression in reproductive meristems. Overexpressing SlCOL1 rescue the reduced inflorescence branching of mib2, suggesting how the MIB2-SlCOL1 module helps tomato inflorescences adapt to high temperature. Our findings reveal the molecular mechanism underlying inflorescence thermomorphogenesis and provide a target for breeding climate-resilient crops.
Collapse
Affiliation(s)
- Shuai Sun
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiqiang Liu
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaotian Wang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jia Song
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Siyu Fang
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jisheng Kong
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- State Key Laboratory of Vegetable Biobreeding, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huanzhong Wang
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA
| | - Xia Cui
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
7
|
Baranov D, Dolgov S, Timerbaev V. New Advances in the Study of Regulation of Tomato Flowering-Related Genes Using Biotechnological Approaches. PLANTS (BASEL, SWITZERLAND) 2024; 13:359. [PMID: 38337892 PMCID: PMC10856997 DOI: 10.3390/plants13030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024]
Abstract
The tomato is a convenient object for studying reproductive processes, which has become a classic. Such complex processes as flowering and fruit setting require an understanding of the fundamental principles of molecular interaction, the structures of genes and proteins, the construction of signaling pathways for transcription regulation, including the synchronous actions of cis-regulatory elements (promoter and enhancer), trans-regulatory elements (transcription factors and regulatory RNAs), and transposable elements and epigenetic regulators (DNA methylation and acetylation, chromatin structure). Here, we discuss the current state of research on tomatoes (2017-2023) devoted to studying the function of genes that regulate flowering and signal regulation systems using genome-editing technologies, RNA interference gene silencing, and gene overexpression, including heterologous expression. Although the central candidate genes for these regulatory components have been identified, a complete picture of their relationship has yet to be formed. Therefore, this review summarizes the latest achievements related to studying the processes of flowering and fruit set. This work attempts to display the gene interaction scheme to better understand the events under consideration.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey Dolgov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 142290 Pushchino, Russia; (D.B.); (S.D.)
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
8
|
Lindsay P, Swentowsky KW, Jackson D. Cultivating potential: Harnessing plant stem cells for agricultural crop improvement. MOLECULAR PLANT 2024; 17:50-74. [PMID: 38130059 DOI: 10.1016/j.molp.2023.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Meristems are stem cell-containing structures that produce all plant organs and are therefore important targets for crop improvement. Developmental regulators control the balance and rate of cell divisions within the meristem. Altering these regulators impacts meristem architecture and, as a consequence, plant form. In this review, we discuss genes involved in regulating the shoot apical meristem, inflorescence meristem, axillary meristem, root apical meristem, and vascular cambium in plants. We highlight several examples showing how crop breeders have manipulated developmental regulators to modify meristem growth and alter crop traits such as inflorescence size and branching patterns. Plant transformation techniques are another innovation related to plant meristem research because they make crop genome engineering possible. We discuss recent advances on plant transformation made possible by studying genes controlling meristem development. Finally, we conclude with discussions about how meristem research can contribute to crop improvement in the coming decades.
Collapse
Affiliation(s)
- Penelope Lindsay
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
9
|
Zahn IE, Roelofsen C, Angenent GC, Bemer M. TM3 and STM3 Promote Flowering Together with FUL2 and MBP20, but Act Antagonistically in Inflorescence Branching in Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2754. [PMID: 37570908 PMCID: PMC10420972 DOI: 10.3390/plants12152754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The moment at which a plant transitions to reproductive development is paramount to its life cycle and is strictly controlled by many genes. The transcription factor SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) plays a central role in this process in Arabidopsis. However, the role of SOC1 in tomato (Solanum lycopersicum) has been sparsely studied. Here, we investigated the function of four tomato SOC1 homologs in the floral transition and inflorescence development. We thoroughly characterized the SOC1-like clade throughout the Solanaceae and selected four tomato homologs that are dynamically expressed upon the floral transition. We show that of these homologs, TOMATO MADS 3 (TM3) and SISTER OF TM3 (STM3) promote the primary and sympodial transition to flowering, while MADS-BOX PROTEIN 23 (MBP23) and MBP18 hardly contribute to flowering initiation in the indeterminate cultivar Moneyberg. Protein-protein interaction assays and whole-transcriptome analysis during reproductive meristem development revealed that TM3 and STM3 interact and share many targets with FRUITFULL (FUL) homologs, including cytokinin regulators. Furthermore, we observed that mutating TM3/STM3 affects inflorescence development, but counteracts the inflorescence-branching phenotype of ful2 mbp20. Collectively, this indicates that TM3/STM3 promote the floral transition together with FUL2/MBP20, while these transcription factors have opposite functions in inflorescence development.
Collapse
Affiliation(s)
- Iris E. Zahn
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Chris Roelofsen
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
| | - Gerco C. Angenent
- Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB Wageningen, The Netherlands; (I.E.Z.); (G.C.A.)
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Business Unit Bioscience, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|