1
|
Fan SH, Huang ZH, Liu HF, Zhang XF, Hua W, Fu ZW. Sucrose mediates moderate salinity-promoted primary root growth in rapeseed. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 227:110133. [PMID: 40513362 DOI: 10.1016/j.plaphy.2025.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 05/21/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025]
Abstract
Soil salinization is an escalating global challenge that significantly hampers plant growth and agricultural yield. The root system can directly sense and respond to salinity, but little is known about how primary roots respond to salt stress in rapeseed. In most non-halophytes, moderate salt stress inhibits or does not affect the growth of primary root. Here, we surprisingly observed that moderate salt stress (50 mM NaCl) promotes the growth of primary root in rapeseed. In addition, rapeseed subjected to moderate salt stress accumulated less reactive oxygen species (ROS) and proline compared to plants subjected to high salt stress. Further transcriptomic analysis revealed that carbohydrate metabolism-related genes were predominantly enriched in differentially expressed genes (DEGs) under moderate salt stress, indicating that carbohydrate metabolites are involved in moderate salt stress-promoted primary root growth. Indeed, exogenous sucrose treatment restored the moderate salt stress-promoted primary root growth and changed the expression patterns of moderate salt stress responsive genes in rapeseed. This study reveals the specific response of primary root to moderate salt stress in rapeseed and further demonstrates that sucrose is responsible for promoting the primary root growth under moderate salt stress.
Collapse
Affiliation(s)
- Shi-Hang Fan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Zi-Hong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Hong-Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Xin-Fang Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Wei Hua
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Hubei Hongshan Laboratory, Wuhan, 430070, China.
| | - Zheng-Wei Fu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
2
|
Zhao J, Zhang S, Yu Z, Gu T, Zhang J, Meng L, Chen Z, Zhang Z, Wang N, Chen X, Liu W. The transcription factor MdWRKY9 is involved in jasmonic acid-mediated salt stress tolerance in apple. HORTICULTURE RESEARCH 2025; 12:uhaf068. [PMID: 40303435 PMCID: PMC12038257 DOI: 10.1093/hr/uhaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/23/2025] [Indexed: 05/02/2025]
Abstract
Salt stress is an important abiotic stress affecting the growth and fruit quality of apple fruits. Although jasmonic acid (JA) hormones and WRKY transcription factors (TFs) have both been reported to be involved in plant salt stress responses, the molecular mechanisms by which JA-mediated WRKY TFs regulate salt stress in apples remain unclear. Here, we report the identification of a WRKY family TF from apple, MdWRKY9, and its involvement in apple salt tolerance by regulating the expression of Na+/H+ antiporters, MdNHX1, and MdSOS2. Furthermore, we show that the protein repressors MdJAZ5 and MdJAZ10 in the JA signaling pathway can both interact with MdWRKY9 to form a complex and inhibit its DNA-binding and transcriptional activation activity. The JA signal triggers the degradation of MdJAZ5 and MdJAZ10 proteins by the 26S proteasome, disrupting the JAZ-WRKY protein complex and thereby releasing MdWRKY9 to activate downstream gene expression, promoting salt tolerance in apples. These findings provide important insights into the molecular mechanism of the WRKY TFs in JA-mediated salt tolerance in plants.
Collapse
Affiliation(s)
- Jiahao Zhao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| | - Shuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhicheng Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| | - Tingting Gu
- College of Agricultural Sciences and Technology, Shandong Agriculture And Engineering University, Jinan 250100, Shandong, China
| | - Jie Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| | - Lingyu Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| | - Zijing Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| | - Zongying Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| | - Nan Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| | - Wenjun Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Taian 271018, Shandong, China
| |
Collapse
|
3
|
Shi W, Ye S, Xin Y, Jin H, Hu M, Zheng Y, Zhan Y, Liu H, Gan Y, Zheng Z, Pan T. NAC Transcription Factor GmNAC035 Exerts a Positive Regulatory Role in Enhancing Salt Stress Tolerance in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1391. [PMID: 40364420 PMCID: PMC12073727 DOI: 10.3390/plants14091391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/01/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
Soybean, a globally significant and versatile crop, serves as a vital source of both oil and protein. However, environmental factors such as soil salinization pose substantial challenges to its cultivation, adversely affecting both yield and quality. Enhancing the salt tolerance of soybeans can mitigate yield losses and promote the development of the soybean industry. Members of the plant-specific transcription factor family NAC play crucial roles in plant adaptation to abiotic stress conditions. In this study, we screened the soybean GmNAC family genes potentially involved in the salt stress response and identified 18 GmNAC genes that may function during the early stages of salt stress. Among these, the GmNAC035 gene exhibited a rapid increase in expression within one hour of salt treatment, with its expression being induced by abscisic acid (ABA) and methyl jasmonate (MeJA), suggesting its significant role in the soybean salt stress response. We further elucidated the role of GmNAC035 in soybean salt tolerance. GmNAC035, a nuclear-localized transcriptional activator, enhances salt tolerance when overexpressed in Arabidopsis, reducing oxidative damage and boosting the expression of stress-responsive genes. It achieves this by regulating key stress response pathways, including the SOS pathway, calcium signaling, and ABA signaling. These findings highlight the potential of GmNAC035 as a genetic engineering target to improve crop salt tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhifu Zheng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (W.S.); (S.Y.); (Y.X.); (H.J.); (M.H.); (Y.Z.); (Y.Z.); (H.L.); (Y.G.)
| | - Tian Pan
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (W.S.); (S.Y.); (Y.X.); (H.J.); (M.H.); (Y.Z.); (Y.Z.); (H.L.); (Y.G.)
| |
Collapse
|
4
|
Ullah A, Dutta D, Fliegel L. Characterization of Critical Amino Acids in the Transport and Selectivity of the Plant Na +/H + Exchanger Plasma Membrane SOS1. Int J Mol Sci 2025; 26:3518. [PMID: 40332001 PMCID: PMC12027421 DOI: 10.3390/ijms26083518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/30/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
SOS1 is a Na+/H+ antiporter found in the plant membrane of Arabidopsis thaliana and serves as a major transporter that extrudes Na+ across the plasma membrane of cells in exchange for intracellular H+. The first 450 amino acids comprise the membrane transport domain. Using a yeast heterologous expression system, we examined nine different mutations that may either change specificity or improve salt tolerance. E261K had minor negative effects on the ability to confer tolerance to LiCl and NaCl. Mutation A399V had minor effects, lowering LiCl tolerance and slightly improving NaCl tolerance, as did the double mutant E261KA399V. Four different mutations of amino acid Y346 had varying effects. The Y346R mutation resulted in a major improvement in LiCl tolerance but did not affect NaCl tolerance. The L375I mutant showed impaired NaCl tolerance, whereas the Q362L mutant exhibited minor effects on salt tolerance. Our results demonstrate that amino acid Y346 is critical in ion selectivity and its mutation can dramatically improve LiCl salt tolerance. Other mutations showed minor improvements in the ability to confer NaCl tolerance (Y346F, A399V, and Y346A), leaving open the possibility that such mutations might improve salt tolerance in intact plant species.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Debajyoti Dutta
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
| | - Larry Fliegel
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
5
|
Cai L, Li M, Shen Y, Jiang R, Wang J, Ma S, Wu M, He P. Betacyanin accumulation mediates photosynthetic protection in Suaeda salsa (L.) Pall. under salt stress. PLANTA 2025; 261:100. [PMID: 40167794 DOI: 10.1007/s00425-025-04664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/01/2025] [Indexed: 04/02/2025]
Abstract
Soil salinization threatens sustainable agriculture, necessitating innovative restoration strategies. Suaeda salsa (L.) Pall., a halophyte with exceptional salt tolerance and vivid pigmentation, serves as an ideal model for salinity adaptation. This study integrates physiological and transcriptomic analyses to reveal how high salinity (400 mmol·L⁻1 NaCl) upregulates 4,5-DOPA dioxygenase after 30 days of salt stress, promoting betacyanin accumulation to mitigate oxidative damage. Compared to the control, betacyanin content in the 200 mmol·L⁻1 and 400 mmol·L⁻1 NaCl groups increased to 1.975-fold and 3.675-fold, respectively, while chlorophyll a content decreased by 45.78% and 69.88%, chlorophyll b by 11.45% and 28.24%, and total chlorophyll by 30.28% and 53.06%. This trade-off in pigment allocation highlights the plant's adaptive strategy under salinity stress. The photosynthetic characteristics of S. salsa confirm that its photoprotective mechanisms are significantly enhanced under 400 mmol·L⁻1 NaCl. At the molecular level, betacyanin biosynthesis alleviates oxidative stress, while transcriptional regulation of photosystem I (PSI) and photosystem II (PSII) genes-such as PsbY, PsaO, PsbM, and PsbW-partially restores photosynthetic activity. Stabilization of the electron transport chain by upregulated genes like PetA and PetH further enhances photosynthetic resilience. These findings highlight the synergy between betacyanin production and photosynthetic regulation in enhancing salinity resilience, providing insights for soil restoration and salt-tolerant crop breeding.
Collapse
Affiliation(s)
- Luyi Cai
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Min Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Yifei Shen
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruitong Jiang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jingwen Wang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Shaozu Ma
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Meiqin Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, The Ministry of Nature Resources, Shanghai, 201206, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai, 201306, China.
- Key Laboratory of Marine Ecological Monitoring and Restoration Technologies, The Ministry of Nature Resources, Shanghai, 201206, China.
| |
Collapse
|
6
|
Lv J, Wu Y, Jiang L, Huang Y, Xie Y, Zhao J, Wu T, Zhang X, Wang Y, Han Z. MdWRKY71 positively regulates drought tolerance in apple plants by interplaying with MdARF3 and promoting superoxide dismutase biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70157. [PMID: 40287955 DOI: 10.1111/tpj.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
With the ongoing rise in global temperatures, drought stress has become a significant threat to the normal growth and development of horticultural crops. Identifying the regulatory genes is the key to genetic improvement. Extensive research has highlighted the pivotal role of WRKY transcription factors in orchestrating plant responses to both biotic and abiotic stresses. However, their precise involvement in drought tolerance and the related molecular mechanisms have yet to be fully elucidated. In this study, we demonstrated that MdWRKY71 functioned as a positive regulator of drought tolerance in apple. Overexpressing MdWRKY71 in apple improved drought tolerance, while silencing it had the opposite effect. Additionally, under drought stress, compared with the control, chlorophyll fluorescence values, superoxide dismutase (SOD), and peroxidase levels were elevated in MdWRKY71-overexpressing apple and tobacco transgenic materials. Interaction analysis showed that MdWRKY71 directly binds to the W-box element of the MdFeSOD promoter and activates its transcription. We used yeast two-hybrid screening to identify potential interactors of MdWRKY71 and confirmed the interaction between MdWRKY71 and MdARF3 using Pull-down, bimolecular fluorescence complementation, and luciferase complementation imaging assays. Interestingly, MdARF3 enhanced MdWRKY71-mediated transcriptional activation of MdFeSOD through their interaction. In summary, our findings revealed that the MdWRKY71-MdARF3 module synergistically upregulates the expression of MdFeSOD and SOD enzyme activity in response to drought stress. This research uncovers a new mechanism of plant drought tolerance and presents a feasible strategy to enhance plant drought tolerance through stabilizing the biosynthesis of superoxide dismutase.
Collapse
Affiliation(s)
- Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Lizhong Jiang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yimei Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yifu Xie
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Jirong Zhao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
7
|
Yang X, Qin H, Zhou Y, Mai Z, Chai X, Guo J, Kang Y, Zhong M. HB52-PUT2 Module-Mediated Polyamine Shoot-to-Root Movement Regulates Salt Stress Tolerance in Tomato. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40159694 DOI: 10.1111/pce.15479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/31/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025]
Abstract
Soil salinity severely restricts crop quality and yields. Plants have developed various strategies to alleviate salinity stress's negative effects, including polyamine redistribution by polyamine uptake transporters (PUTs). However, the mechanisms by which PUTs alter polyamine translocation processes during salt stress have not been fully elucidated. Here, we show that disruption of PUT2, which is involved in polyamine shoot-to-root transport, results in salt sensitivity phenotypes in tomato. Moreover, yeast one-hybrid screened for an HD-Zip transcription factor HB52 that interacts with PUT2, and loss of function of HB52 also led to increased sensitivity to salt stress, whereas HB52-overexpression lines exhibited improved salt tolerance. Furthermore, molecular analyses demonstrated that HB52 directly activated the expression of PUT2 and facilitated Na+ efflux by promoting polyamine shoot-to-root mobility. This study uncovers a synergistic transcriptional regulatory network associated with a homeobox protein regulator that promotes polyamine long-distance transport under salt stress.
Collapse
Affiliation(s)
- Xian Yang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Hongyi Qin
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yu Zhou
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziqi Mai
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xirong Chai
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Juxian Guo
- Vegetable Research Institute, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yunyan Kang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Min Zhong
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Rahmati Ishka M, Sussman H, Hu Y, Alqahtani MD, Craft E, Sicat R, Wang M, Yu L, Ait-Haddou R, Li B, Drakakaki G, Nelson ADL, Pineros M, Korte A, Jaremko Ł, Testerink C, Tester M, Julkowska MM. Natural variation in salt-induced changes in root:shoot ratio reveals SR3G as a negative regulator of root suberization and salt resilience in Arabidopsis. eLife 2025; 13:RP98896. [PMID: 40153306 PMCID: PMC11952752 DOI: 10.7554/elife.98896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2025] Open
Abstract
Soil salinity is one of the major threats to agricultural productivity worldwide. Salt stress exposure alters root and shoots growth rates, thereby affecting overall plant performance. While past studies have extensively documented the effect of salt stress on root elongation and shoot development separately, here we take an innovative approach by examining the coordination of root and shoot growth under salt stress conditions. Utilizing a newly developed tool for quantifying the root:shoot ratio in agar-grown Arabidopsis seedlings, we found that salt stress results in a loss of coordination between root and shoot growth rates. We identify a specific gene cluster encoding domain-of-unknown-function 247 (DUF247), and characterize one of these genes as Salt Root:shoot Ratio Regulator Gene (SR3G). Further analysis elucidates the role of SR3G as a negative regulator of salt stress tolerance, revealing its function in regulating shoot growth, root suberization, and sodium accumulation. We further characterize that SR3G expression is modulated by WRKY75 transcription factor, known as a positive regulator of salt stress tolerance. Finally, we show that the salt stress sensitivity of wrky75 mutant is completely diminished when it is combined with sr3g mutation. Together, our results demonstrate that utilizing root:shoot ratio as an architectural feature leads to the discovery of a new stress resilience gene. The study's innovative approach and findings not only contribute to our understanding of plant stress tolerance mechanisms but also open new avenues for genetic and agronomic strategies to enhance crop environmental resilience.
Collapse
Affiliation(s)
| | | | - Yunfei Hu
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | - Ronell Sicat
- Visualization Core Lab, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Minmin Wang
- University of California, DavisDavisUnited States
| | - Li'ang Yu
- Boyce Thompson InstituteIthacaUnited States
| | - Rachid Ait-Haddou
- Department of Mathematics, King Fahd University of Petroleum and MineralsDhahranSaudi Arabia
| | - Bo Li
- School of Life Sciences, Lanzhou UniversityLanzhouChina
| | | | | | | | - Arthur Korte
- Julius-von-Sachs-Institute and Center for Computational and Theoretical Biology, Julius Maximilian UniversityWuerzburgGermany
| | - Łukasz Jaremko
- King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | | | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| | - Magdalena M Julkowska
- Boyce Thompson InstituteIthacaUnited States
- Center for Desert Agriculture, King Abdullah University of Science and TechnologyThuwalSaudi Arabia
| |
Collapse
|
9
|
Guo P, Chong L, Jiao Z, Xu R, Niu Q, Zhu Y. Salt stress activates the CDK8-AHL10-SUVH2/9 module to dynamically regulate salt tolerance in Arabidopsis. Nat Commun 2025; 16:2454. [PMID: 40074748 PMCID: PMC11903955 DOI: 10.1038/s41467-025-57806-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Salt stress has devastating effects on agriculture, yet the key regulators modulating the transcriptional dynamics of salt-responsive genes remain largely elusive in plants. Here, we discover that salt stress substantially induces the kinase activity of Mediator cyclin-dependent kinase 8 (CDK8), which is essential for its positive role in regulating salt tolerance. CDK8 is identified to phosphorylate AT-hook motif nuclear-localized protein 10 (AHL10) at serine 314, leading to its degradation under salt stress. Consistently, AHL10 is found to negatively regulate salt tolerance. Transcriptome analysis further indicates that CDK8 regulates over 20% of salt-responsive genes, half of which are co-regulated by AHL10. Moreover, AHL10 is revealed to recruit SU(VAR)3-9 homologs (SUVH2/9) to AT-rich DNA sequences in the nuclear matrix-attachment regions (MARs) of salt-responsive gene promoters, facilitating H3K9me2 deposition and repressing salt-responsive genes. Our study thereby has identified the CDK8-AHL10-SUVH2/9 module as a key molecular switch controlling transcriptional dynamics in response to salt stress.
Collapse
Affiliation(s)
- Pengcheng Guo
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Leelyn Chong
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhixin Jiao
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Rui Xu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yingfang Zhu
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute of Henan University, Sanya, Hainan, 572025, China.
| |
Collapse
|
10
|
Hu Y, Wang D, Zhang X, Lv X, Li B. Current progress in deciphering the molecular mechanisms underlying plant salt tolerance. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102671. [PMID: 39603169 DOI: 10.1016/j.pbi.2024.102671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Enhancing crop salt tolerance through genetics and genomics is important for food security. It is environmentally friendly and cost-effective in maintaining crop production in farmlands affected by soil salinization and can also facilitate the utilization of marginal saline land. Despite the limited success achieved so far, it is becoming possible to bridge the gap between fundamental research and crop breeding owing to a deeper understanding of plant salt tolerance at both physiological and molecular levels. Therefore, we review the recent key progress in identifying the molecular mechanisms contributing to plant salt tolerance with a focus on balancing growth and salt resilience. With the accruing knowledge and the rapidly evolving tools (e.g. genome editing and artificial intelligence), it is reasonable to expect the future salt-tolerant crops in a few decades.
Collapse
Affiliation(s)
- Yunfei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Dan Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaohua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Xiaodong Lv
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China
| | - Bo Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China.
| |
Collapse
|
11
|
Zhou X, Sun Z, Huang Y, He D, Lu L, Wei M, Lin S, Luo W, Liao X, Jin S, Guo M, Hao L, Jiang Z. WRKY45 positively regulates salinity and osmotic stress responses in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109408. [PMID: 39721186 DOI: 10.1016/j.plaphy.2024.109408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/28/2024]
Abstract
Salt damage is a major issue that causes a decline in crop yield. WRKY transcription factors (TFs) extensively regulate plant biotic and abiotic stress responses, growth, and development. WRKY45 is crucial in regulating leaf senescence, low phosphorus responses, and cadmium stress response in Arabidopsis. However, the involvement of WRKY45 in salinity and osmotic stress responses is unclear. Here, we report that WRKY45 plays a vital role in responding to salinity and osmotic stress. NaCl and sorbitol treatments upregulate WRKY45 expression. Furthermore, the overexpression of WRKY45 (WRKY45-OXs) may enhance the tolerance of Arabidopsis to salinity and osmotic stress. Moreover, the root length, fresh weight, chlorophyll, and proline content were significantly higher in WRKY45-OXs than in the wide type (WT) Col-0 plants after salt or PEG treatment, whereas malondialdehyde and reactive oxygen species (ROS) levels were significantly lower than in the WT plants. Correspondingly, the overexpression of WRKY45 modulated the expression of stress-responsive genes. Dual luciferase assay and electrophoretic mobility shift assay further confirmed that WRKY45 can activate the promoter of RD29A by directly binding to specific W-box cis-acting elements. Overall, our experimental evidence suggesting that WRKY45 mainly acts as a key regulator coordinating the response to high salinity and osmotic stress through mechanisms dependent on ABA signaling along with enhanced antioxidant capacity.
Collapse
Affiliation(s)
- Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China.
| | - Zhaofei Sun
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Yuanzhi Huang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Dan He
- Center for Quantitative Synthetic Biology, CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lu Lu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Mengting Wei
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Shuangmei Lin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Wenxi Luo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Xiaozhen Liao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Songsong Jin
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Manyuan Guo
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Lingyun Hao
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China
| | - Zhonghao Jiang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
12
|
Zeng XW, Jiang WZ, Zhang JL, Ding JH, Qiu YM, Wen W, Yang H, Zhang QY, Yuan HM. Ethylene negatively regulates cold tolerance through HbEIN3-HbICE2 regulatory module in Hevea brasiliensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109397. [PMID: 39671782 DOI: 10.1016/j.plaphy.2024.109397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/20/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Cold stress can result in reduced growth rates, decreased latex production, and restricted areas for the Para rubber tree (Hevea brasiliensis). However, the molecular mechanisms governing the response of Hevea brasiliensis to cold stress remain elusive. Here, we found that ethylene plays a negative role in Hevea brasiliensis responses to cold stress. Treatment with the ethylene synthesis precursor 1-aminocyclopropane-1-carboxylic acid (ACC) decreased the cold tolerance of Hevea brasiliensis, while exogenous treatment with Ag+ (an ethylene signal inhibitor) had the opposite effect. Additionally, overexpressing HbEIN3 decreased cold stress tolerance in Arabidopsis and Taraxacum koksaghyz plants. Quantitative real-time PCR analysis indicated that HbEIN3-1 and HbEIN3-2 repress the expression of the cold-responsive genes HbCBF1-3 in Hevea brasiliensis. Moreover, HbEIN3-1 and HbEIN3-2 directly bind to the HbCBF1 promoter to suppress its transcription. Further investigation revealed that HbEIN3s interact with and dampen the transcriptional activity of HbICE2, a crucial transcription factor that positively regulates the cold signaling pathway, thereby attenuating the expression of HbICE2-targeted genes. Collectively, these findings indicate that HbEIN3s play a crucial role in ethylene-regulated cold tolerance through the repression of HbCBF1 expression and HbICE2 transcriptional activity.
Collapse
Affiliation(s)
- Xue-Wei Zeng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China; Key Laboratory of Banana Genetic Improvement of Hainan Province , Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Wei-Zeng Jiang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jian-Long Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jia-Hui Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yi-Min Qiu
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Wei Wen
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Huan Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Qian-Yu Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Hong-Mei Yuan
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China.
| |
Collapse
|
13
|
Wu G, Sun X, Sun Q, Kang X, Wang J, He X, Liu W, Xu D, Dai X, Ma W, Zeng J. Genetic Variation in Wheat Root Transcriptome Responses to Salinity: A Comparative Study of Tolerant and Sensitive Genotypes. Int J Mol Sci 2025; 26:331. [PMID: 39796187 PMCID: PMC11720974 DOI: 10.3390/ijms26010331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Salt tolerance is a critical trait for plant survival and productivity in saline environments. Development of salt tolerant crops is a practical strategy for addressing soil salinity issues. In this study, RNA-Seq analysis was performed using two wheat cultivars with contrasting salt tolerance (Neixiang188, tolerant and Barra, sensitive) at 6 h and 24 h after salinity treatment to determine the genetic variations reflected in the RNA expression patterns and identify key genes associated with salt tolerance. Our results revealed that there were 2983 upregulated and 1091 downregulated differentially expressed genes (DEGs), which were found in common in the two accessions. Meanwhile, 529 salt tolerant associated DEGs were subjected to GO function annotation, KEGG enrichment, and protein-protein interaction (PPI) network prediction. Finally, a theoretical framework outlining the salt tolerance mechanisms of Neixiang188 was proposed. It can be inferred that Neixiang188 possesses superior ion homeostasis, ROS detoxification, and osmotic adjustment abilities compared to Barra when subjected to saline stress. The present research sheds light on the genetic foundation of salt tolerance in wheat and offers candidate genes for genetic manipulation. Our research insights enhance the comprehension of the molecular mechanisms underlying salt stress responses and could guide future breeding efforts for improving salt tolerance in crops.
Collapse
Affiliation(s)
- Gang Wu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Xuelian Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Qingyi Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Xin Kang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Jiayan Wang
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Xiaoyan He
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China; (G.W.); (X.S.); (Q.S.); (X.K.); (J.W.); (X.H.); (W.L.); (D.X.); (X.D.)
- Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, Dongying 257347, China
| |
Collapse
|
14
|
Yang H, Zhang J, Zhong Y, Wang L. 5-Aminolevulinic acid improves strawberry salt tolerance through a NO-H 2O 2 signaling circuit regulated by FaWRKY70 and FaWRKY40. J Adv Res 2024:S2090-1232(24)00609-X. [PMID: 39743212 DOI: 10.1016/j.jare.2024.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/13/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
INTRODUCTION 5-Aminolevulinic acid (ALA) is an essential biosynthetic precursor of tetrapyrrole compounds, naturally occurring in all living organisms. It has also been suggested as a new plant growth regulator. Treatment with ALA promotes strawberry Na+ homeostasis under salt stress. Regulation of this process requires the signaling molecules nitric oxide (NO) and hydrogen peroxide (H2O2), but the specific signaling cascade and transcriptional regulatory mechanism have not previously been characterized. OBJECTIVES Our work focused on the dissection of the NO and H2O2 signaling cascade and transcriptional regulatory mechanism by which FaWRKY70-FaWRKY40 participated in ALA-improved Na+ homeostasis and salt tolerance of strawberry. METHODS It was preliminarily confirmed by transcriptome and RT-qPCR that FaWRKY40 and FaWRKY70 participated in ALA-induced salt tolerance of strawberry. Two WRKY transcription factors overexpressed in woodland strawberry as well as tobacco were used to identify the gene functions in salt tolerance. Yeast one-hybrid (Y1H), β-glucuronidase (GUS), dual luciferase reporter (DLR) and electrophoretic mobility shift assays (EMSA) were used to verify the interaction with the target gene. RESULTS ALA induced NO and H2O2 production, which formed a signaling circuit reciprocally regulated by FaNR1 and FaRbohD expression to coordinate Na+ homeostasis. FaWRKY40 was shown to act as a positive transcription factor in this pathway: FaWRKY40 overexpression improved salt tolerance in woodland strawberry and tobacco, whereas FaWRKY40 RNA interference increased plant salt injury. FaWRKY40 bound to the promoters of FaRbohD, FaNHX1, and FaSOS1 to promote root H2O2 generation and Na+ reallocation. Conversely, FaWRKY70, a negative WRKY transcription factor, was found to increase salt sensitivity by inhibiting expression of FvWRKY40, FvNR1, and FvHKT1. ALA inhibited FaWRKY70 but increased FaWRKY40 expression, coordinating the regulation of NO-H2O2 signaling and Na+ homeostasis when strawberry was stress by salinity. CONCLUSION ALA inhibits NaCl-stimulated FaWRYK70 expression, relieving the transcriptional inhibition of its downstream targets. The NO-H2O2 signaling circuit can then initiate mechanisms such as Na+ exclusion, vacuolar sequestration, and removal of Na+ from the xylem sap, limiting Na+ accumulation in the leaves and promoting Na+ homeostasis and plant salt tolerance.
Collapse
Affiliation(s)
- Hao Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Jianting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 21095, China.
| |
Collapse
|
15
|
Song RF, Liao CY, Wang LF, Lu KK, Zhang C, Wu RX, Wu JX, Ma YQ, Kuang L, Guo N, Yuan HM, Liu WC. SORTING NEXIN1 facilitates SALT OVERLY SENSITIVE1 protein accumulation to enhance salt tolerance in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae633. [PMID: 39607743 DOI: 10.1093/plphys/kiae633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
The plasma membrane (PM)-localized Na+/H+ antiporter Salt Overly Sensitive1 (SOS1) is essential for plant salt tolerance through facilitating Na+ efflux; however, how SOS1 localization and protein accumulation is regulated in plants remains elusive. Here, we report that Sorting Nexin 1 (SNX1) is required for plant salt-stress tolerance through affecting endosomal trafficking of SOS1 in Arabidopsis (Arabidopsis thaliana). Disruption of SNX1 caused salt hypersensitivity with increased Na+ accumulation and decreased Na+ efflux in Arabidopsis when challenged with high salinity stress. SNX1 co-localized and interacted with SOS1 in endosomes, promoting its PM localization and protein stability in plants under saline conditions. SOS1 overexpression promoted salt tolerance in the wild-type, whereas such effect was greatly compromised in the snx1-2 mutant. Pharmaceutical results showed that SOS1 recycling from the cytosol to the PM was largely blocked while its vacuolar degradation was accelerated in the snx1-2 mutant. Furthermore, salt-induced SOS1 phosphorylation enhanced its interaction and co-localization with SNX1, which is required for SOS1 PM localization in plants. Our study elucidates that SNX1 facilitates SOS1 PM localization and protein accumulation through endosomal trafficking, thereby enhancing salt tolerance in plants.
Collapse
Affiliation(s)
- Ru-Feng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Cai-Yi Liao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lin-Feng Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kai-Kai Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Run-Xin Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ji-Xiao Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yu-Qing Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lei Kuang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Ning Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Hong-Mei Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Collaborative Innovation Center of Crop Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
- The Zhongzhou Laboratory for Integrative Biology, Henan University, Zhengzhou, Henan 450000, China
| |
Collapse
|
16
|
Huang Y, Sun Z, Zhou X. WRKY Transcription Factors in Response to Metal Stress in Plants: A Review. Int J Mol Sci 2024; 25:10952. [PMID: 39456735 PMCID: PMC11506853 DOI: 10.3390/ijms252010952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Heavy metals in soil can inflict direct damage on plants growing within it, adversely affecting their growth height, root development, leaf area, and other physiological traits. To counteract the toxic impacts of heavy metals on plant growth and development, plants mitigate heavy metal stress through mechanisms such as metal chelation, vacuolar compartmentalization, regulation of transporters, and enhancement of antioxidant functions. WRKY transcription factors (TFs) play a crucial role in plant growth and development as well as in responses to both biotic and abiotic stresses; notably, heavy metal stress is classified as an abiotic stressor. An increasing number of studies have highlighted the significant role of WRKY proteins in regulating heavy metal stress across various levels. Upon the entry of heavy metal ions into plant root cells, the production of reactive oxygen species (ROS) is triggered, leading to the phosphorylation and activation of WRKY TFs through MAPK cascade signaling. Activated WRKY TFs then modulate various physiological processes by upregulating or downregulating the expression of downstream genes to confer heavy metal tolerance to plants. This review provides an overview of the research advancements regarding WRKY TFs in regulating heavy metal ion stress-including cadmium (Cd), arsenic (As), copper (Cu)-and aluminum (Al) toxicity.
Collapse
Affiliation(s)
| | | | - Xiangui Zhou
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518000, China; (Y.H.); (Z.S.)
| |
Collapse
|
17
|
Chen C, Yu W, Xu X, Wang Y, Wang B, Xu S, Lan Q, Wang Y. Research Advancements in Salt Tolerance of Cucurbitaceae: From Salt Response to Molecular Mechanisms. Int J Mol Sci 2024; 25:9051. [PMID: 39201741 PMCID: PMC11354715 DOI: 10.3390/ijms25169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Soil salinization severely limits the quality and productivity of economic crops, threatening global food security. Recent advancements have improved our understanding of how plants perceive, signal, and respond to salt stress. The discovery of the Salt Overly Sensitive (SOS) pathway has been crucial in revealing the molecular mechanisms behind plant salinity tolerance. Additionally, extensive research into various plant hormones, transcription factors, and signaling molecules has greatly enhanced our knowledge of plants' salinity tolerance mechanisms. Cucurbitaceae plants, cherished for their economic value as fruits and vegetables, display sensitivity to salt stress. Despite garnering some attention, research on the salinity tolerance of these plants remains somewhat scattered and disorganized. Consequently, this article offers a review centered on three aspects: the salt response of Cucurbitaceae under stress; physiological and biochemical responses to salt stress; and the current research status of their molecular mechanisms in economically significant crops, like cucumbers, watermelons, melon, and loofahs. Additionally, some measures to improve the salt tolerance of Cucurbitaceae crops are summarized. It aims to provide insights for the in-depth exploration of Cucurbitaceae's salt response mechanisms, uncovering the roles of salt-resistant genes and fostering the cultivation of novel varieties through molecular biology in the future.
Collapse
Affiliation(s)
- Cuiyun Chen
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wancong Yu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Xinrui Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yiheng Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Bo Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Shiyong Xu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Qingkuo Lan
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yong Wang
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China; (C.C.); (W.Y.); (X.X.); (Y.W.); (B.W.); (S.X.)
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| |
Collapse
|
18
|
Chen C, Wu Q, Yue J, Wang X, Wang C, Wei R, Li R, Jin G, Chen T, Chen P. A cyclic nucleotide-gated channel gene HcCNGC21 positively regulates salt and drought stress responses in kenaf (Hibiscus cannabinus L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 345:112111. [PMID: 38734143 DOI: 10.1016/j.plantsci.2024.112111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.
Collapse
Affiliation(s)
- Canni Chen
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Qijing Wu
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Jiao Yue
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Xu Wang
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Caijin Wang
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Rujian Wei
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China
| | - Ru Li
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Gang Jin
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Tao Chen
- Guangxi Subtropical Crops Research Institute, Nanning 530001, China
| | - Peng Chen
- College of Agriculture, Guangxi University, Key Laboratory of Crop Genetic Breeding and Germplasm Innovation, Guangxi Key Laboratory of Agro-environment and Agric-products safety, Nanning 530004, China.
| |
Collapse
|
19
|
Chen G, Gao J, Wu S, Chang Y, Chen Z, Sun J, Zhang L, Wu J, Sun X, Quick WP, Cui X, Zhang Z, Lu T. The OsMOB1A-OsSTK38 kinase complex phosphorylates CYCLIN C, controlling grain size and weight in rice. THE PLANT CELL 2024; 36:2873-2892. [PMID: 38723594 PMCID: PMC11289633 DOI: 10.1093/plcell/koae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 08/02/2024]
Abstract
Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38, and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signaling pathway and the cyclin-dependent kinase module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.
Collapse
Affiliation(s)
- Guoxin Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jiabei Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Suting Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Yuan Chang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhenhua Chen
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Liying Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jinxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Xuehui Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - William Paul Quick
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
- School of Biosciences, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Xuean Cui
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| |
Collapse
|
20
|
Liu J, Zhang M, Xu J, Yao X, Lou L, Hou Q, Zhu L, Yang X, Liu G, Xu J. A Transcriptomic Analysis of Bottle Gourd-Type Rootstock Roots Identifies Novel Transcription Factors Responsive to Low Root Zone Temperature Stress. Int J Mol Sci 2024; 25:8288. [PMID: 39125858 PMCID: PMC11313094 DOI: 10.3390/ijms25158288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks' root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd's regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2-. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts.
Collapse
Affiliation(s)
- Jinqiu Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Man Zhang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jian Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xiefeng Yao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lina Lou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Qian Hou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lingli Zhu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xingping Yang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Guang Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jinhua Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
21
|
Ping X, Ye Q, Yan M, Wang J, Zhang T, Chen S, Siddique KHM, Cowling WA, Li J, Liu L. Overexpression of BnaA10.WRKY75 Decreases Cadmium and Salt Tolerance via Increasing ROS Accumulation in Arabidopsis and Brassica napus L. Int J Mol Sci 2024; 25:8002. [PMID: 39063244 PMCID: PMC11276826 DOI: 10.3390/ijms25148002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Soil is indispensable for agricultural production but has been seriously polluted by cadmium and salt in recent years. Many crops are suffering from this, including rapeseed, the third largest global oilseed crop. However, genes simultaneously related to both cadmium and salt stress have not been extensively reported yet. In this study, BnaA10.WRKY75 was screened from previous RNA-seq data related to cadmium and salt stress and further analyses including sequence comparison, GUS staining, transformation and qRT-PCR were conducted to confirm its function. GUS staining and qRT-PCR results indicated BnaA10.WRKY75 was induced by CdCl2 and NaCl treatment. Sequence analysis suggested BnaA10.WRKY75 belongs to Group IIc of the WRKY gene family and transient expression assay showed it was a nuclear localized transcription factor. BnaA10.WRKY75-overexpressing Arabidopsis and rapeseed plants accumulated more H2O2 and O2- and were more sensitive to CdCl2 and NaCl treatment compared with untransformed plants, which may be caused by the downregulation of BnaC03.CAT2. Our study reported that BnaA10.WRKY75 increases sensitivity to cadmium and salt stress by disrupting the balance of reactive oxygen species both in Arabidopsis and rapeseed. The results support the further understanding of the mechanisms underlying cadmium and salt tolerance and provide BnaA10.WRKY75 as a valuable gene for rapeseed abiotic stress breeding.
Collapse
Affiliation(s)
- Xiaoke Ping
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Qianjun Ye
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Mei Yan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Jia Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Taiyuan Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Sheng Chen
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Wallace A. Cowling
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6000, Australia
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Liezhao Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Peng Y, Cui L, Wang Y, Wei L, Geng S, Chen H, Chen G, Yang L, Bie Z. Pumpkin CmoDREB2A enhances salt tolerance of grafted cucumber through interaction with CmoNAC1 to regulate H 2O 2 and ABA signaling and K +/Na + homeostasis. HORTICULTURE RESEARCH 2024; 11:uhae057. [PMID: 38720932 PMCID: PMC11077054 DOI: 10.1093/hr/uhae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 05/12/2024]
Abstract
Pumpkin CmoNAC1 enhances salt tolerance in grafted cucumbers. However, the potential interactions with other proteins that may co-regulate salt tolerance alongside CmoNAC1 have yet to be explored. In this study, we identified pumpkin CmoDREB2A as a pivotal transcription factor that interacts synergistically with CmoNAC1 in the co-regulation of salt tolerance. Both transcription factors were observed to bind to each other's promoters, forming a positive regulatory loop of their transcription. Knockout of CmoDREB2A in the root resulted in reduced salt tolerance in grafted cucumbers, whereas overexpression demonstrated the opposite effect. Multiple assays in our study provided evidence of the protein interaction between CmoDREB2A and CmoNAC1. Exploiting this interaction, CmoDREB2A facilitated the binding of CmoNAC1 to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1, inducing H2O2 and ABA synthesis and increasing the K+/Na+ ratio in grafted cucumbers under salt stress. Additionally, CmoNAC1 also promoted the binding of CmoDREB2A to CmoHAK5;1/CmoHAK5;2 promoters, further contributing to the K+/Na+ homeostasis. In summary, these findings reveal a crucial mechanism of CmoNAC1 and CmoDREB2A forming a complex enhancing salt tolerance in grafted cucumbers.
Collapse
Affiliation(s)
- Yuquan Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lvjun Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lanxing Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shouyu Geng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Hui Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Guoyu Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Hubei Hongshan Laboratory, Department of Science and Technology of Hubei Province, 430070 Wuhan, China
| |
Collapse
|
23
|
Wang S, Jiang R, Feng J, Zou H, Han X, Xie X, Zheng G, Fang C, Zhao J. Overexpression of transcription factor FaMYB63 enhances salt tolerance by directly binding to the SOS1 promoter in Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 114:32. [PMID: 38512490 DOI: 10.1007/s11103-024-01431-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Salinity is a pivotal abiotic stress factor with far-reaching consequences on global crop growth, yield, and quality and which includes strawberries. R2R3-MYB transcription factors encompass a range of roles in plant development and responses to abiotic stress. In this study, we identified that strawberry transcription factor FaMYB63 exhibited a significant upregulation in its expression under salt stress conditions. An analysis using yeast assay demonstrated that FaMYB63 exhibited the ability to activate transcriptional activity. Compared with those in the wild-type (WT) plants, the seed germination rate, root length, contents of chlorophyll and proline, and antioxidant activities (SOD, CAT, and POD) were significantly higher in FaMYB63-overexpressing Arabidopsis plants exposed to salt stress. Conversely, the levels of malondialdehyde (MDA) were considerably lower. Additionally, the FaMYB63-overexpressed Arabidopsis plants displayed a substantially improved capacity to scavenge active oxygen. Furthermore, the activation of stress-related genes by FaMYB63 bolstered the tolerance of transgenic Arabidopsis to salt stress. It was also established that FaMYB63 binds directly to the promoter of the salt overly sensitive gene SOS1, thereby activating its expression. These findings identified FaMYB63 as a possible and important regulator of salt stress tolerance in strawberries.
Collapse
Affiliation(s)
- Shuaishuai Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Rongyi Jiang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jian Feng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Haodong Zou
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaohuan Han
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xingbin Xie
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Guanghui Zheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Congbing Fang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Jing Zhao
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
24
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
25
|
Zhang M, Hou X, Yang H, Wang J, Li Y, Liu Q, Zhang C, Wang B, Chen M. The NAC gene family in the halophyte Limonium bicolor: Identification, expression analysis, and regulation of abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108462. [PMID: 38484683 DOI: 10.1016/j.plaphy.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/10/2024] [Accepted: 02/21/2024] [Indexed: 04/02/2024]
Abstract
NAC transcription factors regulate plant growth, development, and stress responses. However, the number, types, and biological functions of Limonium bicolor LbNAC genes have remained elusive. L. bicolor secretes excessive salt ions through salt glands on its stems and leaves to reduce salt-induced damage. Here, we identified 63 NAC members (LbNAC1-63) in L. bicolor, which were unevenly distributed across eight chromosomes. Cis-elements in the LbNAC promoters were related to growth and development, stress responses, and phytohormone responses. We observed strong colinearity between LbNACs and GmNACs from soybean (Glycine max). Thus, LbNAC genes may share similar functions with GmNAC genes. Expression analysis indicated that 16 LbNAC genes are highly expressed in roots, stems, leaves, and flowers, whereas 17 LbNAC genes were highly expressed throughout salt gland development, suggesting that they may regulate this developmental stage. Silencing LbNAC54 in L. bicolor decreased salt gland density, salt secretion from leaves, and overall salt tolerance. In agreement, genes related to salt gland development were significantly downregulated in LbNAC54-silenced lines. Our findings shed light on LbNAC genes and help elucidate salt gland development and salt secretion in L. bicolor. Our data also provide insight into NAC functions in halophytes.
Collapse
Affiliation(s)
- Mingjing Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China; Laboratory of Plant Molecular Biology & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276000, China
| | - Xueting Hou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Hui Yang
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257000, China
| | - Juying Wang
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257000, China
| | - Ying Li
- National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257000, China
| | - Qing Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Caixia Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China
| | - Min Chen
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Shandong, 250014, China; Dongying Institute, Shandong Normal University, No. 2 Kangyang Road, Dongying, 257000, China.
| |
Collapse
|
26
|
Liang X, Li J, Yang Y, Jiang C, Guo Y. Designing salt stress-resilient crops: Current progress and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:303-329. [PMID: 38108117 DOI: 10.1111/jipb.13599] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
Collapse
Affiliation(s)
- Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100194, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
27
|
Zhao H, Li D, Liu Y, Zhang T, Zhao X, Su H, Li J. Flavin-containing monooxygenases FMO GS-OXs integrate flowering transition and salt tolerance in Arabidopsis thaliana. PHYSIOLOGIA PLANTARUM 2024; 176:e14287. [PMID: 38606719 DOI: 10.1111/ppl.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Salt stress substantially leads to flowering delay. The regulation of salt-induced late flowering has been studied at the transcriptional and protein levels; however, the involvement of secondary metabolites has rarely been investigated. Here, we report that FMOGS-OXs (EC 1.14.13.237), the enzymes that catalyze the biosynthesis of glucosinolates (GSLs), promote flowering transition in Arabidopsis thaliana. It has been reported that WRKY75 is a positive regulator, and MAF4 is a negative regulator of flowering transition. The products of FMOGS-OXs, methylsulfinylalkyl GSLs (MS GSLs), facilitate flowering by inducing WRKY75 and repressing the MAS-MAF4 module. We further show that the degradation of MS GSLs is involved in salt-induced late flowering and salt tolerance. Salt stress induces the expression of myrosinase genes, resulting in the degradation of MS GSLs, thereby relieving the promotion of WRKY75 and inhibition of MAF4, leading to delayed flowering. In addition, the degradation products derived from MS GSLs enhance salt tolerance. Previous studies have revealed that FMOGS-OXs exhibit alternative catalytic activity to form trimethylamine N-oxide (TMAO) under salt stress, which activates multiple stress-related genes to promote salt tolerance. Therefore, FMOGS-OXs integrate flowering transition and salt tolerance in various ways. Our study shed light on the functional diversity of GSLs and established a connection between flowering transition, salt resistance, and GSL metabolism.
Collapse
Affiliation(s)
- Haiyan Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Dong Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Yuqi Liu
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Tianqi Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Xiaofei Zhao
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Hongzhu Su
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| | - Jing Li
- College of Life Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
28
|
Shang C, Liu X, Chen G, Zheng H, Khan A, Li G, Hu X. SlWRKY80-mediated jasmonic acid pathway positively regulates tomato resistance to saline-alkali stress by enhancing spermidine content and stabilizing Na +/K + homeostasis. HORTICULTURE RESEARCH 2024; 11:uhae028. [PMID: 38559468 PMCID: PMC10980716 DOI: 10.1093/hr/uhae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 04/04/2024]
Abstract
Saline-alkali is an important abiotic stressor influencing tomato production. Exogenous methyl jasmonate (MeJA) is well known to increase tomato resistance to a variety of stresses, although its exact mechanism is yet unknown. In this study we confirmed that 22.5 μmol/l MeJA could significantly improve the saline-alkali stress resistance of tomato. Saline-alkali (300 mM) stress increased the endogenous MeJA and jasmonic acid (JA) contents of tomato by 18.8 and 13.4%, respectively. Exogenous application of 22.5 μmol/l MeJA increased the endogenous MeJA and JA contents in tomato by 15.2 and 15.9%, respectively. Furthermore, we found an important transcription factor, SlWRKY80, which responded to MeJA, and constructed its overexpressing and knockout lines through genetic transformation. It was found that SlWRKY80 actively regulated tomato resistance to saline-alkali stress, and the spraying of exogenous MeJA (22.5 μmol/l) reduced the sensitivity of SlWRKY80 knockout lines to saline-alkali stress. The SlWRKY80 protein directly combines with the promoter of SlSPDS2 and SlNHX4 to positively regulate the transcription of SlSPDS2 and SlNHX4, thereby promoting the synthesis of spermidine and Na+/K+ homeostasis, actively regulating saline-alkali stress. The augmentation of JA content led to a notable reduction of 70.6% in the expression of SlJAZ1, and the release of the SlWRKY80 protein interacting with SlJAZ1. In conclusion, we revealed the mechanism of exogenous MeJA in tomato stress resistance through multiple metabolic pathways, elucidated that exogenous MeJA further promotes spermidine synthesis and Na+/K+ homeostasis by activating the expression of SlWRKY80, which provides a new theoretical basis for the study of the JA stress resistance mechanism and the production of tomato.
Collapse
Affiliation(s)
- Chunyu Shang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaoyan Liu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Guo Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Hao Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
29
|
Alsubhi SA, Aljeddani GS, Fallatah TA. Comparative assessment of metabolic, ionic and molecular responsiveness of four facultative halophytes to habitat salinization in the southwest of Jeddah Governorate, Saudi Arabia. BRAZ J BIOL 2024; 83:e277342. [PMID: 38422268 DOI: 10.1590/1519-6984.277342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/22/2023] [Indexed: 03/02/2024] Open
Abstract
This study explores the influence of salinity on some physiological and biochemical pathways of four facultative halophytes (Abutilon pannosum, Indigofera oblongifolia, Senna italica, and Tetraena coccinea) along the southwest coast of Jeddah Governorate. Through a comparative analysis of these plants in both saline and non-saline environments, the study investigates chlorophyll levels, ion concentrations within the plants, the correlation with the SOS1 gene, and the impact of salinity on metabolic compounds. The overarching goal is to gain insights into the adaptive mechanisms of these specific plants to salt stress, providing valuable information for addressing global agricultural challenges associated with salinity. Throughout the study, metabolic, ionic, and molecular responses of these plants were scrutinized in both environments. The findings revealed elevated levels of Na+, K+, Ca2+, and Mg2+ in saline habitats, except for Na+ in I. oblongifolia. Despite increased concentrations of Chl b, variations were noted in Chl a and carotenoids in plants exposed to salt. Osmoregulatory patterns in A. pannosum and I. oblongifolia exhibited reversible changes, including heightened protein and proline levels in A. pannosum and decreased levels in I. oblongifolia, accompanied by alterations in amino acids and soluble carbohydrates. Senna italica displayed higher levels of osmolytes, excluding proline, compared to salinized environments, while T. coccinea exhibited lower levels of amino acids. The accumulation of Na+ emerged as the primary mechanism for ionic homeostasis in these plants, with non-significant decreases observed in K+, Mg2+, and Ca2+. Notably, an overexpression of the SOS1 gene (plasma membrane Na+/H+ antiporter) was observed as a response to maintaining ionic balance. Understanding these halophytes will be critical in addressing salinity challenges and enhancing crop tolerance to salinity.
Collapse
Affiliation(s)
- S A Alsubhi
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - G S Aljeddani
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| | - T A Fallatah
- University of Jeddah, College of Science, Department of Biology, Jeddah, Saudi Arabia
| |
Collapse
|
30
|
Song RF, Hu XY, Liu WC, Yuan HM. ABA functions in low phosphate-induced anthocyanin accumulation through the transcription factor ABI5 in Arabidopsis. PLANT CELL REPORTS 2024; 43:55. [PMID: 38315238 DOI: 10.1007/s00299-024-03146-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
KEY MESSAGE ABI5 functions in ABA-mediated anthocyanin accumulation in plant response to low phosphate. Low phosphate (LP)-induced anthocyanin biosynthesis and accumulation play an important role in plant adaptive response to phosphate starvation conditions. However, whether and how the stress phytohormone abscisic acid (ABA) participates in LP-induced anthocyanin accumulation remain elusive. Here, we report that ABA is required for LP-induced anthocyanin accumulation in Arabidopsis thaliana. Disrupting ABA DEFICIENT2 (ABA2), a key ABA-biosynthetic gene, or BETA-GLUCOSIDASE1 (BG1), a major gene implicated in converting conjugated ABA to active ABA, significantly impairs LP-induced anthocyanin accumulation, as LP-induced expression of the anthocyanin-biosynthetic genes Chalcone Synthase (CHS) is dampened in the aba2 and bg1 mutant. In addition, LP-induced anthocyanin accumulation is defective in the mutants of ABA signaling pathway, including ABA receptors, ABA Insensitive2, and the transcription factors ABA Insensitive5 (ABI5), suggesting a role of ABI5 in ABA-mediated upregulation of anthocyanin-biosynthetic genes in plant response to LP. Indeed, LP-induced expression of CHS is repressed in the abi5-7 mutant but further promoted in the ABI5-overexpressing plants compared to the wild-type. Moreover, ABI5 can bind to and transcriptionally activate CHS, and the defectiveness of LP-induced anthocyanin accumulation in abi5-7 can be restored by overexpressing CHS. Collectively, our findings illustrates that ABI5 functions in ABA-mediated LP-induced anthocyanin accumulation in Arabidopsis.
Collapse
Affiliation(s)
- Ru-Feng Song
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiao-Yu Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China.
- Sanya Institute, Henan University, Sanya, 572025, China.
| | - Hong-Mei Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China.
| |
Collapse
|
31
|
Zhao H, Ma L, Shen J, Zhou H, Zheng Y. S-nitrosylation of the transcription factor MYB30 facilitates nitric oxide-promoted seed germination in Arabidopsis. THE PLANT CELL 2024; 36:367-382. [PMID: 37930821 PMCID: PMC10827312 DOI: 10.1093/plcell/koad276] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
The gaseous signaling molecule nitric oxide (NO) plays an important role in breaking seed dormancy. NO induces a decrease in abscisic acid (ABA) content by transcriptionally activating its catabolic enzyme, the ABA 8'-hydroxylase CYP707A2. However, the underlying mechanism of this process remains unclear. Here, we report that the transcription factor MYB30 plays a critical role in NO-induced seed germination in Arabidopsis (Arabidopsis thaliana). MYB30 loss-of-function attenuates NO-mediated seed dormancy breaking. MYB30 triggers a NO-induced decrease in ABA content during germination by directly promoting CYP707A2 expression. NO induces S-nitrosylation at Cys-49 of MYB30 and enhances its transcriptional activity. Conversely, the ABA receptors PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) interact with MYB30 and repress its transcriptional activity. ABA promotes the interaction between PYL4 and MYB30, whereas S-nitrosylation releases the PYL4-mediated inhibition of MYB30 by interfering with the PYL4-MYB30 interaction. Genetic analysis showed that MYB30 functions downstream of PYLs during seed dormancy and germination in response to NO. Furthermore, MYB30 mutation significantly represses the reduced dormancy phenotype and the enhanced CYP707A2 expression of the pyr1 pyl1 pyl2 pyl4 quadruple mutant. Our findings reveal that S-nitrosylation of MYB30 precisely regulates the balance of seed dormancy and germination, providing insights into the underlying mechanism of NO-promoted seed germination.
Collapse
Affiliation(s)
- Hongyun Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key
Laboratory of Plant Stress Biology, School of Life Sciences, Henan
University, Kaifeng 475001, China
| | - Liang Ma
- State Key Laboratory of Plant Environmental Resilience, College of
Biological Sciences, China Agricultural University, Beijing
100193, China
| | - Jialu Shen
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key
Laboratory of Plant Stress Biology, School of Life Sciences, Henan
University, Kaifeng 475001, China
| | - Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of
Education, College of Life Sciences, Sichuan University,
Chengdu 610064, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Key
Laboratory of Plant Stress Biology, School of Life Sciences, Henan
University, Kaifeng 475001, China
| |
Collapse
|
32
|
Han J, Dai J, Chen Z, Li W, Li X, Zhang L, Yao A, Zhang B, Han D. Overexpression of a 'Beta' MYB Factor Gene, VhMYB15, Increases Salinity and Drought Tolerance in Arabidopsis thaliana. Int J Mol Sci 2024; 25:1534. [PMID: 38338813 PMCID: PMC10855843 DOI: 10.3390/ijms25031534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/21/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
'Beta' is a hybrid of Vitis riparia L. and V. labrusca and has a strong ability to adapt to adverse growth environments and is mainly cultivated and used as a resistant rootstock. At present, the most extensively studied MYB TFs are R2R3-type, which have been found to be involved in plant growth, development, and stress response processes. In the present research, VhMYB15, a key transcription factor for abiotic stress tolerance, was screened by bioinformatics in 'Beta' rootstock, and its function under salinity and drought stresses was investigated. VhMYB15 was highly expressed in roots and mature leave under salinity and drought stresses. Observing the phenotype and calculating the survival rate of plants, it was found that VhMYB15-overexpressing plants exhibited relatively less yellowing and wilting of leaves and a higher survival rate under salinity and drought stresses. Consistent with the above results, through the determination of stress-related physiological indicators and the expression analysis of stress-related genes (AtSOS2, AtSOS3, AtSOS1, AtNHX1, AtSnRK2.6, AtNCED3, AtP5CS1, and AtCAT1), it was found that transgenic Arabidopsis showed better stress tolerance and stronger adaptability under salinity and drought stresses. Based on the above data, it was preliminarily indicated that VhMYB15 may be a key factor in salinity and drought regulation networks, enhancing the adaptability of 'Beta' to adverse environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bingxiu Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.H.); (J.D.); (Z.C.); (W.L.); (X.L.); (L.Z.); (A.Y.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (J.H.); (J.D.); (Z.C.); (W.L.); (X.L.); (L.Z.); (A.Y.)
| |
Collapse
|
33
|
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y. Insights into plant salt stress signaling and tolerance. J Genet Genomics 2024; 51:16-34. [PMID: 37647984 DOI: 10.1016/j.jgg.2023.08.007] [Citation(s) in RCA: 111] [Impact Index Per Article: 111.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
Soil salinization is an essential environmental stressor, threatening agricultural yield and ecological security worldwide. Saline soils accumulate excessive soluble salts which are detrimental to most plants by limiting plant growth and productivity. It is of great necessity for plants to efficiently deal with the adverse effects caused by salt stress for survival and successful reproduction. Multiple determinants of salt tolerance have been identified in plants, and the cellular and physiological mechanisms of plant salt response and adaption have been intensely characterized. Plants respond to salt stress signals and rapidly initiate signaling pathways to re-establish cellular homeostasis with adjusted growth and cellular metabolism. This review summarizes the advances in salt stress perception, signaling, and response in plants. A better understanding of plant salt resistance will contribute to improving crop performance under saline conditions using multiple engineering approaches. The rhizosphere microbiome-mediated plant salt tolerance as well as chemical priming for enhanced plant salt resistance are also discussed in this review.
Collapse
Affiliation(s)
- Huapeng Zhou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Haifan Shi
- College of Grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China
| | - Xixian Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xi Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fei Xiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Lian W, Geng A, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of Potassium Absorption, Transport, and Utilization in Rice. Int J Mol Sci 2023; 24:16682. [PMID: 38069005 PMCID: PMC10705939 DOI: 10.3390/ijms242316682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Potassium is essential for plant growth and development and stress adaptation. The maintenance of potassium homeostasis involves a series of potassium channels and transporters, which promote the movement of potassium ions (K+) across cell membranes and exhibit complex expression patterns and regulatory mechanisms. Rice is a major food crop in China. The low utilization rate of potassium fertilizer limits the yield and quality of rice. Elucidating the molecular mechanisms of potassium absorption, transport, and utilization is critical in improving potassium utilization efficiency in rice. Although some K+ transporter genes have been identified from rice, research on the regulatory network is still in its infancy. Therefore, this review summarizes the relevant information on K+ channels and transporters in rice, covering the absorption of K+ in the roots, transport to the shoots, the regulation pathways, the relationship between K+ and the salt tolerance of rice, and the synergistic regulation of potassium, nitrogen, and phosphorus signals. The related research on rice potassium nutrition has been comprehensively reviewed, the existing research foundation and the bottleneck problems to be solved in this field have been clarified, and the follow-up key research directions have been pointed out to provide a theoretical framework for the cultivation of potassium-efficient rice.
Collapse
Affiliation(s)
- Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
35
|
Wang X, Wang B, Yuan F. Deciphering the roles of unknown/uncharacterized genes in plant development and stress responses. FRONTIERS IN PLANT SCIENCE 2023; 14:1276559. [PMID: 38078098 PMCID: PMC10701545 DOI: 10.3389/fpls.2023.1276559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/08/2023] [Indexed: 10/16/2024]
Abstract
In recent years, numerous genes that encode proteins with specific domains that participate in different biological processes or have different molecular functions have been identified. A class of genes with typical domains whose function has rarely been identified and another type of genes with no typical domains have attracted increasing attentions. As many of these so-called as unknown/uncharacterized (U/U) genes are involved in important processes, such as plant growth and plant stress resistance, there is much interest in deciphering their molecular roles. Here, we summarize our current understanding of these genes, including their structures, classifications, and roles in plant growth and stress resistance, summarize progress in the methods used to decipher the roles of these genes, and provide new research perspectives. Unveiling the molecular functions of unknown/uncharacterized genes may suggest strategies to fine-tune important physiological processes in plants, which will enrich the functional network system of plants and provide more possibilities for adaptive improvement of plants.
Collapse
Affiliation(s)
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
36
|
Qiu YM, Guo J, Jiang WZ, Ding JH, Song RF, Zhang JL, Huang X, Yuan HM. HbBIN2 Functions in Plant Cold Stress Resistance through Modulation of HbICE1 Transcriptional Activity and ROS Homeostasis in Hevea brasiliensis. Int J Mol Sci 2023; 24:15778. [PMID: 37958762 PMCID: PMC10649430 DOI: 10.3390/ijms242115778] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Cold stress poses significant limitations on the growth, latex yield, and ecological distribution of rubber trees (Hevea brasiliensis). The GSK3-like kinase plays a significant role in helping plants adapt to different biotic and abiotic stresses. However, the functions of GSK3-like kinase BR-INSENSITIVE 2 (BIN2) in Hevea brasiliensis remain elusive. Here, we identified HbBIN2s of Hevea brasiliensis and deciphered their roles in cold stress resistance. The transcript levels of HbBIN2s are upregulated by cold stress. In addition, HbBIN2s are present in both the nucleus and cytoplasm and have the ability to interact with the INDUCER OF CBF EXPRESSION1(HbICE1) transcription factor, a central component in cold signaling. HbBIN2 overexpression in Arabidopsis displays decreased tolerance to chilling stress with a lower survival rate and proline content but a higher level of electrolyte leakage (EL) and malondialdehyde (MDA) than wild type under cold stress. Meanwhile, HbBIN2 transgenic Arabidopsis treated with cold stress exhibits a significant increase in the accumulation of reactive oxygen species (ROS) and a decrease in the activity of antioxidant enzymes. Further investigation reveals that HbBIN2 inhibits the transcriptional activity of HbICE1, thereby attenuating the expression of C-REPEAT BINDING FACTOR (HbCBF1). Consistent with this, overexpression of HbBIN2 represses the expression of CBF pathway cold-regulated genes under cold stress. In conclusion, our findings indicate that HbBIN2 functions as a suppressor of cold stress resistance by modulating HbICE1 transcriptional activity and ROS homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi Huang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (Y.-M.Q.); (J.G.); (W.-Z.J.); (J.-H.D.); (R.-F.S.); (J.-L.Z.)
| | - Hong-Mei Yuan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (Y.-M.Q.); (J.G.); (W.-Z.J.); (J.-H.D.); (R.-F.S.); (J.-L.Z.)
| |
Collapse
|
37
|
Peng Y, Cao H, Cui L, Wang Y, Wei L, Geng S, Yang L, Huang Y, Bie Z. CmoNAC1 in pumpkin rootstocks improves salt tolerance of grafted cucumbers by binding to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2 and CmoHKT1;1 to regulate H 2O 2, ABA signaling and K +/Na + homeostasis. HORTICULTURE RESEARCH 2023; 10:uhad157. [PMID: 37719275 PMCID: PMC10500151 DOI: 10.1093/hr/uhad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/04/2023] [Indexed: 09/19/2023]
Abstract
The NAC transcription factor is a type of plant-specific transcription factor that can regulate plant salt tolerance, but the underlying mechanism is unclear in grafted vegetables. H2O2 and ABA in pumpkin rootstocks can be transported to cucumber scion leaves, promoting stomatal closure to improve salt tolerance of grafted cucumbers. Despite these observations, the regulatory mechanism is unknown. Here, our research revealed that CmoNAC1 is a key transcription factor that regulates H2O2 and ABA signaling in pumpkin roots under salt stress. The function of CmoNAC1 was analyzed using root transformation and RNA-seq, and we found that pumpkin CmoNAC1 promoted the production of H2O2 and ABA via CmoRBOHD1 and CmoNCED6, respectively, and regulated K+/Na+ homeostasis via CmoAKT1;2, CmoHKT1;1, and CmoSOS1 to improve salt tolerance of grafted cucumbers. Root knockout of CmoNAC1 resulted in a significant decrease in H2O2 (52.9% and 32.1%) and ABA (21.8% and 42.7%) content and K+/Na+ ratio (81.5% and 56.3%) in leaf and roots of grafted cucumber, respectively, while overexpression showed the opposite effect. The root transformation experiment showed that CmoNCED6 could improve salt tolerance of grafted cucumbers by regulating ABA production and K+/Na+ homeostasis under salt stress. Finally, we found that CmoNAC1 bound to the promoters of CmoRBOHD1, CmoNCED6, CmoAKT1;2, and CmoHKT1;1 using yeast one-hybrid, luciferase, and electrophoretic mobility shift assays. In conclusion, pumpkin CmoNAC1 not only binds to the promoters of CmoRBOHD1 and CmoNCED6 to regulate the production of H2O2 and ABA signals in roots, but also binds to the promoters of CmoAKT1;2 and CmoHKT1;1 to increase the K+/Na+ ratio, thus improving salt tolerance of grafted cucumbers.
Collapse
Affiliation(s)
- Yuquan Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Haishun Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, 510640 Guangzhou, China
| | - Lvjun Cui
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ying Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Lanxing Wei
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Shouyu Geng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Li Yang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yuan Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
| | - Zhilong Bie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops/College of Horticulture and Forestry Sciences, Huazhong Agricultural University, 430070 Wuhan, China
- Hubei Hongshan Laboratory, 430070 Wuhan, China
| |
Collapse
|
38
|
Ma Y, Ran J, Li G, Wang M, Yang C, Wen X, Geng X, Zhang L, Li Y, Zhang Z. Revealing the Roles of the JAZ Family in Defense Signaling and the Agarwood Formation Process in Aquilaria sinensis. Int J Mol Sci 2023; 24:9872. [PMID: 37373020 DOI: 10.3390/ijms24129872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Jasmonate ZIM-domain family proteins (JAZs) are repressors in the signaling cascades triggered by jasmonates (JAs). It has been proposed that JAs play essential roles in the sesquiterpene induction and agarwood formation processes in Aquilaria sinensis. However, the specific roles of JAZs in A. sinensis remain elusive. This study employed various methods, including phylogenetic analysis, real-time quantitative PCR, transcriptomic sequencing, yeast two-hybrid assay, and pull-down assay, to characterize A. sinensis JAZ family members and explore their correlations with WRKY transcription factors. The bioinformatic analysis revealed twelve putative AsJAZ proteins in five groups and sixty-four putative AsWRKY transcription factors in three groups. The AsJAZ and AsWRKY genes exhibited various tissue-specific or hormone-induced expression patterns. Some AsJAZ and AsWRKY genes were highly expressed in agarwood or significantly induced by methyl jasmonate in suspension cells. Potential relationships were proposed between AsJAZ4 and several AsWRKY transcription factors. The interaction between AsJAZ4 and AsWRKY75n was confirmed by yeast two-hybrid and pull-down assays. This study characterized the JAZ family members in A. sinensis and proposed a model of the function of the AsJAZ4/WRKY75n complex. This will advance our understanding of the roles of the AsJAZ proteins and their regulatory pathways.
Collapse
Affiliation(s)
- Yimian Ma
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiadong Ran
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Guoqiong Li
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Mengchen Wang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Chengmin Yang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xin Wen
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xin Geng
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Liping Zhang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yuan Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zheng Zhang
- National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
39
|
Zhan Q, Shen J, Nie K, Zheng Y. MIW1 participates in ABA signaling through the regulation of MYB30 in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111717. [PMID: 37105379 DOI: 10.1016/j.plantsci.2023.111717] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 04/22/2023] [Indexed: 05/09/2023]
Abstract
Seed germination and seedling establishment are critical biological processes, and their underlying molecular mechanisms have practical implications. The ABA signaling during seed germination and early seedling development is negatively regulated by transcription factor MYB30, but its interaction partners and downstream targets are not fully understood. In this study, we identified MIW1 (MYB30-interacting WD40 protein 1), a WD40 protein that could interact with MYB30 and promote its degradation. In the miw1 mutant, the MYB30 protein became more stable. MIW1 enhanced the ABA-mediated inhibition of postgerminative development. The miw1 mutants became hyposensitive to exogenous ABA, and this effect was suppressed by mutations in MYB30. Furthermore, we found that MYB30 negatively regulated the expression of the ABA receptor genes PYR1/PYL/RCARs. The changes in PYLs expression during early seedling development or under ABA treatment became more pronounced in the myb30 mutant. ChIP-qPCR analyses showed MYB30 could directly bind to the promoters of PYL11 and PYL12. Our study reveals that the WD40 protein MIW1 promotes the expression of PYLs by destabilizing MYB30, thus positively regulating the ABA signaling during postgermination in Arabidopsis.
Collapse
Affiliation(s)
- Qidi Zhan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya, China
| | - Jialu Shen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya, China
| | - Kaili Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya, China
| | - Yuan Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475001, China; Sanya Institute of Henan University, Sanya, China.
| |
Collapse
|