1
|
Weiner BG, Märkle H, Laderman E, Demirjian C, Bergelson J. A physical model links structure and function in the plant immune system. Proc Natl Acad Sci U S A 2025; 122:e2502872122. [PMID: 40493200 DOI: 10.1073/pnas.2502872122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/02/2025] [Indexed: 06/12/2025] Open
Abstract
Effector-Triggered Immunity (ETI) is an important part of the plant immune system, allowing plants to sense and respond to harmful pathogen proteins known as "effectors." Effectors can be sensed directly or indirectly by NLR (Nucleotide-binding Leucine-rich Repeat) proteins, many of which "guard" the plant proteins targeted by effectors. Although a few effector-target-NLR interactions have been characterized, a general understanding of how these molecular interactions give rise to a functioning immune system is lacking. Here, we present a physics-based model of ETI based on protein-protein interactions. We show that the simplest physical model consistent with the biology gives rise to a robust immune sensor and explains the empirical phenomenon of effector interference as a generic consequence of molecules competing for binding partners. Using the evolutionarily conserved ZAR1 defense gene as a model, we explain how more complex interaction networks integrate multiple pathogen signals into a single response. We then examine alternatives to a guarding architecture, including direct sensing, decoys, and blended "integrated decoy" strategies, and reveal that these sensing architectures obey functional trade-offs between their sensitivity, target protection, and proteomic cost. This allows a quantitative analysis of the trade-offs between different forms of ETI. We discuss these findings in the context of the evolutionary forces shaping the plant immune system.
Collapse
Affiliation(s)
- Benjamin G Weiner
- United States Department of Energy, Advanced Research Projects Agency-Energy, Washington, DC 20024
| | - Hanna Märkle
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Eric Laderman
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Choghag Demirjian
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Joy Bergelson
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
2
|
Beaulieu C, Libourel C, Mbadinga Zamar DL, El Mahboubi K, Hoey DJ, Greiff GRL, Keller J, Girou C, San Clemente H, Diop I, Amblard E, Castel B, Théron A, Cauet S, Rodde N, Zachgo S, Halpape W, Meierhenrich A, Laker B, Bräutigam A, Szovenyi P, Cheng S, Tanizawa Y, Aziz S, Leebens-Mack JH, Schmutz J, Webber J, Grimwood J, Jacquet C, Dunand C, Nelson JM, Roux F, Philippe H, Schornack S, Bonhomme M, Delaux PM. The Marchantia polymorpha pangenome reveals ancient mechanisms of plant adaptation to the environment. Nat Genet 2025; 57:729-740. [PMID: 39962240 PMCID: PMC11906373 DOI: 10.1038/s41588-024-02071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/16/2024] [Indexed: 03/15/2025]
Abstract
Plant adaptation to terrestrial life started 450 million years ago and has played a major role in the evolution of life on Earth. The genetic mechanisms allowing this adaptation to a diversity of terrestrial constraints have been mostly studied by focusing on flowering plants. Here, we gathered a collection of 133 accessions of the model bryophyte Marchantia polymorpha and studied its intraspecific diversity using selection signature analyses, a genome-environment association study and a pangenome. We identified adaptive features, such as peroxidases or nucleotide-binding and leucine-rich repeats (NLRs), also observed in flowering plants, likely inherited from the first land plants. The M. polymorpha pangenome also harbors lineage-specific accessory genes absent from seed plants. We conclude that different land plant lineages still share many elements from the genetic toolkit evolved by their most recent common ancestor to adapt to the terrestrial habitat, refined by lineage-specific polymorphisms and gene family evolution.
Collapse
Grants
- ANR-10-LABX-41 Agence Nationale de la Recherche (French National Research Agency)
- ANR-21-CE20-0010-01 Agence Nationale de la Recherche (French National Research Agency)
- 32022006 National Natural Science Foundation of China (National Science Foundation of China)
- CNRS 80|PRIME MicMac, ERC (grant agreement no. 101001675 - ORIGINS), the project Engineering Nitrogen Symbiosis for Africa (ENSA) currently funded through a grant to the University of Cambridge by the Bill and Melinda Gates Foundation (OPP1172165) and the UK Foreign, Commonwealth and Development Office as Engineering Nitrogen Symbiosis for Africa (OPP1172165).
- Deutsche Forschungsgemeinschaft (ZA, 259/9)
- the URPP Evolution in Action of the University of Zurich, grants of the Swiss National Science Foundation (160004, 131726), the EU’s Horizon 2020 Research and Innovation Program (PlantHUB-No. 722338), the Georges and Antoine Claraz Foundation, and the Forschgungskredit of the University of Zurich (FK-20-089).
- ZhuJiang (2019ZT08N628) and the National Natural Science Foundation of China (32022006)
- the Japan Society for the Promotion of Science KAKENHI (JSPS 20K15783)
- The work (proposal: Award DOI 10.46936/10.25585/60001405) conducted by the U.S. Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy operated under Contract No. DE-AC02-05CH11231
- National Science Foundation (NSF 1501826)
Collapse
Affiliation(s)
- Chloé Beaulieu
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, INP PURPAN, Université de Toulouse, Toulouse, France
| | | | - Karima El Mahboubi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - David J Hoey
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - George R L Greiff
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
- University of Bristol, Bristol, UK
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Camille Girou
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Helene San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Issa Diop
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Emilie Amblard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Baptiste Castel
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Anthony Théron
- CNRGV French Plant Genomic Resource Center, INRAE, Castanet-Tolosan, France
| | - Stéphane Cauet
- CNRGV French Plant Genomic Resource Center, INRAE, Castanet-Tolosan, France
| | - Nathalie Rodde
- CNRGV French Plant Genomic Resource Center, INRAE, Castanet-Tolosan, France
| | - Sabine Zachgo
- Division of Botany, School of Biology, Osnabrueck University, Osnabrueck, Germany
| | - Wiebke Halpape
- Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Anja Meierhenrich
- Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Bianca Laker
- Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Andrea Bräutigam
- Computational Biology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
- CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Peter Szovenyi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yasuhiro Tanizawa
- Department of Informatics, National Institute of Genetics, Mishima, Japan
| | - Simon Aziz
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France
| | | | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jenell Webber
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France
| | - Jessica M Nelson
- Maastricht Science Programme, Maastricht University, Maastricht, the Netherlands
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microbes-Environnement, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France
| | | | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Castanet-Tolosan, France.
| |
Collapse
|
3
|
Yang L, Liu S, Schranz ME, Bouwmeester K. Phylogenomic analysis reveals exceptions to the co-evolution of ZAR1 and ZRK immune gene families in plants. BMC PLANT BIOLOGY 2025; 25:91. [PMID: 39844029 PMCID: PMC11752965 DOI: 10.1186/s12870-025-06099-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/10/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a nucleotide-binding leucine-rich repeat (NLR) protein functioning as a recognition hub to initiate effector-triggered immunity against bacterial pathogens. To initiate defense, ZAR1 associates with different HOPZ-ETI-DEFICIENT 1 (ZED1)-Related Kinases (ZRKs) to form resistosomes to indirectly perceive effector-induced perturbations. Few studies have focused on the phylogenomic characteristics of ZAR1 and ZRK immune gene families and their evolutionary relationships. To trace the origin and divergence of ZAR1 and ZRK immune gene families across the plant kingdom, we performed phylogenomic analyses using an extended set of plant genomes. RESULTS Genome-wide identification of ZAR1 and ZRK immune gene families by blast similarity searches combined with phylogenetic analysis showed that these two gene families have experienced frequent gene losses in massive lineages. Gene distribution patterns across the plant kingdom revealed that ZAR1 and ZRK emerged after the divergence of most angiosperms from Amborella and before the split of magnoliids, monocots, and eudicots. Co-occurrence of ZAR1-A and ZRKs was found in various plant species belonging to different angiosperm orders, but both genes were found to be absent in chlorophyta, bryophytes, lycophytes, ferns, and gymnosperms. We also detected a large number of concerted gene losses in angiosperms, especially within the orders Fabales, Cucurbitales, Asterales, and Apiales. All analysed monocot genomes thus far examined, except for the aroid Colocasia esculenta, were previously reported to lack both ZAR1-A and ZRKs. Here we now report other exceptions on the concerted ZAR1-A-ZRKs presence-absence pattern within several early diverging monocot lineages, including the genome of Acorus tatarinowii-a species representing the first branching monocot lineage. We also revealed strong variation in ZAR1-A-ZRKs co-occurrence within the asterid order Ericales, suggesting patterns of de-coevolution in angiosperms. Our research further shows that both gene families experienced significant diversification through various duplication events. Additionally, their evolutionary paths have been shaped by frequent gene losses and lineage-specific transposition. CONCLUSION This study provides novel findings on the evolution of ZAR1 and ZRK immune gene families across a wide range of plant species, suggesting that more potential exceptions can be expected when expanding the list of sequenced genomes from distinct orders. Our results provide new hypotheses about the origin and diversification of these critical immune genes for future functional studies.
Collapse
Affiliation(s)
- Li Yang
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, 430062, China.
| | - M Eric Schranz
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen, 6708 PB, The Netherlands.
| |
Collapse
|
4
|
Hailemariam S, Liao CJ, Mengiste T. Receptor-like cytoplasmic kinases: orchestrating plant cellular communication. TRENDS IN PLANT SCIENCE 2024; 29:1113-1130. [PMID: 38816318 DOI: 10.1016/j.tplants.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
The receptor-like kinase (RLK) family of receptors and the associated receptor-like cytoplasmic kinases (RLCKs) have expanded in plants because of selective pressure from environmental stress and evolving pathogens. RLCKs link pathogen perception to activation of coping mechanisms. RLK-RLCK modules regulate hormone synthesis and responses, reactive oxygen species (ROS) production, Ca2+ signaling, activation of mitogen-activated protein kinase (MAPK), and immune gene expression, all of which contribute to immunity. Some RLCKs integrate responses from multiple receptors recognizing distinct ligands. RLKs/RLCKs and nucleotide-binding domain, leucine-rich repeats (NLRs) were found to synergize, demonstrating the intertwined genetic network in plant immunity. Studies in arabidopsis (Arabidopsis thaliana) have provided paradigms about RLCK functions, but a lack of understanding of crop RLCKs undermines their application. In this review, we summarize current understanding of the diverse functions of RLCKs, based on model systems and observations in crop species, and the emerging role of RLCKs in pathogen and abiotic stress response signaling.
Collapse
Affiliation(s)
- Sara Hailemariam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Chao-Jan Liao
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
5
|
Gladieux P, van Oosterhout C, Fairhead S, Jouet A, Ortiz D, Ravel S, Shrestha RK, Frouin J, He X, Zhu Y, Morel JB, Huang H, Kroj T, Jones JDG. Extensive immune receptor repertoire diversity in disease-resistant rice landraces. Curr Biol 2024; 34:3983-3995.e6. [PMID: 39146939 DOI: 10.1016/j.cub.2024.07.061] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/19/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
Plants have powerful defense mechanisms and extensive immune receptor repertoires, yet crop monocultures are prone to epidemic diseases. Rice (Oryza sativa) is susceptible to many diseases, such as rice blast caused by Magnaporthe oryzae. Varietal resistance of rice to blast relies on intracellular nucleotide binding, leucine-rich repeat (NLR) receptors that recognize specific pathogen molecules and trigger immune responses. In the Yuanyang terraces in southwest China, rice landraces rarely show severe losses to disease whereas commercial inbred lines show pronounced field susceptibility. Here, we investigate within-landrace NLR sequence diversity of nine rice landraces and eleven modern varieties using complexity reduction techniques. We find that NLRs display high sequence diversity in landraces, consistent with balancing selection, and that balancing selection at NLRs is more pervasive in landraces than modern varieties. Notably, modern varieties lack many ancient NLR haplotypes that are retained in some landraces. Our study emphasizes the value of standing genetic variation that is maintained in farmer landraces as a resource to make modern crops and agroecosystems less prone to disease. The conservation of landraces is, therefore, crucial for ensuring food security in the face of dynamic biotic and abiotic threats.
Collapse
Affiliation(s)
- Pierre Gladieux
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France.
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Sebastian Fairhead
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Agathe Jouet
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Diana Ortiz
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Sebastien Ravel
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Ram-Krishna Shrestha
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France; UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | - Xiahong He
- School of Landscape and Horticulture, Southwest Forestry University, Kunming 650233, China
| | - Youyong Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China
| | - Jean-Benoit Morel
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France
| | - Huichuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China; Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming 650201, China.
| | - Thomas Kroj
- Plant Health Institute Montpellier, University of Montpellier, INRAE, CIRAD, IRD, Institut Agro, 34398 Montpellier, France.
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
6
|
Goh FJ, Huang CY, Derevnina L, Wu CH. NRC Immune receptor networks show diversified hierarchical genetic architecture across plant lineages. THE PLANT CELL 2024; 36:3399-3418. [PMID: 38922300 PMCID: PMC11371147 DOI: 10.1093/plcell/koae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
Plants' complex immune systems include nucleotide-binding domain and leucine-rich repeat-containing (NLR) proteins, which help recognize invading pathogens. In solanaceous plants, the NRC (NLR required for cell death) family includes helper NLRs that form a complex genetic network with multiple sensor NLRs to provide resistance against pathogens. However, the evolution and function of NRC networks outside solanaceous plants are currently unclear. Here, we conducted phylogenomic and macroevolutionary analyses comparing NLRs identified from different asterid lineages and found that NRC networks expanded significantly in most lamiids but not in Ericales and campanulids. Using transient expression assays in Nicotiana benthamiana, we showed that NRC networks are simple in Ericales and campanulids, but have high complexity in lamiids. Phylogenetic analyses grouped the NRC helper NLRs into three NRC0 subclades that are conserved, and several family-specific NRC subclades of lamiids that show signatures of diversifying selection. Functional analyses revealed that members of the NRC0 subclades are partially interchangeable, whereas family-specific NRC members in lamiids lack interchangeability. Our findings highlight the distinctive evolutionary patterns of the NRC networks in asterids and provide potential insights into transferring disease resistance across plant lineages.
Collapse
Affiliation(s)
- Foong-Jing Goh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402202, Taiwan
| | - Ching-Yi Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Lida Derevnina
- Crop Science Centre, Department of Plant Science, University of Cambridge, Cambridge CB3 0LE, UK
| | - Chih-Hang Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung-Hsing University and Academia Sinica, Taipei 115201, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 402202, Taiwan
| |
Collapse
|
7
|
Kourelis J, Schuster M, Demir F, Mattinson O, Krauter S, Kahlon PS, O’Grady R, Royston S, Bravo-Cazar AL, Mooney BC, Huesgen PF, Kamoun S, van der Hoorn RAL. Bioengineering secreted proteases converts divergent Rcr3 orthologs and paralogs into extracellular immune co-receptors. THE PLANT CELL 2024; 36:3260-3276. [PMID: 38923940 PMCID: PMC11371160 DOI: 10.1093/plcell/koae183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Secreted immune proteases "Required for Cladosporium resistance-3" (Rcr3) and "Phytophthora-inhibited protease-1" (Pip1) of tomato (Solanum lycopersicum) are both inhibited by Avirulence-2 (Avr2) from the fungal plant pathogen Cladosporium fulvum. However, only Rcr3 acts as a decoy co-receptor that detects Avr2 in the presence of the Cf-2 immune receptor. Here, we identified crucial residues in tomato Rcr3 that are required for Cf-2-mediated signaling and bioengineered various proteases to trigger Avr2/Cf-2-dependent immunity. Despite substantial divergence in Rcr3 orthologs from eggplant (Solanum melongena) and tobacco (Nicotiana spp.), minimal alterations were sufficient to trigger Avr2/Cf-2-mediated immune signaling. By contrast, tomato Pip1 was bioengineered with 16 Rcr3-specific residues to initiate Avr2/Cf-2-triggered immune signaling. These residues cluster on one side of the protein next to the substrate-binding groove, indicating a potential Cf-2 interaction site. Our findings also revealed that Rcr3 and Pip1 have distinct substrate preferences determined by two variant residues and that both are suboptimal for binding Avr2. This study advances our understanding of Avr2 perception and opens avenues to bioengineer proteases to broaden pathogen recognition in other crops.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Mariana Schuster
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Fatih Demir
- Central Institute for Engineering, Department of Electronics and Analytics (ZEA), Analytics (ZEA-3), Research Centre Jülich, Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Oliver Mattinson
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Sonja Krauter
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Parvinderdeep S Kahlon
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Ruby O’Grady
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Samantha Royston
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Ana Lucía Bravo-Cazar
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Brian C Mooney
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| | - Pitter F Huesgen
- Central Institute for Engineering, Department of Electronics and Analytics (ZEA), Analytics (ZEA-3), Research Centre Jülich, Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, South Parks Road, OX1 3RB Oxford, UK
| |
Collapse
|
8
|
Sakai T, Contreras MP, Martinez-Anaya C, Lüdke D, Kamoun S, Wu CH, Adachi H. The NRC0 gene cluster of sensor and helper NLR immune receptors is functionally conserved across asterid plants. THE PLANT CELL 2024; 36:3344-3361. [PMID: 38833594 PMCID: PMC11371149 DOI: 10.1093/plcell/koae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Nucleotide-binding domain and leucine-rich repeat-containing receptor (NLR) proteins can form complex receptor networks to confer innate immunity. An NLR-REQUIRED FOR CELL DEATH (NRC) is a phylogenetically related node that functions downstream of a massively expanded network of disease resistance proteins that protect against multiple plant pathogens. In this study, we used phylogenomic methods to reconstruct the macroevolution of the NRC family. One of the NRCs, termed NRC0, is the only family member shared across asterid plants, leading us to investigate its evolutionary history and genetic organization. In several asterid species, NRC0 is genetically clustered with other NLRs that are phylogenetically related to NRC-dependent disease resistance genes. This prompted us to hypothesize that the ancestral state of the NRC network is an NLR helper-sensor gene cluster that was present early during asterid evolution. We provide support for this hypothesis by demonstrating that NRC0 is essential for the hypersensitive cell death that is induced by its genetically linked sensor NLR partners in 4 divergent asterid species: tomato (Solanum lycopersicum), wild sweet potato (Ipomoea trifida), coffee (Coffea canephora), and carrot (Daucus carota). In addition, activation of a sensor NLR leads to higher-order complex formation of its genetically linked NRC0, similar to other NRCs. Our findings map out contrasting evolutionary dynamics in the macroevolution of the NRC network over the last 125 million years, from a functionally conserved NLR gene cluster to a massive genetically dispersed network.
Collapse
Affiliation(s)
- Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Claudia Martinez-Anaya
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62110, México
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Chih-Hang Wu
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 11529, Taiwan
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto 617-0001, Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
9
|
Kolli R. Birth and expansion of NRC immune receptors across the largest group of flowering plants. THE PLANT CELL 2024; 36:3320-3321. [PMID: 38917235 PMCID: PMC11371172 DOI: 10.1093/plcell/koae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024]
Affiliation(s)
- Renuka Kolli
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Diplock N, Baudin M, Xiang XD, Liang LY, Dai W, Murphy JM, Lucet IS, Hassan JA, Lewis JD. Molecular dissection of the pseudokinase ZED1 expands effector recognition to the tomato immune receptor ZAR1. PLANT PHYSIOLOGY 2024; 196:651-666. [PMID: 38748589 DOI: 10.1093/plphys/kiae268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/11/2024] [Indexed: 09/03/2024]
Abstract
The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a bacterial pathogen recognition hub that mediates resistance by guarding host kinases for modification by pathogen effectors. The pseudokinase HOPZ-ETI DEFICIENT 1 (ZED1) is the only known ZAR1-guarded protein that interacts directly with a pathogen effector, HopZ1a, from the bacterial pathogen Pseudomonas syringae, making it a promising system for rational design of effector recognition for plant immunity. Here, we conducted an in-depth molecular analysis of ZED1. We generated a library of 164 random ZED1 mutants and identified 50 mutants that could not recognize the effector HopZ1a when transiently expressed in Nicotiana benthamiana. Based on our random mutants, we generated a library of 27 point mutants and found evidence of minor functional divergence between Arabidopsis (Arabidopsis thaliana) and N. benthamiana ZAR1 orthologs. We leveraged our point mutant library to identify regions in ZED1 critical for ZAR1 and HopZ1a interactions and identified two likely ZED1-HopZ1a binding conformations. We explored ZED1 nucleotide and cation binding activity and showed that ZED1 is a catalytically dead pseudokinase, functioning solely as an allosteric regulator upon effector recognition. We used our library of ZED1 point mutants to identify the ZED1 activation loop regions as the most likely cause of interspecies ZAR1-ZED1 incompatibility. Finally, we identified a mutation that abolished ZAR1-ZED1 interspecies incompatibility while retaining the ability to mediate HopZ1a recognition, which enabled recognition of HopZ1a through tomato (Solanum lycopersicum) ZAR1. This provides an example of expanded effector recognition through a ZAR1 ortholog from a non-model species.
Collapse
Affiliation(s)
- Nathan Diplock
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Maël Baudin
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xincheng Derek Xiang
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Lung-Yu Liang
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Weiwen Dai
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Australia
| | - Isabelle S Lucet
- Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne 3052, Australia
| | - Jana A Hassan
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, United States Department of Agriculture, Agriculture Research Service, Albany, CA 94710, USA
| |
Collapse
|
11
|
Carrère S, Routaboul JM, Savourat P, Bellenot C, López H, Sahoo A, Quiroz Monnens T, Ricou A, Camilleri C, Declerck N, Laufs P, Mercier R, Noël LD. A fully sequenced collection of homozygous EMS mutants for forward and reverse genetic screens in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:3015-3026. [PMID: 39073886 DOI: 10.1111/tpj.16954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024]
Abstract
Genetic screens are powerful tools for biological research and are one of the reasons for the success of the thale cress Arabidopsis thaliana as a research model. Here, we describe the whole-genome sequencing of 871 Arabidopsis lines from the Homozygous EMS Mutant (HEM) collection as a novel resource for forward and reverse genetics. With an average 576 high-confidence mutations per HEM line, over three independent mutations altering protein sequences are found on average per gene in the collection. Pilot reverse genetics experiments on reproductive, developmental, immune and physiological traits confirmed the efficacy of the tool for identifying both null, knockdown and gain-of-function alleles. The possibility of conducting subtle repeated phenotyping and the immediate availability of the mutations will empower forward genetic approaches. The sequence resource is searchable with the ATHEM web interface (https://lipm-browsers.toulouse.inra.fr/pub/ATHEM/), and the biological material is distributed by the Versailles Arabidopsis Stock Center.
Collapse
Affiliation(s)
- Sébastien Carrère
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Jean-Marc Routaboul
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Pauline Savourat
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Caroline Bellenot
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| | - Hernán López
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Amruta Sahoo
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | | | - Anthony Ricou
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Christine Camilleri
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Nathalie Declerck
- CBS, Université Montpellier, CNRS/INSERM, UMR5048/1054, Montpellier, France
| | - Patrick Laufs
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin for Plant Sciences (IJPB), 78000, Versailles, France
| | - Raphaël Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, Cologne, Germany
| | - Laurent D Noël
- LIPME, Université de Toulouse, INRAE/CNRS UMR 0441/2598, Castanet-Tolosan, France
| |
Collapse
|
12
|
Jones JDG, Staskawicz BJ, Dangl JL. The plant immune system: From discovery to deployment. Cell 2024; 187:2095-2116. [PMID: 38670067 DOI: 10.1016/j.cell.2024.03.045] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024]
Abstract
Plant diseases cause famines, drive human migration, and present challenges to agricultural sustainability as pathogen ranges shift under climate change. Plant breeders discovered Mendelian genetic loci conferring disease resistance to specific pathogen isolates over 100 years ago. Subsequent breeding for disease resistance underpins modern agriculture and, along with the emergence and focus on model plants for genetics and genomics research, has provided rich resources for molecular biological exploration over the last 50 years. These studies led to the identification of extracellular and intracellular receptors that convert recognition of extracellular microbe-encoded molecular patterns or intracellular pathogen-delivered virulence effectors into defense activation. These receptor systems, and downstream responses, define plant immune systems that have evolved since the migration of plants to land ∼500 million years ago. Our current understanding of plant immune systems provides the platform for development of rational resistance enhancement to control the many diseases that continue to plague crop production.
Collapse
Affiliation(s)
- Jonathan D G Jones
- Sainsbury Lab, University of East Anglia, Colney Lane, Norwich NR4 7UH, UK.
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology and Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina at Chapel Hill and Howard Hughes Medical Institute, Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Locci F, Parker JE. Plant NLR immunity activation and execution: a biochemical perspective. Open Biol 2024; 14:230387. [PMID: 38262605 PMCID: PMC10805603 DOI: 10.1098/rsob.230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
14
|
Schornack S, Kamoun S. EVO-MPMI: From fundamental science to practical applications. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102469. [PMID: 37783039 DOI: 10.1016/j.pbi.2023.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
In the unending coevolutionary dance between plants and microbes, each player impacts the evolution of the other. Here, we provide an overview of the burgeoning field of evolutionary molecular plant-microbe interactions (EVO-MPMI)-the study of mechanisms of plant-microbe interactions in the context of their evolutionary history-tracing its progression from foundational science to practical implementation. We present a snapshot of current research and delve into central concepts, such as conserved features and convergent evolution, as well as methodologies such as ancestral reconstruction. Moreover, we shed light on the practical applications of EVO-MPMI, particularly within the realm of disease control. Looking ahead, we discuss potential future trajectories for EVO-MPMI research, spotlighting the innovative tools and technologies propelling the discipline forward.
Collapse
Affiliation(s)
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
15
|
Kourelis J. Interplay between cell-surface receptor and intracellular NLR-mediated immune responses. THE NEW PHYTOLOGIST 2023; 240:2218-2226. [PMID: 37605623 DOI: 10.1111/nph.19212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 08/23/2023]
Abstract
The functional link between cell-surface receptors and intracellular NLR immune receptors is a critical aspect of plant immunity. To establish disease, successful pathogens have evolved mechanisms to suppress cell-surface immune signalling. In response, plants have adapted by evolving NLRs that recognize pathogen effectors involved in this suppression, thereby counteracting their immune-suppressing function. This ongoing co-evolutionary struggle has seemingly resulted in intertwined signalling pathways in some plant species, where NLRs form a separate signalling branch downstream of activated cell-surface receptor complexes essential for full immunity. Understanding these interconnected receptor networks could lead to novel strategies for developing durable disease resistance.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| |
Collapse
|
16
|
Contreras MP, Lüdke D, Pai H, Toghani A, Kamoun S. NLR receptors in plant immunity: making sense of the alphabet soup. EMBO Rep 2023; 24:e57495. [PMID: 37602936 PMCID: PMC10561179 DOI: 10.15252/embr.202357495] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Plants coordinately use cell-surface and intracellular immune receptors to perceive pathogens and mount an immune response. Intracellular events of pathogen recognition are largely mediated by immune receptors of the nucleotide binding and leucine rich-repeat (NLR) classes. Upon pathogen perception, NLRs trigger a potent broad-spectrum immune reaction, usually accompanied by a form of programmed cell death termed the hypersensitive response. Some plant NLRs act as multifunctional singleton receptors which combine pathogen detection and immune signaling. However, NLRs can also function in higher order pairs and networks of functionally specialized interconnected receptors. In this article, we cover the basic aspects of plant NLR biology with an emphasis on NLR networks. We highlight some of the recent advances in NLR structure, function, and activation and discuss emerging topics such as modulator NLRs, pathogen suppression of NLRs, and NLR bioengineering. Multi-disciplinary approaches are required to disentangle how these NLR immune receptor pairs and networks function and evolve. Answering these questions holds the potential to deepen our understanding of the plant immune system and unlock a new era of disease resistance breeding.
Collapse
Affiliation(s)
| | - Daniel Lüdke
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | - Hsuan Pai
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| | | | - Sophien Kamoun
- The Sainsbury LaboratoryUniversity of East AngliaNorwichUK
| |
Collapse
|