1
|
Nobori T. Exploring the untapped potential of single-cell and spatial omics in plant biology. THE NEW PHYTOLOGIST 2025. [PMID: 40398874 DOI: 10.1111/nph.70220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Accepted: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Advances in single-cell and spatial omics technologies have revolutionised biology by revealing the diverse molecular states of individual cells and their spatial organization within tissues. The field of plant biology has widely adopted single-cell transcriptome and chromatin accessibility profiling and spatial transcriptomics, which extend traditional cell biology and genomics analyses and provide unique opportunities to reveal molecular and cellular dynamics of tissues. Using these technologies, comprehensive cell atlases have been generated in several model plant species, providing valuable platforms for discovery and tool development. Other emerging technologies related to single-cell and spatial omics, such as multiomics, lineage tracing, molecular recording, and high-content genetic and chemical perturbation phenotyping, offer immense potential for deepening our understanding of plant biology yet remain underutilised due to unique technical challenges and resource availability. Overcoming plant-specific barriers, such as cell wall complexity and limited antibody resources, alongside community-driven efforts in developing more complete reference atlases and computational tools, will accelerate progress. The synergy between technological innovation and targeted biological questions is poised to drive significant discoveries, advancing plant science. This review highlights the current applications of single-cell and spatial omics technologies in plant research and introduces emerging approaches with the potential to transform the field.
Collapse
Affiliation(s)
- Tatsuya Nobori
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
2
|
Tenorio Berrío R, Verhelst E, Eekhout T, Grones C, De Veylder L, De Rybel B, Dubois M. Dual and spatially resolved drought responses in the Arabidopsis leaf mesophyll revealed by single-cell transcriptomics. THE NEW PHYTOLOGIST 2025; 246:840-858. [PMID: 40033544 PMCID: PMC11982798 DOI: 10.1111/nph.20446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025]
Abstract
Drought stress imposes severe challenges on agriculture by impacting crop performance. Understanding drought responses in plants at a cellular level is a crucial first step toward engineering improved drought resilience. However, the molecular responses to drought are complex as they depend on multiple factors, including the severity of drought, the profiled organ, its developmental stage or even the cell types therein. Thus, deciphering the transcriptional responses to drought is especially challenging. In this study, we investigated tissue-specific responses to mild drought (MD) in young Arabidopsis thaliana (Arabidopsis) leaves using single-cell RNA sequencing (scRNA-seq). To preserve transcriptional integrity during cell isolation, we inhibited RNA synthesis using the transcription inhibitor actinomycin D, and demonstrated the benefits of transcriptome fixation for studying mild stress responses at a single-cell level. We present a curated and validated single-cell atlas, comprising 50 797 high-quality cells from almost all known cell types present in the leaf. All cell type annotations were validated with a new library of reporter lines. The curated data are available to the broad community in an intuitive tool and a browsable single-cell atlas (http://www.single-cell.be/plant/leaf-drought). We show that the mesophyll contains two spatially separated cell populations with distinct responses to drought: one enriched in canonical abscisic acid-related drought-responsive genes, and another one enriched in genes involved in iron starvation responses. Our study thus reveals a dual adaptive mechanism of the leaf mesophyll in response to MD and provides a valuable resource for future research on stress responses.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Eline Verhelst
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
- Single Cell Core Facility, VIBGhent9052Belgium
| | - Carolin Grones
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Bert De Rybel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhent9052Belgium
- Center for Plant Systems Biology, VIBGhent9052Belgium
| |
Collapse
|
3
|
Lyu M, Iida H, Eekhout T, Mäkelä M, Muranen S, Ye L, Vatén A, Wybouw B, Wang X, De Rybel B, Mähönen AP. The dynamic and diverse nature of parenchyma cells in the Arabidopsis root during secondary growth. NATURE PLANTS 2025; 11:878-890. [PMID: 40140531 PMCID: PMC12014502 DOI: 10.1038/s41477-025-01938-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 02/06/2025] [Indexed: 03/28/2025]
Abstract
During secondary growth, the vascular cambium produces conductive xylem and phloem cells, while the phellogen (cork cambium) deposits phellem (cork) as the outermost protective barrier. Although most of the secondary tissues are made up of parenchyma cells, which are also produced by both cambia, their diversity and function are poorly understood. Here we combined single-cell RNA sequencing analysis with lineage tracing to recreate developmental trajectories of the cell types in the Arabidopsis root undergoing secondary growth. By analysing 93 reporter lines, we were able to identify 20 different cell types or cell states, many of which have not been described before. We additionally observed distinct transcriptome signatures of parenchyma cells depending on their maturation state and proximity to the conductive cell types. Our data show that both xylem and phloem parenchyma tissues are required for normal formation of conductive tissue cell types. Furthermore, we show that mature phloem parenchyma gradually obtains periderm identity, and this transformation can be accelerated by jasmonate treatment or wounding. Our study thus reveals the diversity of parenchyma cells and their capacity to undergo considerable identity changes during secondary growth.
Collapse
Affiliation(s)
- Munan Lyu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Hiroyuki Iida
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Centre for Plant Systems Biology, Ghent, Belgium
- VIB Single Cell Core, VIB, Ghent, Belgium
- VIB Single Cell Core, VIB, Leuven, Belgium
| | - Meeri Mäkelä
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Sampo Muranen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Lingling Ye
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Anne Vatén
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Brecht Wybouw
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Xin Wang
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Centre for Plant Systems Biology, Ghent, Belgium.
| | - Ari Pekka Mähönen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences and Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Ke Y, Pujol V, Staut J, Pollaris L, Seurinck R, Eekhout T, Grones C, Saura-Sanchez M, Van Bel M, Vuylsteke M, Ariani A, Liseron-Monfils C, Vandepoele K, Saeys Y, De Rybel B. A single-cell and spatial wheat root atlas with cross-species annotations delineates conserved tissue-specific marker genes and regulators. Cell Rep 2025; 44:115240. [PMID: 39893633 PMCID: PMC11860762 DOI: 10.1016/j.celrep.2025.115240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/26/2024] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Despite the broad use of single-cell/nucleus RNA sequencing in plant research, accurate cluster annotation in less-studied plant species remains a major challenge due to the lack of validated marker genes. Here, we generated a single-cell RNA sequencing atlas of soil-grown wheat roots and annotated cluster identities by transferring annotations from publicly available datasets in wheat, rice, maize, and Arabidopsis. The predictions from our orthology-based annotation approach were next validated using untargeted spatial transcriptomics. These results allowed us to predict evolutionarily conserved tissue-specific markers and generate cell type-specific gene regulatory networks for root tissues of wheat and the other species used in our analysis. In summary, we generated a single-cell and spatial transcriptomics resource for wheat root apical meristems, including numerous known and uncharacterized cell type-specific marker genes and developmental regulators. These data and analyses will facilitate future cell type annotation in non-model plant species.
Collapse
Affiliation(s)
- Yuji Ke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Vincent Pujol
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, BE, Belgium
| | - Jasper Staut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lotte Pollaris
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, BE, Belgium
| | - Ruth Seurinck
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, BE, Belgium
| | - Thomas Eekhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium; VIB Single Cell Core, VIB, Ghent/Leuven, Belgium
| | - Carolin Grones
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Maite Saura-Sanchez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | | | - Andrea Ariani
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Ghent, Belgium
| | - Christophe Liseron-Monfils
- BASF Belgium Coordination Center CommV, Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Ghent, Belgium
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| | - Yvan Saeys
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium; VIB Center for Inflammation Research, Ghent, BE, Belgium.
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
5
|
Chau TN, Timilsena PR, Bathala SP, Kundu S, Bargmann BOR, Li S. Orthologous marker groups reveal broad cell identity conservation across plant single-cell transcriptomes. Nat Commun 2025; 16:201. [PMID: 39747890 PMCID: PMC11695714 DOI: 10.1038/s41467-024-55755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/26/2024] [Indexed: 01/04/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) is widely used in plant biology and is a powerful tool for studying cell identity and differentiation. However, the scarcity of known cell-type marker genes and the divergence of marker expression patterns limit the accuracy of cell-type identification and our capacity to investigate cell-type conservation in many species. To tackle this challenge, we devise a novel computational strategy called Orthologous Marker Gene Groups (OMGs), which can identify cell types in both model and non-model plant species and allows for rapid comparison of cell types across many published single-cell maps. Our method does not require cross-species data integration, while still accurately determining inter-species cellular similarities. We validate the method by analyzing published single-cell data from species with well-annotated single-cell maps, and we show our methods can capture majority of manually annotated cell types. The robustness of our method is further demonstrated by its ability to pertinently map cell clusters from 1 million cells, 268 cell clusters across 15 diverse plant species. We reveal 14 dominant groups with substantial conservation in shared cell-type markers across monocots and dicots. To facilitate the use of this method by the broad research community, we launch a user-friendly web-based tool called the OMG browser, which simplifies the process of cell-type identification in plant datasets for biologists.
Collapse
Affiliation(s)
- Tran N Chau
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA.
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
| | | | | | - Sanchari Kundu
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | | | - Song Li
- Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, VA, USA.
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Gouran M, Brady SM. The transcriptional integration of environmental cues with root cell type development. PLANT PHYSIOLOGY 2024; 196:2150-2161. [PMID: 39288006 PMCID: PMC11638006 DOI: 10.1093/plphys/kiae425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 09/19/2024]
Abstract
Plant roots navigate the soil ecosystem with each cell type uniquely responding to environmental stimuli. Below ground, the plant's response to its surroundings is orchestrated at the cellular level, including morphological and molecular adaptations that shape root system architecture as well as tissue and organ functionality. Our understanding of the transcriptional responses at cell type resolution has been profoundly enhanced by studies of the model plant Arabidopsis thaliana. However, both a comprehensive view of the transcriptional basis of these cellular responses to single and combinatorial environmental cues in diverse plant species remains elusive. In this review, we highlight the ability of root cell types to undergo specific anatomical or morphological changes in response to abiotic and biotic stresses or cues and how they collectively contribute to the plant's overall physiology. We further explore interconnections between stress and the temporal nature of developmental pathways and discuss examples of how this transcriptional reprogramming influences cell type identity and function. Finally, we highlight the power of single-cell and spatial transcriptomic approaches to refine our understanding of how environmental factors fine tune root spatiotemporal development. These complex root system responses underscore the importance of spatiotemporal transcriptional mapping, with significant implications for enhanced agricultural resilience.
Collapse
Affiliation(s)
- Mona Gouran
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, UC Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Jain M. Gene regulatory networks in abiotic stress responses via single-cell sequencing and spatial technologies: Advances and opportunities. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102662. [PMID: 39541907 DOI: 10.1016/j.pbi.2024.102662] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024]
Abstract
Understanding intricate gene regulatory networks (GRNs) orchestrating responses to abiotic stresses is crucial for enhancing climate resilience in crop plants. Recent advancements in single-cell and spatial technologies have revolutionized our ability to dissect the GRNs at unprecedented resolution. Here, we explore the progress, challenges, and opportunities these state-of-the-art technologies offer in delineating the cellular intricacies of plant responses to abiotic stress. Using scRNA-seq, the transcriptome landscape of individual plant cells along with their lineages and regulatory interactions can be unraveled. Moreover, coupling scRNA-seq with spatial transcriptomics provides spatially resolved gene expression and insights into cell-to-cell interactions. In addition, the chromatin accessibility assays can discover the regulatory regions governing abiotic stress responses. An integrated multi-omics approach can facilitate discovery of cell-type-specific GRNs to reveal the key components that coordinate adaptive responses to different stresses. These potential regulatory factors can be harnessed for genetic engineering to enhance stress resilience in crop plants.
Collapse
Affiliation(s)
- Mukesh Jain
- Translational Genomics and Systems Biology Laboratory, School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
8
|
Kapoor M, Ventura ES, Walsh A, Sokolov A, George N, Kumari S, Provart NJ, Cole B, Libault M, Tickle T, Warren WC, Koltes JE, Papatheodorou I, Ware D, Harrison PW, Elsik C, Yordanova G, Burdett T, Tuggle CK. Building a FAIR data ecosystem for incorporating single-cell transcriptomics data into agricultural genome to phenome research. Front Genet 2024; 15:1460351. [PMID: 39678381 PMCID: PMC11638175 DOI: 10.3389/fgene.2024.1460351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/13/2024] [Indexed: 12/17/2024] Open
Abstract
Introduction The agriculture genomics community has numerous data submission standards available, but the standards for describing and storing single-cell (SC, e.g., scRNA- seq) data are comparatively underdeveloped. Methods To bridge this gap, we leveraged recent advancements in human genomics infrastructure, such as the integration of the Human Cell Atlas Data Portal with Terra, a secure, scalable, open-source platform for biomedical researchers to access data, run analysis tools, and collaborate. In parallel, the Single Cell Expression Atlas at EMBL-EBI offers a comprehensive data ingestion portal for high-throughput sequencing datasets, including plants, protists, and animals (including humans). Developing data tools connecting these resources would offer significant advantages to the agricultural genomics community. The FAANG data portal at EMBL-EBI emphasizes delivering rich metadata and highly accurate and reliable annotation of farmed animals but is not computationally linked to either of these resources. Results Herein, we describe a pilot-scale project that determines whether the current FAANG metadata standards for livestock can be used to ingest scRNA-seq datasets into Terra in a manner consistent with HCA Data Portal standards. Importantly, rich scRNA-seq metadata can now be brokered through the FAANG data portal using a semi-automated process, thereby avoiding the need for substantial expert curation. We have further extended the functionality of this tool so that validated and ingested SC files within the HCA Data Portal are transferred to Terra for further analysis. In addition, we verified data ingestion into Terra, hosted on Azure, and demonstrated the use of a workflow to analyze the first ingested porcine scRNA-seq dataset. Additionally, we have also developed prototype tools to visualize the output of scRNA-seq analyses on genome browsers to compare gene expression patterns across tissues and cell populations. This JBrowse tool now features distinct tracks, showcasing PBMC scRNA-seq alongside two bulk RNA-seq experiments. Discussion We intend to further build upon these existing tools to construct a scientist-friendly data resource and analytical ecosystem based on Findable, Accessible, Interoperable, and Reusable (FAIR) SC principles to facilitate SC-level genomic analysis through data ingestion, storage, retrieval, re-use, visualization, and comparative annotation across agricultural species.
Collapse
Affiliation(s)
- Muskan Kapoor
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Enrique Sapena Ventura
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Amy Walsh
- Animal Science Research Center, Division of Animal Science and Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, MO, United States
| | - Alexey Sokolov
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Nancy George
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Nicholas J. Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, ON, Canada
| | - Benjamin Cole
- Lawrence Berkeley National Laboratory, DOE-Joint Genome Institute, Berkeley, CA, United States
| | - Marc Libault
- Plant Science and Technology, University of Missouri, Columbia, MO, United States
| | - Timothy Tickle
- The Broad Institute of MIT and Harvard, Data Sciences Platform, Cambridge, MA, United States
| | - Wesley C. Warren
- Division of Animal Science, University of Missouri-Columbia, Columbia, MO, United States
| | - James E. Koltes
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| | - Irene Papatheodorou
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
- Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- U.S. Department of Agriculture, Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY, United States
| | - Peter W. Harrison
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Christine Elsik
- Animal Science Research Center, Division of Animal Science and Division of Plant Science and Technology, University of Missouri-Columbia, Columbia, MO, United States
| | - Galabina Yordanova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Tony Burdett
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, Cambridgeshire, United Kingdom
| | - Christopher K. Tuggle
- Department of Animal Science, Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, United States
| |
Collapse
|
9
|
Tenorio Berrío R, Dubois M. Single-cell transcriptomics reveals heterogeneity in plant responses to the environment: a focus on biotic and abiotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5188-5203. [PMID: 38466621 DOI: 10.1093/jxb/erae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Biotic and abiotic environmental cues are major factors influencing plant growth and productivity. Interactions with biotic (e.g. symbionts and pathogens) and abiotic (e.g. changes in temperature, water, or nutrient availability) factors trigger signaling and downstream transcriptome adjustments in plants. While bulk RNA-sequencing technologies have traditionally been used to profile these transcriptional changes, tissue homogenization may mask heterogeneity of responses resulting from the cellular complexity of organs. Thus, whether different cell types respond equally to environmental fluctuations, or whether subsets of the responses are cell-type specific, are long-lasting questions in plant biology. The recent breakthrough of single-cell transcriptomics in plant research offers an unprecedented view of cellular responses under changing environmental conditions. In this review, we discuss the contribution of single-cell transcriptomics to the understanding of cell-type-specific plant responses to biotic and abiotic environmental interactions. Besides major biological findings, we present some technical challenges coupled to single-cell studies of plant-environment interactions, proposing possible solutions and exciting paths for future research.
Collapse
Affiliation(s)
- Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
10
|
Wu S, Morotti ALM, Yang J, Wang E, Tatsis EC. Single-cell RNA sequencing facilitates the elucidation of the complete biosynthesis of the antidepressant hyperforin in St. John's wort. MOLECULAR PLANT 2024; 17:1439-1457. [PMID: 39135343 DOI: 10.1016/j.molp.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
Hyperforin is the compound responsible for the effectiveness of St. John's wort (Hypericum perforatum) as an antidepressant, but its complete biosynthetic pathway remains unknown. Gene discovery based on co-expression analysis of bulk RNA-sequencing data or genome mining failed to discover the missing steps in hyperforin biosynthesis. In this study, we sequenced the 1.54-Gb tetraploid H. perforatum genome assembled into 32 chromosomes with the scaffold N50 value of 42.44 Mb. By single-cell RNA sequencing, we identified a type of cell, "Hyper cells", wherein hyperforin biosynthesis de novo takes place in both the leaves and flowers. Through pathway reconstitution in yeast and tobacco, we identified and characterized four transmembrane prenyltransferases (HpPT1-4) that are localized at the plastid envelope and complete the hyperforin biosynthetic pathway. The hyperforin polycyclic scaffold is created by a reaction cascade involving an irregular isoprenoid coupling and a tandem cyclization. Our findings reveal how and where hyperforin is biosynthesized, enabling synthetic-biology reconstitution of the complete pathway. Thus, this study not only deepens our comprehension of specialized metabolism at the cellular level but also provides strategic guidance for elucidation of the biosynthetic pathways of other specializied metabolites in plants.
Collapse
Affiliation(s)
- Song Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ana Luisa Malaco Morotti
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Evangelos C Tatsis
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CEPAMS - CAS-JIC Centre of Excellence for Plant and Microbial Science, Shanghai 200032, China.
| |
Collapse
|
11
|
Somoza SC, Bonfante P, Giovannetti M. Breaking barriers: improving time and space resolution of arbuscular mycorrhizal symbiosis with single-cell sequencing approaches. Biol Direct 2024; 19:67. [PMID: 39154166 PMCID: PMC11330620 DOI: 10.1186/s13062-024-00501-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/11/2024] [Indexed: 08/19/2024] Open
Abstract
The cell and molecular bases of arbuscular mycorrhizal (AM) symbiosis, a crucial plant-fungal interaction for nutrient acquisition, have been extensively investigated by coupling traditional RNA sequencing techniques of roots sampled in bulk, with methods to capture subsets of cells such as laser microdissection. These approaches have revealed central regulators of this complex relationship, yet the requisite level of detail to effectively untangle the intricacies of temporal and spatial development remains elusive.The recent adoption of single-cell RNA sequencing (scRNA-seq) techniques in plant research is revolutionizing our ability to dissect the intricate transcriptional profiles of plant-microbe interactions, offering unparalleled insights into the diversity and dynamics of individual cells during symbiosis. The isolation of plant cells is particularly challenging due to the presence of cell walls, leading plant researchers to widely adopt nuclei isolation methods. Despite the increased resolution that single-cell analyses offer, it also comes at the cost of spatial perspective, hence, it is necessary the integration of these approaches with spatial transcriptomics to obtain a comprehensive overview.To date, few single-cell studies on plant-microbe interactions have been published, most of which provide high-resolution cell atlases that will become crucial for fully deciphering symbiotic interactions and addressing future questions. In AM symbiosis research, key processes such as the mutual recognition of partners during arbuscule development within cortical cells, or arbuscule senescence and degeneration, remain poorly understood, and these advancements are expected to shed light on these processes and contribute to a deeper understanding of this plant-fungal interaction.
Collapse
Affiliation(s)
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy
| | - Marco Giovannetti
- Department of Biology, University of Padova, Padova, 35131, Italy.
- Department of Life Sciences and Systems Biology, University of Torino, Torino, 10125, Italy.
| |
Collapse
|
12
|
Tonosaki K, Susaki D, Morinaka H, Ono A, Nagata H, Furuumi H, Nonomura KI, Sato Y, Sugimoto K, Comai L, Hatakeyama K, Kawakatsu T, Kinoshita T. Multilayered epigenetic control of persistent and stage-specific imprinted genes in rice endosperm. NATURE PLANTS 2024; 10:1231-1245. [PMID: 39080502 DOI: 10.1038/s41477-024-01754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2024] [Indexed: 08/22/2024]
Abstract
In angiosperms, epigenetic profiles for genomic imprinting are established before fertilization. However, the causal relationships between epigenetic modifications and imprinted expression are not fully understood. In this study, we classified 'persistent' and 'stage-specific' imprinted genes on the basis of time-course transcriptome analysis in rice (Oryza sativa) endosperm and compared them to epigenetic modifications at a single time point. While the levels of epigenetic modifications are relatively low in stage-specific imprinted genes, they are considerably higher in persistent imprinted genes. Overall trends revealed that the maternal alleles of maternally expressed imprinted genes are activated by DNA demethylation, while the maternal alleles of paternally expressed imprinted genes with gene body methylation (gbM) are silenced by DNA demethylation and H3K27me3 deposition, and these regions are associated with an enriched motif related to Tc/Mar-Stowaway. Our findings provide insight into the stability of genomic imprinting and the potential variations associated with endosperm development, different cell types and parental genotypes.
Collapse
Grants
- 20K15504 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22K15145 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04749 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23H04756 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 23K23585 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H05175 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 21H02170 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- 22H02320 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Kaoru Tonosaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
- Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan.
| | - Daichi Susaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hatsune Morinaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Akemi Ono
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroki Nagata
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hiroyasu Furuumi
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Yutaka Sato
- Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, CA, USA
| | | | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan.
| | - Tetsu Kinoshita
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
13
|
Lv Z, Jiang S, Kong S, Zhang X, Yue J, Zhao W, Li L, Lin S. Advances in Single-Cell Transcriptome Sequencing and Spatial Transcriptome Sequencing in Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1679. [PMID: 38931111 PMCID: PMC11207393 DOI: 10.3390/plants13121679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
"Omics" typically involves exploration of the structure and function of the entire composition of a biological system at a specific level using high-throughput analytical methods to probe and analyze large amounts of data, including genomics, transcriptomics, proteomics, and metabolomics, among other types. Genomics characterizes and quantifies all genes of an organism collectively, studying their interrelationships and their impacts on the organism. However, conventional transcriptomic sequencing techniques target population cells, and their results only reflect the average expression levels of genes in population cells, as they are unable to reveal the gene expression heterogeneity and spatial heterogeneity among individual cells, thus masking the expression specificity between different cells. Single-cell transcriptomic sequencing and spatial transcriptomic sequencing techniques analyze the transcriptome of individual cells in plant or animal tissues, enabling the understanding of each cell's metabolites and expressed genes. Consequently, statistical analysis of the corresponding tissues can be performed, with the purpose of achieving cell classification, evolutionary growth, and physiological and pathological analyses. This article provides an overview of the research progress in plant single-cell and spatial transcriptomics, as well as their applications and challenges in plants. Furthermore, prospects for the development of single-cell and spatial transcriptomics are proposed.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuaijun Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Yue
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (Z.L.); (S.J.); (S.K.); (X.Z.); (J.Y.); (W.Z.); (L.L.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
14
|
Lyons A, Brown J, Davenport KM. Single-Cell Sequencing Technology in Ruminant Livestock: Challenges and Opportunities. Curr Issues Mol Biol 2024; 46:5291-5306. [PMID: 38920988 PMCID: PMC11202421 DOI: 10.3390/cimb46060316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
Advancements in single-cell sequencing have transformed the genomics field by allowing researchers to delve into the intricate cellular heterogeneity within tissues at greater resolution. While single-cell omics are more widely applied in model organisms and humans, their use in livestock species is just beginning. Studies in cattle, sheep, and goats have already leveraged single-cell and single-nuclei RNA-seq as well as single-cell and single-nuclei ATAC-seq to delineate cellular diversity in tissues, track changes in cell populations and gene expression over developmental stages, and characterize immune cell populations important for disease resistance and resilience. Although challenges exist for the use of this technology in ruminant livestock, such as the precise annotation of unique cell populations and spatial resolution of cells within a tissue, there is vast potential to enhance our understanding of the cellular and molecular mechanisms underpinning traits essential for healthy and productive livestock. This review intends to highlight the insights gained from published single-cell omics studies in cattle, sheep, and goats, particularly those with publicly accessible data. Further, this manuscript will discuss the challenges and opportunities of this technology in ruminant livestock and how it may contribute to enhanced profitability and sustainability of animal agriculture in the future.
Collapse
|
15
|
von der Mark C, Minne M, De Rybel B. Studying plant vascular development using single-cell approaches. CURRENT OPINION IN PLANT BIOLOGY 2024; 78:102526. [PMID: 38479078 DOI: 10.1016/j.pbi.2024.102526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024]
Abstract
Vascular cells form a highly complex and heterogeneous tissue. Its composition, function, shape, and arrangement vary with the developmental stage and between organs and species. Understanding the transcriptional regulation underpinning this complexity thus requires a high-resolution technique that is capable of capturing rapid events during vascular cell formation. Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) approaches provide powerful tools to extract transcriptional information from these lowly abundant and dynamically changing cell types, which allows the reconstruction of developmental trajectories. Here, we summarize and reflect on recent studies using single-cell transcriptomics to study vascular cell types and discuss current and future implementations of sc/snRNA-seq approaches in the field of vascular development.
Collapse
Affiliation(s)
- Claudia von der Mark
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Max Minne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Bert De Rybel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|