1
|
Kunta S, Dahan Y, Torgeman S, Chory J, Burko Y. Species-specific PHYTOCHROME-INTERACTING FACTOR utilization in the plant morphogenetic response to environmental stimuli. THE PLANT CELL 2025; 37:koaf048. [PMID: 40085779 PMCID: PMC12070396 DOI: 10.1093/plcell/koaf048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
PHYTOCHROME-INTERACTING FACTORs (PIFs) regulate growth-related gene expression in response to environmental conditions. Among their diverse functions in regulating signal responses, PIFs play an important role in thermomorphogenesis (the response to increased ambient temperature) and in the shade avoidance response. While numerous studies have examined the varied roles of PIFs in Arabidopsis (Arabidopsis thaliana), their roles in crop plants remain poorly investigated. This study delves into the conservation of PIFs activity among species by examining their functions in tomato (Solanum lycopersicum) and comparing them to known PIF functions in Arabidopsis using single and higher-order mutants of tomato PIF genes (SlPIFs). We demonstrate that, in contrast to Arabidopsis, PIFs are not required for thermomorphogenesis-induced stem elongation in tomato. In addition, whereas Arabidopsis PIF8 has a minor effect on plant growth, tomato SlPIF8a plays a key role in the low red/far-red (R/FR) response. In contrast, SlPIF4 and SlPIF7s play minor roles in this process. We also investigated the tissue-specific low R/FR response in tomato seedlings and demonstrate that the aboveground organs exhibit a conserved response to low R/FR, which is regulated by SlPIFs. Our findings provide insights into PIF-mediated responses in crop plants, which may guide future breeding strategies to enhance yield under high planting densities.
Collapse
Affiliation(s)
- Srinivas Kunta
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yardena Dahan
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Shai Torgeman
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yogev Burko
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
2
|
Fattorini R. Shedding light on shade-avoidance: SlPIF8a plays a pivotal role in the tomato shade response. THE PLANT CELL 2025; 37:koaf091. [PMID: 40249648 PMCID: PMC12070384 DOI: 10.1093/plcell/koaf091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025]
Affiliation(s)
- Róisín Fattorini
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- Institute of Molecular Plant Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
3
|
Robinson J. Using chimeric rice proteins to make heads or tails of the function of repetitive elements in Gγ subunits. THE PLANT CELL 2025; 37:koaf080. [PMID: 40179254 PMCID: PMC12012680 DOI: 10.1093/plcell/koaf080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Julie Robinson
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| |
Collapse
|
4
|
Hsin KT, Lee YH, Lin KC, Chen W, Cheng YS. Specific binding between Arabidopsis thaliana phytochrome-interacting factor 3 (AtPIF3) bHLH and G-box originated prior to embryophyte emergence. BMC PLANT BIOLOGY 2024; 24:1060. [PMID: 39523297 PMCID: PMC11552376 DOI: 10.1186/s12870-024-05777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The basic helix-loop-helix (bHLH) domain via critical amino acid residues on basic region binding to E-box (5'-CANNTG-3') is known in embryophyte. However, the dictated E-box types selection by bHLH dimers and the significant impact of these critical amino acid residues along embryophyte evolution remain unclear. The Arabidopsis thaliana PIF3-bHLH (AtPIF3-bHLH) recombinant protein and a series of AtPIF3-bHLH mutants were synthesized and analyzed. The reduced DNA binding ability and affinity of AtPIF3-bHLH point-mutation proteins, observed via fluorescence-based electrophoretic mobility shift assay (fEMSA) and isothermal titration calorimetry (ITC), suggest the critical role of these DNA-recognition sites in maintaining the AtPIF3-bHLH-DNA interaction. The purifying selection signals and the DNA-recognition-site conservation at the species level suggest the invariant roles of these sites throughout embryophyte evolution. The G-box outcompeted other types of E-box for binding in our competitive fEMSAs. The dynamic hydrogen bond formed between AtPIF3-bHLH and the G-box core indicates flexible identification of the core region. These features highlight a fast fixation of the bHLH-G-box recognition mechanism through embryophyte evolution and serve as a blueprint for studying DNA recognition determinants of other TF families.
Collapse
Affiliation(s)
- Kuan-Ting Hsin
- Department of Tropical Agriculture and International Cooperation, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Yu-Hsuan Lee
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Kai-Chun Lin
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Wei Chen
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Yi-Sheng Cheng
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan.
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan.
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan.
| |
Collapse
|
5
|
Huang X, He Y, Zhang K, Shi Y, Zhao H, Lai D, Lin H, Wang X, Yang Z, Xiao Y, Li W, Ouyang Y, Woo SH, Quinet M, Georgiev MI, Fernie AR, Liu X, Zhou M. Evolution and Domestication of a Novel Biosynthetic Gene Cluster Contributing to the Flavonoid Metabolism and High-Altitude Adaptability of Plants in the Fagopyrum Genus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403603. [PMID: 39312476 DOI: 10.1002/advs.202403603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/15/2024] [Indexed: 09/25/2024]
Abstract
The diversity of secondary metabolites is an important means for plants to cope with the complex and ever-changing terrestrial environment. Plant biosynthetic gene clusters (BGCs) are crucial for the biosynthesis of secondary metabolites. The domestication and evolution of BGCs and how they affect plant secondary metabolites biosynthesis and environmental adaptation are still not fully understood. Buckwheat exhibits strong resistance and abundant secondary metabolites, especially flavonoids, allowing it to thrive in harsh environments. A non-canonical BGC named UFGT3 cluster is identified, which comprises a phosphorylase kinase (PAK), two transcription factors (MADS1/2), and a glycosyltransferase (UFGT3), forming a complete molecular regulatory module involved in flavonoid biosynthesis. This cluster is selected during Tartary buckwheat domestication and is widely present in species of the Fagopyrum genus. In wild relatives of cultivated buckwheat, a gene encoding anthocyanin glycosyltransferase (AGT), which glycosylates pelargonidin into pelargonidin-3-O-glucoside, is found inserted into this cluster. The pelargonidin-3-O-glucoside can help plants resist UV stress, endowing wild relatives with stronger high-altitude adaptability. This study provides a new research paradigm for the evolutionary dynamics of plant BGCs, and offers new perspectives for exploring the mechanism of plant ecological adaptability driven by environmental stress through the synthesis of secondary metabolites.
Collapse
Affiliation(s)
- Xu Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqi He
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Kaixuan Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yaliang Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | - Dili Lai
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hao Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiangru Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhimin Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yawen Xiao
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinan Ouyang
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Sun Hee Woo
- Department of Agronomy, Chungbuk National University, Cheongju, 28644, South Korea
| | - Muriel Quinet
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute-Agronomy (ELI-A), Université Catholique de Louvain, Croix du Sud 45, boîte L7.07.13, Louvain-la-Neuve, B-1348, Belgium
| | - Milen I Georgiev
- Laboratory of Metabolomics, Institute of Microbiology, Bulgarian Academy of Sciences, Plovdiv, 4000, Bulgaria
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, Plovdiv, 4000, Bulgaria
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, 14476, Germany
| | - Xu Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiliang Zhou
- National Key Facility for Crop Gene Resources and Genetic Improvement Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|