1
|
Chopra P, Sapia N, Karami O, Kumar P, Honys D, Colombo L, Mendes M, Benhamed M, Fotopoulos V, Lieberman-Lazarovich M, Mueller-Roeber B, Kaiserli E, Hafidh S, Fragkostefanakis S. Priming thermotolerance: unlocking heat resilience for climate-smart crops. Philos Trans R Soc Lond B Biol Sci 2025; 380:20240234. [PMID: 40439313 PMCID: PMC12121387 DOI: 10.1098/rstb.2024.0234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 06/02/2025] Open
Abstract
Rising temperatures and heat waves pose a substantial threat to crop productivity by disrupting essential physiological and reproductive processes. While plants have a genetically inherited capacity to acclimate to high temperatures, the thermotolerance capacity of many crops remains limited. This limitation leads to yield losses, which are further intensified by the increasing intensity of climate change. In this review, we explore how thermopriming enhances plant resilience by preparing plants for future heat stress (HS) events and summarize the mechanisms underlying the memory of HS (thermomemory) in different plant tissues and organs. We also discuss recent advances in priming agents, including chemical, microbial and physiological interventions, and their application strategies to extend thermotolerance beyond inherent genetic capacity. Additionally, this review examines how integrating priming strategies with genetic improvements, such as breeding and genome editing for thermotolerance traits, provides a holistic solution to mitigate the impact of climate change on agriculture. By combining these approaches, we propose a framework for developing climate-resilient crops and ensuring global food security in the face of escalating environmental challenges.This article is part of the theme issue 'Crops under stress: can we mitigate the impacts of climate change on agriculture and launch the 'Resilience Revolution'?'.
Collapse
Affiliation(s)
- Priyanka Chopra
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Natalia Sapia
- Institute of Molecular Biosciences, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
- Institute of Plant Sciences Paris-Saclay (IPS2), Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Omid Karami
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Pawan Kumar
- Institute of Plant Sciences, Agricultural Research Organization, Rishon LeZion, Israel
| | - David Honys
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | | | | | - Moussa Benhamed
- Institute of Plant Sciences Paris-Saclay (IPS2), Universite Paris-Saclay, Gif-sur-Yvette, France
| | | | | | | | - Eirini Kaiserli
- Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Said Hafidh
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Sotirios Fragkostefanakis
- Institute of Molecular Biosciences, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Zhang N, Liu H. Switch on and off: Phospho-events in light signaling pathways. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40243236 DOI: 10.1111/jipb.13913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/21/2025] [Indexed: 04/18/2025]
Abstract
Light is a fundamental environmental cue that dynamically orchestrates plant growth and development through spatiotemporally regulated molecular networks. Among these, phosphorylation, a key post-translational modification, plays a crucial role in controlling the function, stability, subcellular localization, and protein-protein interactions of light signaling components. This review systematically examines phosphorylation-dependent regulatory events within the Arabidopsis light signaling cascade, focusing on its regulatory mechanisms, downstream functional consequences, and crosstalk with other signaling pathways. We underscore the pivotal role of phosphorylation in light signaling transduction, elucidating how the phosphorylation-decoding framework transduces light information into growth and developmental plasticity to modulate plant-environment interactions.
Collapse
Affiliation(s)
- Nan Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| | - Hongtao Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518061, China
| |
Collapse
|
3
|
Hamid RSB, Nagy F, Kaszler N, Domonkos I, Gombos M, Marton A, Vizler C, Molnár E, Pettkó‐Szandtner A, Bögre L, Fehér A, Magyar Z. RETINOBLASTOMA-RELATED Has Both Canonical and Noncanonical Regulatory Functions During Thermo-Morphogenic Responses in Arabidopsis Seedlings. PLANT, CELL & ENVIRONMENT 2025; 48:1217-1231. [PMID: 39420660 PMCID: PMC11695787 DOI: 10.1111/pce.15202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Warm temperatures accelerate plant growth, but the underlying molecular mechanism is not fully understood. Here, we show that increasing the temperature from 22°C to 28°C rapidly activates proliferation in the apical shoot and root meristems of wild-type Arabidopsis seedlings. We found that one of the central regulators of cell proliferation, the cell cycle inhibitor RETINOBLASTOMA-RELATED (RBR), is suppressed by warm temperatures. RBR became hyper-phosphorylated at a conserved CYCLIN-DEPENDENT KINASE (CDK) site in young seedlings growing at 28°C, in parallel with the stimulation of the expressions of the regulatory CYCLIN D/A subunits of CDK(s). Interestingly, while under warm temperatures ectopic RBR slowed down the acceleration of cell proliferation, it triggered elongation growth of post-mitotic cells in the hypocotyl. In agreement, the central regulatory genes of thermomorphogenic response, including PIF4 and PIF7, as well as their downstream auxin biosynthetic YUCCA genes (YUC1-2 and YUC8-9) were all up-regulated in the ectopic RBR expressing line but down-regulated in a mutant line with reduced RBR level. We suggest that RBR has both canonical and non-canonical functions under warm temperatures to control proliferative and elongation growth, respectively.
Collapse
Affiliation(s)
- Rasik Shiekh Bin Hamid
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Fruzsina Nagy
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Doctoral School in Biology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
| | - Nikolett Kaszler
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Ildikó Domonkos
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Magdolna Gombos
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | - Annamária Marton
- Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
| | - Csaba Vizler
- Institute of BiochemistryHUN‐REN Biological Research CentreSzegedHungary
| | - Eszter Molnár
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| | | | - László Bögre
- Department of Biological SciencesRoyal Holloway, University of LondonEgham, SurreyUK
| | - Attila Fehér
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
- Department of Plant BiologyFaculty of Science and Informatics, University of SzegedSzegedHungary
| | - Zoltán Magyar
- Institute of Plant BiologyHUN‐REN Biological Research CentreSzegedHungary
| |
Collapse
|
4
|
Xu T, Patitaki E, Zioutopoulou A, Kaiserli E. Light and high temperatures control epigenomic and epitranscriptomic events in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2025; 83:102668. [PMID: 39586185 DOI: 10.1016/j.pbi.2024.102668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Light and temperature are two key environmental factors that control plant growth and adaptation by influencing biomolecular events. This review highlights the latest milestones on the role of light and high temperatures in modulating the epigenetic and epitranscriptomic landscape of Arabidopsis to trigger developmental and adaptive responses to a changing environment. Recent discoveries on how light and high temperature signals are integrated in the nucleus to modulate gene expression are discussed, as well as highlighting research gaps and future perspectives in further understanding how to promote plant resilience in times of climate change.
Collapse
Affiliation(s)
- Tianyuan Xu
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Patitaki
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Zioutopoulou
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Eirini Kaiserli
- School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| |
Collapse
|
5
|
Fehér A, Hamid RSB, Magyar Z. How Do Arabidopsis Seedlings Sense and React to Increasing Ambient Temperatures? PLANTS (BASEL, SWITZERLAND) 2025; 14:248. [PMID: 39861601 PMCID: PMC11769069 DOI: 10.3390/plants14020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025]
Abstract
Plants respond to higher ambient temperatures by modifying their growth rate and habitus. This review aims to summarize the accumulated knowledge obtained with Arabidopsis seedlings grown at normal and elevated ambient temperatures. Thermomorphogenesis in the shoot and the root is overviewed separately, since the experiments indicate differences in key aspects of thermomorphogenesis in the two organs. This includes the variances in thermosensors and key transcription factors, as well as the predominance of cell elongation or cell division, respectively, even though auxin plays a key role in regulating this process in both organs. Recent findings also highlight the role of the root and shoot meristems in thermomorphogenesis and suggest that the cell cycle inhibitor RETINOBLASTOMA-RELATED protein may balance cell division and elongation at increased temperatures.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary (Z.M.)
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Rasik Shiekh Bin Hamid
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary (Z.M.)
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Zoltán Magyar
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary (Z.M.)
| |
Collapse
|
6
|
Zhang Y, Ge S, Dong L, Liu N, Shao Y, Fan Z, Yang L, Si Q, Ye Y, Ren D, Zhang S, Xu J. Chemical-sensitized MITOGEN-ACTIVATED PROTEIN KINASE 4 provides insights into its functions in plant growth and immunity. PLANT PHYSIOLOGY 2024; 197:kiae574. [PMID: 39471318 DOI: 10.1093/plphys/kiae574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 11/01/2024]
Abstract
Two mitogen-activated protein kinase (MAPK) cascades with MPK4 and MPK3/MPK6 as the bottommost kinases are key to plant growth/development and immune signaling. Disruption of the MPK4 cascade leads to severe dwarfism and autoimmunity, complicating the study of MPK4 in plant growth/development and immunity. In this study, we successfully rescued the Arabidopsis (Arabidopsis thaliana) mpk4 mutant using a chemical-sensitized MPK4 variant, MPK4YG, creating a conditional activity-null mpk4 mutant named MPK4SR (genotype: PMPK4:MPK4YG mpk4) that could be used to examine the functions of MPK4 in plant growth/development and immunity. We discovered that the duration of the loss of MPK4 activity is important to plant immune responses. Short-term loss of MPK4 activity did not impact flg22-induced ROS burst or resistance against Pseudomonas syringae (Pst). Enhanced Pst resistance was only observed in the MPK4SR plants with stunted growth following prolonged inhibition of MPK4 activity. Transcriptome analyses in plants with short-term loss of MPK4 activity revealed a vital role of MPK4 in regulating several housekeeping processes, including mitosis, transcription initiation, and cell wall macromolecule catabolism. Furthermore, the constitutive weak activation of MPK4GA in the MPK4CA plants (genotype: PMPK4:MPK4GA mpk4) led to early flowering and premature senescence, which was associated with its compromised resistance against Pst. These findings suggest that MPK4 plays important roles in plant growth and development and in maintaining the delicate balance between growth/development and immune adaptation in plants.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shating Ge
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lele Dong
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Niu Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yiming Shao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zong Fan
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - La Yang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qi Si
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yajin Ye
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Dongtao Ren
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100094, China
| | - Shuqun Zhang
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Juan Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
7
|
Singh D, Verma N, Rengasamy B, Banerjee G, Sinha AK. The small RNA biogenesis in rice is regulated by MAP kinase-mediated OsCDKD phosphorylation. THE NEW PHYTOLOGIST 2024; 244:1482-1497. [PMID: 39285527 DOI: 10.1111/nph.20116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/18/2024]
Abstract
CDKs are the master regulator of cell division and their activity is controlled by the regulatory subunit cyclins and phosphorylation by the CAKs. However, the role of MAP kinases in regulating plant cell cycle or CDKs have not been explored. Here, we report that the MAP kinases OsMPK3, OsMPK4, and OsMPK6 physically interact and phosphorylate OsCDKD and its regulatory subunit OsCYCH in rice. MAP kinases phosphorylate CDKD at Ser-168 and Thr-235 residues in OsCDKD. The MAP kinase-mediated phosphorylation of OsCDKD is required for its activation to control the small RNA biogenesis. The phosphodead version of OsCDKD fails to activate the C-terminal domain of RNA Polymerase II, thereby negatively impacting small RNA transcription. Further, the overexpression lines of wild-type (WT) OsCDKD and phosphomimic OsCDKD show increased root growth, plant height, tiller number, panicle number, and seed number in comparison to WT, phosphodead OsCDKD-OE, and kinase-dead OsCDKD-OE plants. In a nutshell, our study establishes a novel regulation of OsCDKD by MAPK-mediated phosphorylation in rice. The phosphorylation of OsCDKD by MAPKs imparts a positive effect on rice growth and development by regulating miRNAs transcription.
Collapse
Affiliation(s)
- Dhanraj Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Neetu Verma
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Balakrishnan Rengasamy
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Gopal Banerjee
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Road, New Delhi, 110067, India
| |
Collapse
|