1
|
Chen X, Zhang Y, Cheng Y, Yu W, Yang L, Shu P, Zhou J, Fayyaz P, Luo Z, Deng S, Shi W. PcWRKY1 Represses Transcription of Yellow Stripe-Like 3 (PcYSL3) to Negatively Regulate Radial Cadmium Transport in Poplar Stems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2405492. [PMID: 39527694 PMCID: PMC11714223 DOI: 10.1002/advs.202405492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/29/2024] [Indexed: 11/16/2024]
Abstract
A considerable amount of cadmium (Cd) can accumulate in the bark of poplar stems, but the Cd transport pathway and its underlying molecular mechanisms remain unknown. Here, a Cd radial transport pathway in poplar stems and a previously unrecognized PcWRKY1-Yellow Stripe-Like 3 (PcYSL3) module that regulates Cd transport are identified in Populus × canescens (Aiton) Sm. Cadmiun-nicotianamine (Cd-NA) in xylem vessels in poplar stem-wood is unloaded to adjacent ray parenchyma cells and further radially transported to bark-phloem. PcYSL3 is putatively identified as involved in Cd radial transport in poplar stems. PcYSL3 is highly expressed in ray parenchyma cells adjacent to xylem vessels and the encoded protein localizes on the plasma membrane. Cd accumulation is greater in the wood and bark of PcYSL3-overexpressing poplars than the wild type, whereas the opposite is observed in PcYSL3-knockdown plants. PcWRKY1 can bind to the PcYSL3 promoter sequence and represses its expression. PcWRKY1 inhibits Cd accumulation in the wood and bark of plants. Thus, PcWRKY1 suppresses PcYSL3 transcription to negatively regulate Cd-NA unloading from xylem vessels to adjacent ray parenchyma cells and its radial transport in poplar stem. The findings have provided new insights into breeding of poplars for more effective remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Xin Chen
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Yuhong Zhang
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Yao Cheng
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Wenjian Yu
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Lingyu Yang
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Peiqi Shu
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Jing Zhou
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Payam Fayyaz
- Forest, Range and Watershed Management DepartmentAgriculture and Natural Resources FacultyYasouj UniversityYasuj75919 63179Iran
| | - Zhi‐Bin Luo
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
- Institute of Ecological Conservation and RestorationChinese Academy of ForestryBeijing100091P. R. China
- Comprehensive Experimental Center of Chinese Academy of Forestry in Yellow River DeltaDongyingShandong257000P. R. China
| | - Shurong Deng
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| | - Wenguang Shi
- State Key Laboratory of Tree Genetics and BreedingResearch Institute of ForestryChinese Academy of ForestryBeijing100091P. R. China
| |
Collapse
|
2
|
Azeem I, Wang Q, Adeel M, Shakoor N, Zain M, Khan AA, Li Y, Azeem K, Nadeem M, Zhu G, Yukui R. Assessing the combined impacts of microplastics and nickel oxide nanomaterials on soybean growth and nitrogen fixation potential. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136062. [PMID: 39393323 DOI: 10.1016/j.jhazmat.2024.136062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024]
Abstract
The excessive presence of polystyrene microplastic (PS-MPx) and nickel oxide nanomaterials (NiO-NPs) in agriculture ecosystem have gained serious attention about their effect on the legume root-nodule symbiosis and biological nitrogen fixation (BNF). However, the impact of these contaminants on the root-nodule symbiosis and biological N2-fixation have been largely overlooked. The current findings highlighted that NiO-NMs at 50 mg kg-1 improved nodule formation and N2-fixation potential, leading to enhanced N2 uptake by both roots and shoots, resulting in increased plant growth and development. While single exposure of PS-MPx (500 mg kg-1) significantly reduced the photosynthetic pigment (8-14 %), phytohormones (9-25 %), nodules biomass (24 %), N2-related enzymes (12-17 %) that ultimately affected the N2-fixation potential. Besides, co-exposure of MPx and NiO at 100 mg kg-1 altered the nodule morphology. Additionally, single and co-exposure of MPx and NiO-NMs at 100 mg kg-1 reduced the relative abundance of Proteobacteria, Gemmatimonadota, Actinobacteria, Firmicutes, and Bacteroidetes is associated with N2-cycling and N2-fixation potential. The findings of this study will contribute to understanding the potential risks posed by MPx and NiO-NMs to leguminous crops in the soil environment and provide scientific insights into the soybean N2-fixation potential.
Collapse
Affiliation(s)
- Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Quanlong Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Guangdong, China.
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Adnan Anwar Khan
- College of Natural Resources and Environment, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Kamran Azeem
- Department of Agronomy, the University of Agricultural Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nadeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Yukui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; China Agricultural University Professor Workstation of Tangshan Jinhai New Material Co., Ltd., Tangshan City, Hebei, China; China Agricultural University Shanghe County Baiqiao Town Science and Technology Courtyard, Shanghe County, Jinan, Shandong, China.
| |
Collapse
|
3
|
Zhou M, Li Y, Yao XL, Zhang J, Liu S, Cao HR, Bai S, Chen CQ, Zhang DX, Xu A, Lei JN, Mao QZ, Zhou Y, Duanmu DQ, Guan YF, Chen ZC. Inorganic nitrogen inhibits symbiotic nitrogen fixation through blocking NRAMP2-mediated iron delivery in soybean nodules. Nat Commun 2024; 15:8946. [PMID: 39414817 PMCID: PMC11484902 DOI: 10.1038/s41467-024-53325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency. This disruption is attributed to the inhibition of the Fe transporter genes Natural Resistance-Associated Macrophage Protein 2a and 2b (GmNRAMP2a&2b) by inorganic N. GmNRAMP2a&2b are predominantly localized at the tonoplast of uninfected nodule tissues, affecting Fe transfer to infected cells and consequently, modulating SNF efficiency. In addition, we identified a pair of N-signal regulators, nitrogen-regulated GARP-type transcription factors 1a and 1b (GmNIGT1a&1b), that negatively regulate the expression of GmNRAMP2a&2b, which establishes a link between N signaling and Fe homeostasis in nodules. Our findings reveal a plausible mechanism by which soybean adjusts SNF efficiency through Fe allocation in response to fluctuating inorganic N conditions, offering valuable insights for optimizing N and Fe management in legume-based agricultural systems.
Collapse
Affiliation(s)
- Min Zhou
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Lei Yao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong-Rui Cao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Bai
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chun-Qu Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dan-Xun Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ao Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Ning Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - De-Qiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Yue-Feng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China.
| | - Zhi-Chang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
4
|
Li Y, Liu Q, Zhang DX, Zhang ZY, Xu A, Jiang YL, Chen ZC. Metal nutrition and transport in the process of symbiotic nitrogen fixation. PLANT COMMUNICATIONS 2024; 5:100829. [PMID: 38303509 PMCID: PMC11009365 DOI: 10.1016/j.xplc.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Symbiotic nitrogen fixation (SNF) facilitated by the interaction between legumes and rhizobia is a well-documented and eco-friendly alternative to chemical nitrogen fertilizers. Host plants obtain fixed nitrogen from rhizobia by providing carbon and mineral nutrients. These mineral nutrients, which are mostly in the form of metal ions, are implicated in various stages of the SNF process. This review describes the functional roles played by metal ions in nodule formation and nitrogen fixation and specifically addresses their transport mechanisms and associated transporters within root nodules. Future research directions and potential strategies for enhancing SNF efficiency are also discussed.
Collapse
Affiliation(s)
- Yuan Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qian Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dan-Xun Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhuo-Yan Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ao Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuan-Long Jiang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi-Chang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
5
|
González-Guerrero M, Navarro-Gómez C, Rosa-Núñez E, Echávarri-Erasun C, Imperial J, Escudero V. Forging a symbiosis: transition metal delivery in symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2023; 239:2113-2125. [PMID: 37340839 DOI: 10.1111/nph.19098] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Symbiotic nitrogen fixation carried out by the interaction between legumes and rhizobia is the main source of nitrogen in natural ecosystems and in sustainable agriculture. For the symbiosis to be viable, nutrient exchange between the partners is essential. Transition metals are among the nutrients delivered to the nitrogen-fixing bacteria within the legume root nodule cells. These elements are used as cofactors for many of the enzymes controlling nodule development and function, including nitrogenase, the only known enzyme able to convert N2 into NH3 . In this review, we discuss the current knowledge on how iron, zinc, copper, and molybdenum reach the nodules, how they are delivered to nodule cells, and how they are transferred to nitrogen-fixing bacteria within.
Collapse
Affiliation(s)
- Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Cristina Navarro-Gómez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Carlos Echávarri-Erasun
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| |
Collapse
|
6
|
Lin Y, Amkul K, Laosatit K, Liu J, Yimram T, Chen J, Yuan X, Chen X, Somta P. Fine mapping of QTL conferring resistance to calcareous soil in mungbean reveals VrYSL3 as candidate gene for the resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111698. [PMID: 37028455 DOI: 10.1016/j.plantsci.2023.111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/25/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
Iron is a crucial nutrient for biological functions in plants. High-pH and calcareous soil is a major stress causing iron deficiency chlorosis (IDC) symptoms and yield losses in crops. Use of calcareous soil-tolerance genetic resources is the most effective preventative method to combat the effects of high-pH and calcareous soils. A previous study using a mungbean recombinant inbred line (RIL) population of the cross Kamphaeg Saen 2 (KPS2; IDC susceptible) × NM-10-12 identified a major quantitative trait locus (QTL), qIDC3.1, which controls resistance and explains more than 40% of IDC variation. In this study, we fine-mapped qIDC3.1 and identified an underlying candidate gene. A genome wide association analysis (GWAS) using 162 mungbean accessions identified single nucleotide polymorphisms (SNPs) on chromosome 6; several SNPs were associated with soil plant analysis development (SPAD) values and IDC visual scores of mungbeans planted on calcareous soil, respectively. These SNPs corresponded to qIDC3.1. Using the same RIL population as in the previous study and an advanced backcross population developed from KPS2 and IDC-resistant inbred line RIL82, qIDC3.1 was further confirmed and fine-mapped to an interval of 217 kilobases harboring five predicted genes, including LOC106764181 (VrYSL3), which encodes a yellow stripe1-like-3 (YSL3) protein, YSL3 is involved in iron deficiency resistance. Gene expression analysis revealed that VrYSL3 was highly expressed in mungbean roots. In calcareous soil, expression of VrYSL3 was significantly up-regulated, and it was more obviously upregulated in the roots of RIL82, than in those of KPS2. Sequence comparison of VrYSL3 between the RIL82 and KPS2 revealed four SNPs that result in amino acid changes in the VrYSL3 protein and a 20-bp insertion/deletion in the promoter where a cis-regulatory element resides. Transgenic Arabidopsis thaliana plants overexpressing VrYSL3 showed enhanced iron and zinc contents in the leaves. Taken together, these results indicate that VrYSL3 is a strong candidate gene responsible for calcareous soil resistance in mungbean.
Collapse
Affiliation(s)
- Yun Lin
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Kitiya Amkul
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Kularb Laosatit
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Jinyang Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Tarika Yimram
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand
| | - Jingbin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| | - Prakit Somta
- Department of Agronomy, Faculty of Agriculture at Kampaheng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
7
|
Liu Y, Xiong Z, Wu W, Ling HQ, Kong D. Iron in the Symbiosis of Plants and Microorganisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:1958. [PMID: 37653875 PMCID: PMC10223382 DOI: 10.3390/plants12101958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 09/02/2023]
Abstract
Iron is an essential element for most organisms. Both plants and microorganisms have developed different mechanisms for iron uptake, transport and storage. In the symbiosis systems, such as rhizobia-legume symbiosis and arbuscular mycorrhizal (AM) symbiosis, maintaining iron homeostasis to meet the requirements for the interaction between the host plants and the symbiotic microbes is a new challenge. This intriguing topic has drawn the attention of many botanists and microbiologists, and many discoveries have been achieved so far. In this review, we discuss the current progress on iron uptake and transport in the nodules and iron homeostasis in rhizobia-legume symbiosis. The discoveries with regard to iron uptake in AM fungi, iron uptake regulation in AM plants and interactions between iron and other nutrient elements during AM symbiosis are also summarized. At the end of this review, we propose prospects for future studies in this fascinating research area.
Collapse
Affiliation(s)
- Yi Liu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Zimo Xiong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Weifeng Wu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| | - Hong-Qing Ling
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China;
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Danyu Kong
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Y.L.)
| |
Collapse
|
8
|
Rapid Changes to Endomembrane System of Infected Root Nodule Cells to Adapt to Unusual Lifestyle. Int J Mol Sci 2023; 24:ijms24054647. [PMID: 36902077 PMCID: PMC10002930 DOI: 10.3390/ijms24054647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Symbiosis between leguminous plants and soil bacteria rhizobia is a refined type of plant-microbial interaction that has a great importance to the global balance of nitrogen. The reduction of atmospheric nitrogen takes place in infected cells of a root nodule that serves as a temporary shelter for thousands of living bacteria, which, per se, is an unusual state of a eukaryotic cell. One of the most striking features of an infected cell is the drastic changes in the endomembrane system that occur after the entrance of bacteria to the host cell symplast. Mechanisms for maintaining intracellular bacterial colony represent an important part of symbiosis that have still not been sufficiently clarified. This review focuses on the changes that occur in an endomembrane system of infected cells and on the putative mechanisms of infected cell adaptation to its unusual lifestyle.
Collapse
|
9
|
Luo Y, Liu W, Sun J, Zhang ZR, Yang WC. Quantitative proteomics reveals key pathways in the symbiotic interface and the likely extracellular property of soybean symbiosome. J Genet Genomics 2023; 50:7-19. [PMID: 35470091 DOI: 10.1016/j.jgg.2022.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 02/06/2023]
Abstract
An effective symbiosis between legumes and rhizobia relies largely on diverse proteins at the plant-rhizobium interface for material transportation and signal transduction during symbiotic nitrogen fixation. Here, we report a comprehensive proteome atlas of the soybean symbiosome membrane (SM), peribacteroid space (PBS), and root microsomal fraction (RMF) using state-of-the-art label-free quantitative proteomic technology. In total, 1759 soybean proteins with diverse functions are detected in the SM, and 1476 soybean proteins and 369 rhizobial proteins are detected in the PBS. The diversity of SM proteins detected suggests multiple origins of the SM. Quantitative comparative analysis highlights amino acid metabolism and nutrient uptake in the SM, indicative of the key pathways in nitrogen assimilation. The detection of soybean secretory proteins in the PBS and receptor-like kinases in the SM provides evidence for the likely extracellular property of the symbiosome and the potential signaling communication between both symbionts at the symbiotic interface. Our proteomic data provide clues for how some of the sophisticated regulation between soybean and rhizobium at the symbiotic interface is achieved, and suggest approaches for symbiosis engineering.
Collapse
Affiliation(s)
- Yu Luo
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wei Liu
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Juan Sun
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng-Rong Zhang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Cai Yang
- The State Key Laboratory for Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
10
|
Wu X, Wang Y, Ni Q, Li H, Wu X, Yuan Z, Xiao R, Ren Z, Lu J, Yun J, Wang Z, Li X. GmYSL7 controls iron uptake, allocation, and cellular response of nodules in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:167-187. [PMID: 36107150 DOI: 10.1111/jipb.13364] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) is essential for DNA synthesis, photosynthesis and respiration of plants. The demand for Fe substantially increases during legumes-rhizobia symbiotic nitrogen fixation because of the synthesis of leghemoglobin in the host and Fe-containing proteins in bacteroids. However, the mechanism by which plant controls iron transport to nodules remains largely unknown. Here we demonstrate that GmYSL7 serves as a key regulator controlling Fe uptake from root to nodule and distribution in soybean nodules. GmYSL7 is Fe responsive and GmYSL7 transports iron across the membrane and into the infected cells of nodules. Alterations of GmYSL7 substantially affect iron distribution between root and nodule, resulting in defective growth of nodules and reduced nitrogenase activity. GmYSL7 knockout increases the expression of GmbHLH300, a transcription factor required for Fe response of nodules. Overexpression of GmbHLH300 decreases nodule number, nitrogenase activity and Fe content in nodules. Remarkably, GmbHLH300 directly binds to the promoters of ENOD93 and GmLbs, which regulate nodule number and nitrogenase activity, and represses their transcription. Our data reveal a new role of GmYSL7 in controlling Fe transport from host root to nodule and Fe distribution in nodule cells, and uncover a molecular mechanism by which Fe affects nodule number and nitrogenase activity.
Collapse
Affiliation(s)
- Xinying Wu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongliang Wang
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiaohan Ni
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haizhen Li
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuesong Wu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhanxin Yuan
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Renhao Xiao
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyin Ren
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jingjing Lu
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxia Yun
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhijuan Wang
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xia Li
- National Key Laboratory of Crop Genetic and Improvement, Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Wushan Road, Guangzhou, 510642, China
| |
Collapse
|
11
|
Signaling and Detoxification Strategies in Plant-Microbes Symbiosis under Heavy Metal Stress: A Mechanistic Understanding. Microorganisms 2022; 11:microorganisms11010069. [PMID: 36677361 PMCID: PMC9865731 DOI: 10.3390/microorganisms11010069] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
Plants typically interact with a variety of microorganisms, including bacteria, mycorrhizal fungi, and other organisms, in their above- and below-ground parts. In the biosphere, the interactions of plants with diverse microbes enable them to acquire a wide range of symbiotic advantages, resulting in enhanced plant growth and development and stress tolerance to toxic metals (TMs). Recent studies have shown that certain microorganisms can reduce the accumulation of TMs in plants through various mechanisms and can reduce the bioavailability of TMs in soil. However, relevant progress is lacking in summarization. This review mechanistically summarizes the common mediating pathways, detoxification strategies, and homeostatic mechanisms based on the research progress of the joint prevention and control of TMs by arbuscular mycorrhizal fungi (AMF)-plant and Rhizobium-plant interactions. Given the importance of tripartite mutualism in the plant-microbe system, it is necessary to further explore key signaling molecules to understand the role of plant-microbe mutualism in improving plant tolerance under heavy metal stress in the contaminated soil environments. It is hoped that our findings will be useful in studying plant stress tolerance under a broad range of environmental conditions and will help in developing new technologies for ensuring crop health and performance in future.
Collapse
|
12
|
Ye S, Hua S, Ma T, Ma X, Chen Y, Wu L, Zhao L, Yi B, Ma C, Tu J, Shen J, Fu T, Wen J. Genetic and multi-omics analyses reveal BnaA07.PAP2In-184-317 as the key gene conferring anthocyanin-based color in Brassica napus flowers. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6630-6645. [PMID: 35857343 DOI: 10.1093/jxb/erac312] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The molecular mechanisms underlying anthocyanin-based flower coloration remain unknown in Brassica napus. To identify the key genes and metabolites associated with apricot and pink flower colors, metabolome, BSA-seq, and RNA-seq analyses were conducted on apricot-, pink-, yellow-, and white-flowered F2B. napus. Yellow carotenoids and red anthocyanins were abundant in apricot petals, while colorless carotenoids and red anthocyanins accumulated in pink petals. Most carotenoid genes were not differentially regulated between apricot and yellow or between pink and white petals. Three regulator genes, BnaMYBL2, BnaA07.PAP2, and BnaTT8, and structural genes in anthocyanin biosynthesis were dramatically enhanced in apricot and pink petals in comparison with yellow and white petals. Map-based cloning revealed that BnaA07.PAP2 is responsible for anthocyanin-based flower color and encodes a nucleus-localized protein predominantly expressed in apricot and pink flowers. Two insertions in the promoter region are responsible for the transcriptional activation of BnaA07.PAP2 in flowers. Introducing the BnaA07.PAP2In-184-317 allele broadly activated the expression of anthocyanin-related genes and promoted anthocyanin accumulation in flowers, yielding color change from yellow to apricot. These findings illustrate the genetic basis of anthocyanin-based flower coloration and provide a valuable genetic resource for breeding varieties with novel flower colors in B. napus.
Collapse
Affiliation(s)
- Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Shuijin Hua
- Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Tiantian Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Yanping Chen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Lumei Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
13
|
Sun Y, Luo J, Feng P, Yang F, Liu Y, Liang J, Wang H, Zou Y, Ma F, Zhao T. MbHY5-MbYSL7 mediates chlorophyll synthesis and iron transport under iron deficiency in Malus baccata. FRONTIERS IN PLANT SCIENCE 2022; 13:1035233. [PMID: 36340415 PMCID: PMC9627156 DOI: 10.3389/fpls.2022.1035233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iron (Fe) plays an important role in cellular respiration and catalytic reactions of metalloproteins in plants and animals. Plants maintain iron homeostasis through absorption, translocation, storage, and compartmentalization of iron via a cooperative regulative network. Here, we showed different physiological characteristics in the leaves and roots of Malus baccata under Fe sufficiency and Fe deficiency conditions and propose that MbHY5 (elongated hypocotyl 5), an important transcription factor for its function in photomorphogenesis, participated in Fe deficiency response in both the leaves and roots of M. baccata. The gene co-expression network showed that MbHY5 was involved in the regulation of chlorophyll synthesis and Fe transport pathway under Fe-limiting conditions. Specifically, we found that Fe deficiency induced the expression of MbYSL7 in root, which was positively regulated by MbHY5. Overexpressing or silencing MbYSL7 influenced the expression of MbHY5 in M. baccata.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yangjun Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| | - Tao Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Plett KL, Snijders F, Castañeda-Gómez L, Wong-Bajracharya JWH, Anderson IC, Carrillo Y, Plett JM. Nitrogen fertilization differentially affects the symbiotic capacity of two co-occurring ectomycorrhizal species. Environ Microbiol 2022; 24:309-323. [PMID: 35023254 DOI: 10.1111/1462-2920.15879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Forest trees rely on ectomycorrhizal (ECM) fungi to obtain growth-limiting nutrients. While addition of nitrogen (N) has the potential to disrupt these critical relationships, there is conflicting evidence as to the mechanism by which ECM:host mutualism may be affected. We evaluated how N fertilization altered host interactions and gene transcription between Eucalyptus grandis and Pisolithus microcarpus or Pisolithus albus, two closely related ECM species that typically co-occur within the same ecosystem. Our investigation demonstrated species-specific responses to elevated N: P. microcarpus maintained its ability to transport microbially sourced N to its host but had a reduced ability to penetrate into root tissues, while P. albus maintained its colonization ability but reduced delivery of N to its host. Transcriptomic analysis suggests that regulation of different suites of N-transporters may be responsible for these species-specific differences. In addition to N-dependent responses, we were also able to define a conserved 'core' transcriptomic response of Eucalyptus grandis to mycorrhization that was independent of abiotic conditions. Our results demonstrate that even between closely related ECM species, responses to N fertilization can vary considerably, suggesting that a better understanding of the breadth and mechanisms of their responses is needed to support forest ecosystems into the future.
Collapse
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, 2568, Australia
| | - Fridtjof Snijders
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Laura Castañeda-Gómez
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, M1C 1A4, Canada
| | - Johanna W-H Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia.,Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, New South Wales, 2568, Australia
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Yolima Carrillo
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, 2751, Australia
| |
Collapse
|
15
|
Booth NJ, Smith PMC, Ramesh SA, Day DA. Malate Transport and Metabolism in Nitrogen-Fixing Legume Nodules. Molecules 2021; 26:6876. [PMID: 34833968 PMCID: PMC8618214 DOI: 10.3390/molecules26226876] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022] Open
Abstract
Legumes form a symbiosis with rhizobia, a soil bacterium that allows them to access atmospheric nitrogen and deliver it to the plant for growth. Biological nitrogen fixation occurs in specialized organs, termed nodules, that develop on the legume root system and house nitrogen-fixing rhizobial bacteroids in organelle-like structures termed symbiosomes. The process is highly energetic and there is a large demand for carbon by the bacteroids. This carbon is supplied to the nodule as sucrose, which is broken down in nodule cells to organic acids, principally malate, that can then be assimilated by bacteroids. Sucrose may move through apoplastic and/or symplastic routes to the uninfected cells of the nodule or be directly metabolised at the site of import within the vascular parenchyma cells. Malate must be transported to the infected cells and then across the symbiosome membrane, where it is taken up by bacteroids through a well-characterized dct system. The dicarboxylate transporters on the infected cell and symbiosome membranes have been functionally characterized but remain unidentified. Proteomic and transcriptomic studies have revealed numerous candidates, but more work is required to characterize their function and localise the proteins in planta. GABA, which is present at high concentrations in nodules, may play a regulatory role, but this remains to be explored.
Collapse
Affiliation(s)
- Nicholas J. Booth
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; (N.J.B.); (S.A.R.)
| | | | - Sunita A. Ramesh
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; (N.J.B.); (S.A.R.)
| | - David A. Day
- College of Science & Engineering, Flinders University, GPO Box 5100, Adelaide, SA 5001, Australia; (N.J.B.); (S.A.R.)
| |
Collapse
|
16
|
Castro-Rodríguez R, Escudero V, Reguera M, Gil-Díez P, Quintana J, Prieto RI, Kumar RK, Brear E, Grillet L, Wen J, Mysore KS, Walker EL, Smith PMC, Imperial J, González-Guerrero M. Medicago truncatula Yellow Stripe-Like7 encodes a peptide transporter participating in symbiotic nitrogen fixation. PLANT, CELL & ENVIRONMENT 2021; 44:1908-1920. [PMID: 33797764 DOI: 10.1111/pce.14059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
Yellow Stripe-Like (YSL) proteins are a family of plant transporters that are typically involved in transition metal homeostasis. Three of the four YSL clades (I, II and IV) transport metals complexed with the non-proteinogenic amino acid nicotianamine or its derivatives. No such capability has been shown for any member of clade III, but the link between these YSLs and metal homeostasis could be masked by functional redundancy. We studied the role of the clade III YSL protein MtSYL7 in Medicago truncatula nodules. MtYSL7, which encodes a plasma membrane-bound protein, is mainly expressed in the pericycle and cortex cells of the root nodules. Yeast complementation assays revealed that MtSYL7 can transport short peptides. M. truncatula transposon insertion mutants with decreased expression of MtYSL7 had lower nitrogen fixation rates and showed reduced plant growth whether grown in symbiosis with rhizobia or not. YSL7 mutants accumulated more copper and iron in the nodules, which is likely to result from the increased expression of iron uptake and delivery genes in roots. Taken together, these data suggest that MtYSL7 plays an important role in the transition metal homeostasis of nodules and symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - María Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Julia Quintana
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Rosa Isabel Prieto
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
| | - Rakesh K Kumar
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ella Brear
- Department of Animal, Plant, and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Louis Grillet
- Department of Agricultural Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jiangqi Wen
- Noble Research Institute, LLC., Ardmore, Oklahoma, USA
| | | | - Elsbeth L Walker
- Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Penelope M C Smith
- Department of Animal, Plant, and Soil Sciences, La Trobe University, Bundoora, Australia
| | - Juan Imperial
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Universidad Politécnica de Madrid, Campus de Montegancedo, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|