1
|
Huang S, Kang X, Fu R, Zheng L, Li P, Tang F, Chao N, Liu L. Simultaneous Down-Regulation of Dominant Cinnamoyl CoA Reductase and Cinnamyl Alcohol Dehydrogenase Dramatically Altered Lignin Content in Mulberry. PLANTS (BASEL, SWITZERLAND) 2024; 13:3512. [PMID: 39771210 PMCID: PMC11676671 DOI: 10.3390/plants13243512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/07/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Mulberry (Morus alba L.) is a significant economic tree species in China. The lignin component serves as a critical limiting factor that impacts both the forage quality and the conversion efficiency of mulberry biomass into biofuel. Cinnamoyl CoA reductase (CCR; EC 1.21.1.44) and cinnamyl alcohol dehydrogenase (CAD; EC 1.1.1.95) are the key enzymes that catalyze the final two reductive steps in the biosynthesis of monolignols. In this study, we conducted a comprehensive functional analysis to validate the predominant CCR genes involved in monolignol biosynthesis. In this study, we initially validated the predominant CCR genes implicated in monolignol biosynthesis through an extensive functional analysis. Phylogenetic analysis, tissue-specific expression profiling and enzymatic assays indicated that MaCCR1 is the authentic CCR involved in lignin biosynthesis. Furthermore, the expression level of MaCCR1 exhibited a significant positive correlation with lignin content, and the down-regulation of MaCCR1 via virus-induced gene silencing resulted in altered lignin content in mulberry. The down-regulation of MaCCR1 and MaCAD3/4, both individually and concurrently, exhibited markedly different effects on lignin content and mulberry growth. Specifically, the simultaneous down-regulation of MaCCR1 and MaCAD3/4 significantly altered lignin content in mulberry, resulting in dwarfism of the plants. Conversely, the down-regulation of MaCAD3/4 alone not only decreased lignin content but also led to an increase in biomass. These findings offer compelling evidence elucidating the roles of MaCCRs in mulberry and identify specific target genes, thereby providing a crucial foundation for the genetic modification of lignin biosynthesis.
Collapse
Affiliation(s)
- Shuai Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Xiaoru Kang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Rumeng Fu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Longyan Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Peijun Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fengjuan Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Nan Chao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Li Liu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| |
Collapse
|
2
|
Kao CT, Yang FW, Wu MC, Hung TH, Hu CW, Chen CH, Liou PC, Mai TL, Chang CC, Lin TY, Chen YL, Lin YCJ, Su JC. Systematic synthesis and identification of monolignol pathway metabolites. THE NEW PHYTOLOGIST 2024; 244:1143-1167. [PMID: 39267260 DOI: 10.1111/nph.20101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/17/2024]
Abstract
Monolignol serves as the building blocks to constitute lignin, the second abundant polymer on Earth. Despite two decades of diligent efforts, complete identification of all metabolites in the currently proposed monolignol biosynthesis pathway has proven elusive. This limitation also hampers their potential application. One of the primary obstacles is the challenge of assembling a collection of all molecules, because many are commercially unavailable or prohibitively costly. In this study, we established systematic pipelines to synthesize all 24 molecules through the conversions between functional groups on a core structure followed by the application to other core structures. We successfully identified all of them in Populus trichocarpa and Eucalyptus grandis, two representative species respectively from malpighiales and myrtales in angiosperms. Knowledge about monolignol metabolite chemosynthesis and identification will form the foundation for future studies.
Collapse
Affiliation(s)
- Chung-Ting Kao
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Fan-Wei Yang
- College of Pharmaceutical Sciences, Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Meng-Chen Wu
- College of Pharmaceutical Sciences, Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Tzu-Huan Hung
- Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Chen-Wei Hu
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Chiu-Hua Chen
- Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 41362, Taiwan
| | - Pin-Chien Liou
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Te-Lun Mai
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
| | - Chia-Chih Chang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Program in Molecular Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701401, Taiwan
- University Center of Bioscience and Biotechnology, National Cheng Kung University, Tainan, 701401, Taiwan
| | - Ying-Chung Jimmy Lin
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
- Department of Life Science, College of Life Science, National Taiwan University, Taipei, 106319, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 106319, Taiwan
| | - Jung-Chen Su
- College of Pharmaceutical Sciences, Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| |
Collapse
|
3
|
Zhao A, He Y, Sun R, Xie D, Bai H, Han F, Huang X, Wu H, Liu C. Transcriptome and Metabolomic Analyses Reveal Tissue-Specific Glycosylation of Phenylpropanoids and Flavonoids in Toxicodendron vernicifluum. PHYSIOLOGIA PLANTARUM 2024; 176:e14545. [PMID: 39344354 DOI: 10.1111/ppl.14545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/09/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
Toxicodendron vernicifluum (Stokes) F. A. Barkley is a tree species used primarily for lacquer production. Our study utilized transcriptome and metabolomic analysis to investigate the biosynthesis of phenylpropanoids and flavonoids, specifically the glycosylated forms, in T. vernicifluum roots, stems, and leaves. HPLC-QTOF-MS/MS identified 186 compounds, with tissue-specific distributions revealed by PCA. Flavonoids and phenylpropanoids glycosides were significantly more abundant in leaves compared with roots and stems. Full-length sequencing uncovered 17,266 transcripts in T. vernicifluum. Gene expression analysis showed higher activity of phenylpropanoid and flavonoid biosynthesis pathways in leaves. Certain genes, such as CYP73A, 4CL, CRR, CYP84A/F5H, and CYP93C, displayed associations with compound content distributions. Root tissue exhibited a higher concentration of isoflavones. Notably, glycosyltransferase expression demonstrated significant correlations with glycosylated compounds' content. Biochemical validation confirmed the involvement of TvPB_c0_g2904, encoding a UDP-glucosyltransferase, in genistin biosynthesis in T. vernicifluum.
Collapse
Affiliation(s)
- Aiguo Zhao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxi He
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruixiang Sun
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - DongDong Xie
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Hangyu Bai
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Feng Han
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaohua Huang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Haitang Wu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Chaobin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Peracchi LM, Brew-Appiah RAT, Garland-Campbell K, Roalson EH, Sanguinet KA. Genome-wide characterization and expression analysis of the CINNAMYL ALCOHOL DEHYDROGENASE gene family in Triticum aestivum. BMC Genomics 2024; 25:816. [PMID: 39210247 PMCID: PMC11363449 DOI: 10.1186/s12864-024-10648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND CINNAMYL ALCOHOL DEHYDROGENASE (CAD) catalyzes the NADPH-dependent reduction of cinnamaldehydes into cinnamyl alcohols and is a key enzyme found at the final step of the monolignol pathway. Cinnamyl alcohols and their conjugates are subsequently polymerized in the secondary cell wall to form lignin. CAD genes are typically encoded by multi-gene families and thus traditionally organized into general classifications of functional relevance. RESULTS In silico analysis of the hexaploid Triticum aestivum genome revealed 47 high confidence TaCAD copies, of which three were determined to be the most significant isoforms (class I) considered bone fide CADs. Class I CADs were expressed throughout development both in RNAseq data sets as well as via qRT-PCR analysis. Of the 37 class II TaCADs identified, two groups were observed to be significantly co-expressed with class I TaCADs in developing tissue and under chitin elicitation in RNAseq data sets. These co-expressed class II TaCADs were also found to be phylogenetically unrelated to a separate clade of class II TaCADs previously reported to be an influential resistance factor to pathogenic fungal infection. Lastly, two groups were phylogenetically identified as class III TaCADs, which possess distinct conserved gene structures. However, the lack of data supporting their catalytic activity for cinnamaldehydes and their bereft transcriptional presence in lignifying tissues challenges their designation and function as CADs. CONCLUSIONS Taken together, our comprehensive transcriptomic analyses suggest that TaCAD genes contribute to overlapping but nonredundant functions during T. aestivum growth and development across a wide variety of agroecosystems and provide tolerance to various stressors.
Collapse
Affiliation(s)
- Luigi M Peracchi
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
| | - Rhoda A T Brew-Appiah
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Kimberly Garland-Campbell
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
- USDA-ARS Wheat Health, Genetics and Quality Research, Pullman, WA, 99164, USA
| | - Eric H Roalson
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA.
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
5
|
Dixon RA, Puente-Urbina A, Beckham GT, Román-Leshkov Y. Enabling Lignin Valorization Through Integrated Advances in Plant Biology and Biorefining. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:239-263. [PMID: 39038247 DOI: 10.1146/annurev-arplant-062923-022602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Despite lignin having long been viewed as an impediment to the processing of biomass for the production of paper, biofuels, and high-value chemicals, the valorization of lignin to fuels, chemicals, and materials is now clearly recognized as a critical element for the lignocellulosic bioeconomy. However, the intended application for lignin will likely require a preferred lignin composition and form. To that end, effective lignin valorization will require the integration of plant biology, providing optimal feedstocks, with chemical process engineering, providing efficient lignin transformations. Recent advances in our understanding of lignin biosynthesis have shown that lignin structure is extremely diverse and potentially tunable, while simultaneous developments in lignin refining have resulted in the development of several processes that are more agnostic to lignin composition. Here, we review the interface between in planta lignin design and lignin processing and discuss the advances necessary for lignin valorization to become a feature of advanced biorefining.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, USA;
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Allen Puente-Urbina
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gregg T Beckham
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Muro-Villanueva F, Pysh LD, Kim H, Bouse T, Ralph J, Luo Z, Cooper BR, Jannasch AS, Zhang Z, Gu C, Chapple C. Pinoresinol rescues developmental phenotypes of Arabidopsis phenylpropanoid mutants overexpressing FERULATE 5-HYDROXYLASE. Proc Natl Acad Sci U S A 2023; 120:e2216543120. [PMID: 37487096 PMCID: PMC10401026 DOI: 10.1073/pnas.2216543120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/12/2023] [Indexed: 07/26/2023] Open
Abstract
Most phenylpropanoid pathway flux is directed toward the production of monolignols, but this pathway also generates multiple bioactive metabolites. The monolignols coniferyl and sinapyl alcohol polymerize to form guaiacyl (G) and syringyl (S) units in lignin, components that are characteristic of plant secondary cell walls. Lignin negatively impacts the saccharification potential of lignocellulosic biomass. Although manipulation of its content and composition through genetic engineering has reduced biomass recalcitrance, in some cases, these genetic manipulations lead to impaired growth. The reduced-growth phenotype is often attributed to poor water transport due to xylem collapse in low-lignin mutants, but alternative models suggest that it could be caused by the hyper- or hypoaccumulation of phenylpropanoid intermediates. In Arabidopsis thaliana, overexpression of FERULATE 5-HYDROXYLASE (F5H) shifts the normal G/S lignin ratio to nearly pure S lignin and does not result in substantial changes to plant growth. In contrast, when we overexpressed F5H in the low-lignin mutants cinnamyl dehydrogenase c and d (cadc cadd), cinnamoyl-CoA reductase 1, and reduced epidermal fluorescence 3, plant growth was severely compromised. In addition, cadc cadd plants overexpressing F5H exhibited defects in lateral root development. Exogenous coniferyl alcohol (CA) and its dimeric coupling product, pinoresinol, rescue these phenotypes. These data suggest that mutations in the phenylpropanoid pathway limit the biosynthesis of pinoresinol, and this effect is exacerbated by overexpression of F5H, which further draws down cellular pools of its precursor, CA. Overall, these genetic manipulations appear to restrict the synthesis of pinoresinol or a downstream metabolite that is necessary for plant growth.
Collapse
Affiliation(s)
- Fabiola Muro-Villanueva
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | | | - Hoon Kim
- US Department of Energy’s Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI53726
| | - Tyler Bouse
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
| | - John Ralph
- US Department of Energy’s Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, Madison, WI53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Zhiwei Luo
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| | - Bruce R. Cooper
- Bindley Bioscience Center, Purdue University, West Lafayette, IN47907
| | - Amber S. Jannasch
- Bindley Bioscience Center, Purdue University, West Lafayette, IN47907
| | - Zeyu Zhang
- Department of Statistics, Purdue University, West Lafayette, IN47907
| | - Chong Gu
- Department of Statistics, Purdue University, West Lafayette, IN47907
| | - Clint Chapple
- Department of Biochemistry, Purdue University, West Lafayette, IN47907
- Center for Plant Biology, Purdue University, West Lafayette, IN47907
| |
Collapse
|
7
|
Ha CM, Escamilla-Trevino L, Zhuo C, Pu Y, Bryant N, Ragauskas AJ, Xiao X, Li Y, Chen F, Dixon RA. Systematic approaches to C-lignin engineering in Medicago truncatula. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:100. [PMID: 37308891 DOI: 10.1186/s13068-023-02339-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/10/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND C-lignin is a homopolymer of caffeyl alcohol present in the seed coats of a variety of plant species including vanilla orchid, various cacti, and the ornamental plant Cleome hassleriana. Because of its unique chemical and physical properties, there is considerable interest in engineering C-lignin into the cell walls of bioenergy crops as a high-value co-product of bioprocessing. We have used information from a transcriptomic analysis of developing C. hassleriana seed coats to suggest strategies for engineering C-lignin in a heterologous system, using hairy roots of the model legume Medicago truncatula. RESULTS We systematically tested strategies for C-lignin engineering using a combination of gene overexpression and RNAi-mediated knockdown in the caffeic acid/5-hydroxy coniferaldehyde 3/5-O-methyltransferase (comt) mutant background, monitoring the outcomes by analysis of lignin composition and profiling of monolignol pathway metabolites. In all cases, C-lignin accumulation required strong down-regulation of caffeoyl CoA 3-O-methyltransferase (CCoAOMT) paired with loss of function of COMT. Overexpression of the Selaginella moellendorffii ferulate 5-hydroxylase (SmF5H) gene in comt mutant hairy roots resulted in lines that unexpectedly accumulated high levels of S-lignin. CONCLUSION C-Lignin accumulation of up to 15% of total lignin in lines with the greatest reduction in CCoAOMT expression required the strong down-regulation of both COMT and CCoAOMT, but did not require expression of a heterologous laccase, cinnamyl alcohol dehydrogenase (CAD) or cinnamoyl CoA reductase (CCR) with preference for 3,4-dihydroxy-substituted substrates in M. truncatula hairy roots. Cell wall fractionation studies suggested that the engineered C-units are not present in a heteropolymer with the bulk of the G-lignin.
Collapse
Affiliation(s)
- Chan Man Ha
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Luis Escamilla-Trevino
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
| | - Chunliu Zhuo
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Yunqiao Pu
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Arthur J Ragauskas
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
| | - Xirong Xiao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ying Li
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
| | - Fang Chen
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203-5017, USA.
- Center for Bioenergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
8
|
Yi F, Song A, Cheng K, Liu J, Wang C, Shao L, Wu S, Wang P, Zhu J, Liang Z, Chang Y, Chu Z, Cai C, Zhang X, Wang P, Chen A, Xu J, Burritt DJ, Herrera-Estrella L, Tran LSP, Li W, Cai Y. Strigolactones positively regulate Verticillium wilt resistance in cotton via crosstalk with other hormones. PLANT PHYSIOLOGY 2023; 192:945-966. [PMID: 36718522 PMCID: PMC10231467 DOI: 10.1093/plphys/kiad053] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/01/2023]
Abstract
Verticillium wilt caused by Verticillium dahliae is a serious vascular disease in cotton (Gossypium spp.). V. dahliae induces the expression of the CAROTENOID CLEAVAGE DIOXYGENASE 7 (GauCCD7) gene involved in strigolactone (SL) biosynthesis in Gossypium australe, suggesting a role for SLs in Verticillium wilt resistance. We found that the SL analog rac-GR24 enhanced while the SL biosynthesis inhibitor TIS108 decreased cotton resistance to Verticillium wilt. Knock-down of GbCCD7 and GbCCD8b genes in island cotton (Gossypium barbadense) decreased resistance, whereas overexpression of GbCCD8b in upland cotton (Gossypium hirsutum) increased resistance to Verticillium wilt. Additionally, Arabidopsis (Arabidopsis thaliana) SL mutants defective in CCD7 and CCD8 putative orthologs were susceptible, whereas both Arabidopsis GbCCD7- and GbCCD8b-overexpressing plants were more resistant to Verticillium wilt than wild-type (WT) plants. Transcriptome analyses showed that several genes related to the jasmonic acid (JA)- and abscisic acid (ABA)-signaling pathways, such as MYELOCYTOMATOSIS 2 (GbMYC2) and ABA-INSENSITIVE 5, respectively, were upregulated in the roots of WT cotton plants in responses to rac-GR24 and V. dahliae infection but downregulated in the roots of both GbCCD7- and GbCCD8b-silenced cotton plants. Furthermore, GbMYC2 suppressed the expression of GbCCD7 and GbCCD8b by binding to their promoters, which might regulate the homeostasis of SLs in cotton through a negative feedback loop. We also found that GbCCD7- and GbCCD8b-silenced cotton plants were impaired in V. dahliae-induced reactive oxygen species (ROS) accumulation. Taken together, our results suggest that SLs positively regulate cotton resistance to Verticillium wilt through crosstalk with the JA- and ABA-signaling pathways and by inducing ROS accumulation.
Collapse
Affiliation(s)
- Feifei Yi
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Aosong Song
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Kai Cheng
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jinlei Liu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Chenxiao Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Lili Shao
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Shuang Wu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Ping Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jiaxuan Zhu
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Zhilin Liang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Ying Chang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Zongyan Chu
- Cotton Institution, Kaifeng Academy of Agriculture and Forestry, Kaifeng 475000, China
| | - Chaowei Cai
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Pei Wang
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Aimin Chen
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| | - Jin Xu
- College of Horticulture, Shanxi Agricultural University, Taigu 030801, China
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin 9054, New Zealand
| | - Luis Herrera-Estrella
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
- Unidad de Genomica Avanzada, Centro de Investigaciony de Estudios Avanzados del Intituto Politecnico Nacional, Irapuato 36821, Mexico
| | - Lam-Son Phan Tran
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX 79409, USA
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Weiqiang Li
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Jilin Da’an Agro-ecosystem National Observation Research Station, Changchun 130102, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Biology, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, School of Mathematics and Statistics, School of Computer and Information Engineering, Henan University, Kaifeng 475004, China
| |
Collapse
|
9
|
Cesarino I. Yet another twist in lignin biosynthesis: Is there a specific alcohol dehydrogenase for H-lignin production? PLANT PHYSIOLOGY 2022; 189:1884-1886. [PMID: 35639729 PMCID: PMC9343006 DOI: 10.1093/plphys/kiac249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 05/28/2023]
|