1
|
Chen H, Zhou T, Wu X, Kumar V, Lan X, Xuan YH. Phytochrome B-mediated light signalling enhances rice resistance to saline-alkaline and sheath blight by regulating multiple downstream transcription factors. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1476-1490. [PMID: 39890591 PMCID: PMC12018839 DOI: 10.1111/pbi.14599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 02/03/2025]
Abstract
Light signalling regulates plant growth and stress resistance, whereas its mechanism in controlling saline-alkaline tolerance (SAT) remains largely unknown. This study identified that light signalling, primarily mediated by Phytochrome B (PhyB), inhibited ammonium transporter 1 (AMT1) to negatively regulate SAT. Our previous findings have shown that PhyB can impede the transcription factors indeterminate domain 10 (IDD10) and brassinazole resistant 1 (BZR1) to reduce NH4 + uptake, thereby modulating SAT and sheath blight (ShB) resistance in rice. However, inhibition of IDD10 and BZR1 in the phyB background did not fully suppress NH4 + uptake, suggesting that other signalling pathways regulated AMT1 downstream of PhyB. Further analysis revealed that PhyB interacted with Calcineurin B-like protein-interacting protein kinase 31 (CIPK31), which positively regulated AMT1 expression. CIPK31 also interacted with Teosinte Branched1/Cycloidea/PCF19 (TCP19), a key regulator of nitrogen use efficiency (NUE). However, PhyB neither degraded CIPK31 nor directly interacted with TCP19. Instead, PhyB inhibited the CIPK31-TCP19 interaction, releasing TCP19, which repressed AMT1;2 directly and AMT1;1 and AMT1;3 indirectly, thereby inhibiting NH4 + uptake and SAT while reducing ShB resistance. Additionally, Phytochrome Interacting Factor-Like 15 (PIL15) interacted with TCP19. Different from TCP19, PIL15 directly activated AMT1;2 to promote SAT, suggesting a balancing mechanism for NH4 + uptake downstream of PhyB. Furthermore, PIL15 interacted with IDD10 and BZR1 to form a transcriptional complex that collaboratively activated AMT1;2 expression. Overall, this study provides novel insights into how PhyB signalling regulates NH4 + uptake and coordinates SAT and ShB resistance in rice.
Collapse
Affiliation(s)
- Huan Chen
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration, Ministry of EducationNortheast Forestry UniversityHarbinChina
| | - Tiange Zhou
- College of Plant ProtectionShenyang Agricultural UniversityShenyangChina
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
| | - Xianxin Wu
- Institute of Agricultural Quality Standards and Testing TechnologyLiaoning Academy of Agricultural SciencesShenyangLiaoningChina
| | - Vikranth Kumar
- Division of Plant SciencesUniversity of MissouriColumbiaMissouriUSA
| | - Xingguo Lan
- Key Laboratory of Saline‐alkali Vegetation Ecology Restoration, Ministry of EducationNortheast Forestry UniversityHarbinChina
| | - Yuan Hu Xuan
- State Key Laboratory of Elemento‐Organic Chemistry and Department of Plant Protection, National Pesticide Engineering Research Center (Tianjin)Nankai UniversityTianjinChina
| |
Collapse
|
2
|
Ma L, Qin DB, Sun L, Zhang K, Yu X, Dang AK, Hou S, Zhao X, Yang Y, Wang Y, Chen Y, Guo Y. SALT OVERLY SENSITIVE2 and AMMONIUM TRANSPORTER1;1 contribute to plant salt tolerance by maintaining ammonium uptake. THE PLANT CELL 2025; 37:koaf034. [PMID: 39963720 PMCID: PMC11840955 DOI: 10.1093/plcell/koaf034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Soil salinity is a severe threat to agriculture and plant growth. Under high salinity conditions, ammonium (NH4+) is the predominant inorganic nitrogen source used by plants due to limited nitrification. However, how ammonium shapes the plant response to salt stress remains a mystery. Here, we demonstrate that the growth of Arabidopsis (Arabidopsis thaliana) seedlings is less sensitive to salt stress when provided with ammonium instead of nitrate (NO3-), a response that is mediated by ammonium transporters (AMTs). We further show that the kinase SALT OVERLY SENSITIVE2 (SOS2) physically interacts with and activates AMT1;1 by directly phosphorylating the nonconserved serine residue Ser-450 in the C-terminal region. In agreement with the involvement of SOS2, ammonium uptake was lower in sos2 mutants grown under salt stress relative to the wild type. Moreover, AMT-mediated ammonium uptake enhanced salt-induced SOS2 kinase activity. Together, our study demonstrates that SOS2 activates AMT1;1 to fine-tune and maintain ammonium uptake and optimize the plant salt stress response.
Collapse
Affiliation(s)
- Liang Ma
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - De-Bin Qin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Liping Sun
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Kaina Zhang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Yu
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - An-Kai Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengfan Hou
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience (SKLPER), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Dziewit K, Amakorová P, Novák O, Szal B, Podgórska A. Systemic strategies for cytokinin biosynthesis and catabolism in Arabidopsis roots and leaves under prolonged ammonium nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108858. [PMID: 38924907 DOI: 10.1016/j.plaphy.2024.108858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Cytokinins are growth-regulating plant hormones that are considered to adjust plant development under environmental stresses. During sole ammonium nutrition, a condition known to induce growth retardation of plants, altered cytokinin content can contribute to the characteristic ammonium toxicity syndrome. To understand the metabolic changes in cytokinin pools, cytokinin biosynthesis and degradation were analyzed in the leaves and roots of mature Arabidopsis plants. We found that in leaves of ammonium-grown plants, despite induction of biosynthesis on the expression level, there was no active cytokinin build-up because they were effectively routed toward their downstream catabolites. In roots, cytokinin conjugation was also induced, together with low expression of major synthetic enzymes, resulting in a decreased content of the trans-zeatin form under ammonium conditions. Based on these results, we hypothesized that in leaves and roots, cytokinin turnover is the major regulator of the cytokinin pool and does not allow active cytokinins to accumulate. A potent negative-regulator of root development is trans-zeatin, therefore its low level in mature root tissues of ammonium-grown plants may be responsible for occurrence of a wide root system. Additionally, specific cytokinin enhancement in apical root tips may evoke a short root phenotype in plants under ammonium conditions. The ability to flexibly regulate cytokinin metabolism and distribution in root and shoot tissues can contribute to adjusting plant development in response to ammonium stress.
Collapse
Affiliation(s)
- Kacper Dziewit
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Petra Amakorová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic.
| | - Bożena Szal
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| | - Anna Podgórska
- Department of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| |
Collapse
|
4
|
Lodovici A, Buoso S, Miras-Moreno B, Lucini L, Garcia-Perez P, Tomasi N, Pinton R, Zanin L. Peculiarity of the early metabolomic response in tomato after urea, ammonium or nitrate supply. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108666. [PMID: 38723490 DOI: 10.1016/j.plaphy.2024.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Nitrogen (N) is the nutrient most applied in agriculture as fertilizer (as nitrate, Nit; ammonium, A; and/or urea, U, forms) and its availability strongly constrains the crop growth and yield. To investigate the early response (24 h) of N-deficient tomato plants to these three N forms, a physiological and molecular study was performed. In comparison to N-deficient plants, significant changes in the transcriptional, metabolomic and ionomic profiles were observed. As a probable consequence of N mobility in plants, a wide metabolic modulation occurred in old leaves rather than in young leaves. The metabolic profile of U and A-treated plants was more similar than Nit-treated plant profile, which in turn presented the lowest metabolic modulation with respect to N-deficient condition. Urea and A forms induced some changes at the biosynthesis of secondary metabolites, amino acids and phytohormones. Interestingly, a specific up-regulation by U and down-regulation by A of carbon synthesis occurred in roots. Along with the gene expression, data suggest that the specific N form influences the activation of metabolic pathways for its assimilation (cytosolic GS/AS and/or plastidial GS/GOGAT cycle). Urea induced an up-concentration of Cu and Mn in leaves and Zn in whole plant. This study highlights a metabolic reprogramming depending on the N form applied, and it also provide evidence of a direct relationship between urea nutrition and Zn concentration. The understanding of the metabolic pathways activated by the different N forms represents a milestone in improving the efficiency of urea fertilization in crops.
Collapse
Affiliation(s)
- Arianna Lodovici
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| | - Sara Buoso
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| | - Begoña Miras-Moreno
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Pascual Garcia-Perez
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| | - Nicola Tomasi
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| | - Roberto Pinton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| | - Laura Zanin
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via delle Scienze 206 - 33100, Udine, Italy.
| |
Collapse
|
5
|
Coleto I, Marín-Peña AJ, Urbano-Gámez JA, González-Hernández AI, Shi W, Li G, Marino D. Interaction of ammonium nutrition with essential mineral cations. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6131-6144. [PMID: 37279530 DOI: 10.1093/jxb/erad215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023]
Abstract
Plant growth and development depend on sufficient nutrient availability in soils. Agricultural soils are generally nitrogen (N) deficient, and thus soils need to be supplemented with fertilizers. Ammonium (NH4+) is a major inorganic N source. However, at high concentrations, NH4+ becomes a stressor that inhibits plant growth. The cause of NH4+ stress or toxicity is multifactorial, but the interaction of NH4+ with other nutrients is among the main determinants of plants' sensitivity towards high NH4+ supply. In addition, NH4+ uptake and assimilation provoke the acidification of the cell external medium (apoplast/rhizosphere), which has a clear impact on nutrient availability. This review summarizes current knowledge, at both the physiological and the molecular level, of the interaction of NH4+ nutrition with essential mineral elements that are absorbed as cations, both macronutrients (K+, Ca2+, Mg2+) and micronutrients (Fe2+/3+, Mn2+, Cu+/2+, Zn2+, Ni2+). We hypothesize that considering these nutritional interactions, and soil pH, when formulating fertilizers may be key in order to boost the use of NH4+-based fertilizers, which have less environmental impact compared with nitrate-based ones. In addition, we are convinced that better understanding of these interactions will help to identify novel targets with the potential to improve crop productivity.
Collapse
Affiliation(s)
- Inmaculada Coleto
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Agustín J Marín-Peña
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - José Alberto Urbano-Gámez
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | | | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| |
Collapse
|
6
|
Jia Y, Qin D, Zheng Y, Wang Y. Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response. Int J Mol Sci 2023; 24:14406. [PMID: 37833854 PMCID: PMC10572113 DOI: 10.3390/ijms241914406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
To effectively adapt to changing environments, plants must maintain a delicate balance between growth and resistance or tolerance to various stresses. Nitrate, a significant inorganic nitrogen source in soils, not only acts as an essential nutrient but also functions as a critical signaling molecule that regulates multiple aspects of plant growth and development. In recent years, substantial advancements have been made in understanding nitrate sensing, calcium-dependent nitrate signal transmission, and nitrate-induced transcriptional cascades. Mounting evidence suggests that the primary response to nitrate is influenced by environmental conditions, while nitrate availability plays a pivotal role in stress tolerance responses. Therefore, this review aims to provide an overview of the transcriptional and post-transcriptional regulation of key components in the nitrate signaling pathway, namely, NRT1.1, NLP7, and CIPK23, under abiotic stresses. Additionally, we discuss the specificity of nitrate sensing and signaling as well as the involvement of epigenetic regulators. A comprehensive understanding of the integration between nitrate signaling transduction and abiotic stress responses is crucial for developing future crops with enhanced nitrogen-use efficiency and heightened resilience.
Collapse
Affiliation(s)
- Yancong Jia
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Debin Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yulu Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
7
|
Pahuja S, Bheri M, Bisht D, Pandey GK. Calcium signalling components underlying NPK homeostasis: potential avenues for exploration. Biochem J 2023; 480:1015-1034. [PMID: 37418287 DOI: 10.1042/bcj20230156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Plants require the major macronutrients, nitrogen (N), phosphorus (P) and potassium (K) for normal growth and development. Their deficiency in soil directly affects vital cellular processes, particularly root growth and architecture. Their perception, uptake and assimilation are regulated by complex signalling pathways. To overcome nutrient deficiencies, plants have developed certain response mechanisms that determine developmental and physiological adaptations. The signal transduction pathways underlying these responses involve a complex interplay of components such as nutrient transporters, transcription factors and others. In addition to their involvement in cross-talk with intracellular calcium signalling pathways, these components are also engaged in NPK sensing and homeostasis. The NPK sensing and homeostatic mechanisms hold the key to identify and understand the crucial players in nutrient regulatory networks in plants under both abiotic and biotic stresses. In this review, we discuss calcium signalling components/pathways underlying plant responses to NPK sensing, with a focus on the sensors, transporters and transcription factors involved in their respective signalling and homeostasis.
Collapse
Affiliation(s)
- Sonam Pahuja
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Diksha Bisht
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi 110021, India
| |
Collapse
|
8
|
Xiao C, Fang Y, Wang S, He K. The alleviation of ammonium toxicity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36790049 DOI: 10.1111/jipb.13467] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants and profoundly affects crop yields and qualities. Ammonium (NH4 + ) and nitrate (NO3 - ) are major inorganic N forms absorbed by plants from the surrounding environments. Intriguingly, NH4 + is usually toxic to plants when it serves as the sole or dominant N source. It is thus important for plants to coordinate the utilization of NH4 + and the alleviation of NH4 + toxicity. To fully decipher the molecular mechanisms underlying how plants minimize NH4 + toxicity may broadly benefit agricultural practice. In the current minireview, we attempt to discuss recent discoveries in the strategies for mitigating NH4 + toxicity in plants, which may provide potential solutions for improving the nitrogen use efficiency (NUE) and stress adaptions in crops.
Collapse
Affiliation(s)
- Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suomin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
9
|
Kishchenko O, Stepanenko A, Straub T, Zhou Y, Neuhäuser B, Borisjuk N. Ammonium Uptake, Mediated by Ammonium Transporters, Mitigates Manganese Toxicity in Duckweed, Spirodela polyrhiza. PLANTS (BASEL, SWITZERLAND) 2023; 12:208. [PMID: 36616338 PMCID: PMC9824425 DOI: 10.3390/plants12010208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 06/12/2023]
Abstract
Nitrogen is an essential nutrient that affects all aspects of the growth, development and metabolic responses of plants. Here we investigated the influence of the two major sources of inorganic nitrogen, nitrate and ammonium, on the toxicity caused by excess of Mn in great duckweed, Spirodela polyrhiza. The revealed alleviating effect of ammonium on Mn-mediated toxicity, was complemented by detailed molecular, biochemical and evolutionary characterization of the species ammonium transporters (AMTs). Four genes encoding AMTs in S. polyrhiza, were classified as SpAMT1;1, SpAMT1;2, SpAMT1;3 and SpAMT2. Functional testing of the expressed proteins in yeast and Xenopus oocytes clearly demonstrated activity of SpAMT1;1 and SpAMT1;3 in transporting ammonium. Transcripts of all SpAMT genes were detected in duckweed fronds grown in cultivation medium, containing a physiological or 50-fold elevated concentration of Mn at the background of nitrogen or a mixture of nitrate and ammonium. Each gene demonstrated an individual expression pattern, revealed by RT-qPCR. Revealing the mitigating effect of ammonium uptake on manganese toxicity in aquatic duckweed S. polyrhiza, the study presents a comprehensive analysis of the transporters involved in the uptake of ammonium, shedding a new light on the interactions between the mechanisms of heavy metal toxicity and the regulation of the plant nitrogen metabolism.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466 Gatersleben, Germany
- Institute of Cell Biology and Genetic Engineering, National Academy of Science of Ukraine, Acad. Zabolotnogo Str. 148, 03143 Kyiv, Ukraine
| | - Tatsiana Straub
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| | - Benjamin Neuhäuser
- Institute of Crop Science, Nutritional Crop Physiology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, West Changjiang Road 111, Huai’an 223000, China
| |
Collapse
|