1
|
Qi H, Shan L, Zhu Y, Shen T, Wu L, Xu M. A retinoblastoma-related protein promotes adventitious root development and secondary wall formation in Populus through the SHR/SCR network. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70187. [PMID: 40298459 DOI: 10.1111/tpj.70187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 04/11/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025]
Abstract
Retinoblastoma-Related (RBR) proteins, evolutionarily conserved homologs of animal RB tumor suppressor, are involved in cell cycle regulation, differentiation, and stress responses. This study systematically investigates the functional characterization of PeRBR in hybrid poplar (Populus deltoides × P. euramericana, clone "Nanlin 895") and its regulatory interactions with the SHR/SCR network governing adventitious root (AR) morphogenesis and secondary wall biogenesis. Transgenic poplar overexpressing PeRBR exhibited significant enhancement in AR system architecture and secondary xylem development, manifesting increased cambial cell layers (1.5-2.2 fold) and elevated lignin deposition (35% increase). Molecular analyses employing bimolecular fluorescence complementation (BiFC) and quantitative real-time PCR (qRT-PCR) revealed that PeRBR directly interacts with PeSCR in the nucleus while transcriptionally upregulating PeSHR, PeCYCD6;1, and PeWOX5 expression. Transcriptomic profiling identified 817 differentially expressed genes (DEGs) between WT plants and overexpression transgenic lines (OE_PeRBR), with notable enrichment in phenylpropanoid biosynthesis pathways. Key lignin biosynthesis genes (PAL, 4CL, CAD) and cellulose synthase (CesA) family members showed significant upregulation in OE_PeRBR lines compared to WT. These findings establish PeRBR as a central regulatory node within the SHR/SCR network, coordinating both AR development and secondary wall formation through transcriptional reprogramming of cell cycle regulators and cell wall biosynthesis machinery in woody species.
Collapse
Affiliation(s)
- Haoran Qi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Luyang Shan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yaoyao Zhu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Tengfei Shen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ling Wu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Jiangsu Yanjiang Institute of Agricultural Science, Nantong, 226541, Jiangsu, China
| | - Meng Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
2
|
Qian C, Shao Y, Cai Z, Zhang B, Sohail H, Liu J, Kan J, Zhang M, Xiao L, Yang X, Qi X. Melatonin Reduces Lignin Biosynthesis by Fostering Epigenetic Modifications in Water Bamboo Shoots under Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7504-7516. [PMID: 40097916 DOI: 10.1021/acs.jafc.4c11281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Chilling injury and lignin deposition reduce the market value of water bamboo shoots (Zizania latifolia) during cold storage. Melatonin (MT) application has been found to be effective in mitigating chilling injury in cold-stored vegetables and fruits. Thus, considering the importance of chilling stress in water bamboo shoots, we have examined the impact of exogenous MT application under cold storage. It was found that exogenous MT increased the expression of ZlCDPK12 and decreased the expression of genes in the phenylpropanoid pathway, including ZlPOD16, ZlC4H, ZlPAL1, ZlCAD2, and ZlCCR1. It delayed skin browning and softening, reduced weight loss, and maintained total phenol and flavonoid contents while reducing lignin deposition. Moreover, the transcript abundance of phenylpropane metabolism-related transcription factors ZlERF4, ZlbHLH49, and ZlMYC2.2 is correlated with promoter DNA methylation. Overall, our study provides insights into how exogenous MT treatment effectively inhibits the deterioration of water bamboo shoots during cold storage. Furthermore, the integration of transcriptome and DNA methylation data lays a foundation for future improvements through genetic engineering.
Collapse
Affiliation(s)
- Chunlu Qian
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Yuyang Shao
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Zichen Cai
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Bei Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Hamza Sohail
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jun Liu
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Juan Kan
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Man Zhang
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Lixia Xiao
- Department of Food Science and Engineering, School of Food Science and Engineering, Yangzhou University, Yangzhou 225001, China
| | - Xiaodong Yang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaohua Qi
- Department of Horticulture, College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Chang J, Zhu X, Lian Y, Li J, Chen X, Song Z, Chen L, Xie D, Zhang B. Melatonin Enhances the Low-Calcium Stress Tolerance by Regulating Brassinosteroids and Auxin Signals in Wax Gourd. Antioxidants (Basel) 2024; 13:1580. [PMID: 39765907 PMCID: PMC11673479 DOI: 10.3390/antiox13121580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
In plants, calcium (Ca) serves as an essential nutrient and signaling molecule. Melatonin is a biologically active and multi-functional hormone that plays an important role in improving nutrient use efficiency. However, its involvement in plant responses to Ca deficiency remains largely unexplored. This study aimed to assess the effects of melatonin on Ca absorption, the antioxidant system, and root morphology under low-Ca (LCa) stress conditions, as well as to identify key regulatory factors and signaling pathways involved in these processes using transcriptome analysis. Under LCa conditions, wax gourd seedling exhibited significant decreases in Ca accumulation, showed inhibition of root growth, and demonstrated the occurrence of oxidative damage. However, melatonin application significantly enhanced Ca content in wax gourd seedlings, and it enhanced the absorption of Ca2+ in roots by upregulating Ca2+ channels and transport genes, including BhiCNGC17, BhiCNGC20, BhiECA1, BhiACA1, and BhiCAX1. Furthermore, the application of exogenous melatonin mitigated the root growth inhibition and oxidative damage caused by LCa stress. This was evidenced by increases in the root branch numbers, root tips, root surface area, and root volume, as well as enhanced root vitality and antioxidant enzyme activities, as well as decreases in the reactive oxygen species content in melatonin treated plants. Transcriptome results revealed that melatonin mainly modulated the brassinosteroids (BRs) and auxin signaling pathway, which play essential roles in root differentiation, elongation, and stress adaptation. Specifically, melatonin increased the active BR levels by upregulating BR6ox (a BR biosynthesis gene) and downregulating BAS1 (BR degradation genes), thereby affecting the BR signaling pathway. Additionally, melatonin reduced IAA levels but activated the auxin signaling pathway, indicating that melatonin could directly stimulate the auxin signaling pathway via an IAA-independent mechanism. This study provides new insights into the role of melatonin in nutrient stress adaptation, offering a promising and sustainable approach to improve nutrient use efficiency in wax gourd and other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Baige Zhang
- Key Laboratory for New Technology Research of Vegetable, Vegetable Research Institute, Guangdong Academy of Agricultural Science, Guangzhou 510640, China; (J.C.); (X.Z.); (Y.L.); (J.L.); (X.C.); (Z.S.); (L.C.); (D.X.)
| |
Collapse
|
4
|
Ma Y, Zhang Y, Xu J, Qi J, Liu X, Guo L, Zhang H. Research on the Mechanisms of Phytohormone Signaling in Regulating Root Development. PLANTS (BASEL, SWITZERLAND) 2024; 13:3051. [PMID: 39519969 PMCID: PMC11548626 DOI: 10.3390/plants13213051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
Phytohormones are organic compounds produced in trace amounts within plants that regulate their physiological processes. Their physiological effects are highly complex and diverse. They influence processes ranging from cell division, elongation, and differentiation to plant germination and rooting. Therefore, phytohormones play a crucial regulatory role in plant growth and development. Recently, various studies have highlighted the role of PHs, such as auxin, cytokinin (CK), and abscisic acid (ABA), and newer classes of PHs, such as brassinosteroid (BR) and peptide hormone, in the plant responses toward environmental stresses. These hormones not only have distinct roles at different stages of plant growth but also interact to promote or inhibit each other, thus effectively regulating plant development. Roots are the primary organs for water and mineral absorption in plants. During seed germination, the radicle breaks through the seed coat and grows downward to form the primary root. This occurs because the root needs to quickly penetrate the soil to absorb water and nutrients, providing essential support for the plant's subsequent growth. Root development is a highly complex and precisely regulated process influenced by various signals. Changes in root architecture can affect the plant's ability to absorb nutrients and water, which in turn impacts crop yield. Thus, studying the regulation of root development is of great significance. Numerous studies have reported on the role of phytohormones, particularly auxins, in root regulation. This paper reviews recent studies on the regulation of root development by various phytohormones, both individually and in combination, providing a reference for researchers in this field and offering perspectives on future research directions for improving crop yields.
Collapse
Affiliation(s)
- Yuru Ma
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Ying Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China;
| | - Jiahui Xu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Jiahong Qi
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Xigang Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Lin Guo
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| | - Hao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; (Y.M.); (J.X.); (J.Q.); (X.L.); (L.G.)
| |
Collapse
|
5
|
Zhang L, Vaccari F, Bandini F, Puglisi E, Trevisan M, Lucini L. The short-term effect of microplastics in lettuce involves size- and dose-dependent coordinate shaping of root metabolome, exudation profile and rhizomicrobiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174001. [PMID: 38879040 DOI: 10.1016/j.scitotenv.2024.174001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Micro- and nano-plastics (MNPs) in the soil can impact the microbial diversity within rhizospheres and induce modifications in plants' morphological, physiological, and biochemical parameters. However, a significant knowledge gap still needs to be addressed regarding the specific effects of varying particle sizes and concentrations on the comprehensive interplay among soil dynamics, root exudation, and the overall plant system. In this sense, different omics techniques were employed to clarify the mechanisms of the action exerted by four different particle sizes of polyethylene plastics considering four different concentrations on the soil-roots exudates-plant system was studied using lettuce (Lactuca sativa L. var. capitata) as a model plant. The impact of MNPs was investigated using a multi-omics integrated approach, focusing on the tripartite interaction between the root metabolic process, exudation pattern, and rhizosphere microbial modulation. Our results showed that particle size and their concentrations significantly modulated the soil-roots exudates-plant system. Untargeted metabolomics highlighted that fatty acids, amino acids, and hormone biosynthesis pathways were significantly affected by MNPs. Additionally, they were associated with the reduction of rhizosphere bacterial α-diversity, following a size-dependent trend for specific taxa. The omics data integration highlighted a correlation between Pseudomonadata and Actinomycetota phyla and Bacillaceae family (Peribacillus simplex) and the exudation of flavonoids, phenolic acids, and lignans in lettuce exposed to increasing sizes of MNPs. This study provides a novel insight into the potential effects of different particle sizes and concentrations of MNPs on the soil-plant continuum, providing evidence about size- and concentration-dependent effects, suggesting the need for further investigation focused on medium- to long-term exposure.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
6
|
Cao X, Wei Y, Shen B, Liu L, Mao J. Interaction of the Transcription Factors BES1/BZR1 in Plant Growth and Stress Response. Int J Mol Sci 2024; 25:6836. [PMID: 38999944 PMCID: PMC11241631 DOI: 10.3390/ijms25136836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Bri1-EMS Suppressor 1 (BES1) and Brassinazole Resistant 1 (BZR1) are two key transcription factors in the brassinosteroid (BR) signaling pathway, serving as crucial integrators that connect various signaling pathways in plants. Extensive genetic and biochemical studies have revealed that BES1 and BZR1, along with other protein factors, form a complex interaction network that governs plant growth, development, and stress tolerance. Among the interactome of BES1 and BZR1, several proteins involved in posttranslational modifications play a key role in modifying the stability, abundance, and transcriptional activity of BES1 and BZR1. This review specifically focuses on the functions and regulatory mechanisms of BES1 and BZR1 protein interactors that are not involved in the posttranslational modifications but are crucial in specific growth and development stages and stress responses. By highlighting the significance of the BZR1 and BES1 interactome, this review sheds light on how it optimizes plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Xuehua Cao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Yanni Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Biaodi Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Linchuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| | - Juan Mao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou 510642, China
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
7
|
Ercoli MF, Shigenaga AM, de Araujo AT, Jain R, Ronald PC. Tyrosine-sulfated peptide hormone induces flavonol biosynthesis to control elongation and differentiation in Arabidopsis primary root. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578681. [PMID: 38352507 PMCID: PMC10862922 DOI: 10.1101/2024.02.02.578681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
In Arabidopsis roots, growth initiation and cessation are organized into distinct zones. How regulatory mechanisms are integrated to coordinate these processes and maintain proper growth progression over time is not well understood. Here, we demonstrate that the peptide hormone PLANT PEPTIDE CONTAINING SULFATED TYROSINE 1 (PSY1) promotes root growth by controlling cell elongation. Higher levels of PSY1 lead to longer differentiated cells with a shootward displacement of characteristics common to mature cells. PSY1 activates genes involved in the biosynthesis of flavonols, a group of plant-specific secondary metabolites. Using genetic and chemical approaches, we show that flavonols are required for PSY1 function. Flavonol accumulation downstream of PSY1 occurs in the differentiation zone, where PSY1 also reduces auxin and reactive oxygen species (ROS) activity. These findings support a model where PSY1 signals the developmental-specific accumulation of secondary metabolites to regulate the extent of cell elongation and the overall progression to maturation.
Collapse
Affiliation(s)
- Maria Florencia Ercoli
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley 94720
| | - Alexandra M Shigenaga
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Artur Teixeira de Araujo
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Joint Bioenergy Institute, Emeryville, California
| | - Rashmi Jain
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
| | - Pamela C Ronald
- Department of Plant Pathology, University of California, Davis, CA 95616
- The Genome Center, University of California, Davis, CA 95616
- The Innovative Genomics Institute, University of California, Berkeley 94720
- The Joint Bioenergy Institute, Emeryville, California
| |
Collapse
|
8
|
Delesalle C, Vert G, Fujita S. The cell surface is the place to be for brassinosteroid perception and responses. NATURE PLANTS 2024; 10:206-218. [PMID: 38388723 DOI: 10.1038/s41477-024-01621-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/05/2024] [Indexed: 02/24/2024]
Abstract
Adjusting the microenvironment around the cell surface is critical to responding to external cues or endogenous signals and to maintaining cell activities. In plant cells, the plasma membrane is covered by the cell wall and scaffolded with cytoskeletal networks, which altogether compose the cell surface. It has long been known that these structures mutually interact, but the mechanisms that integrate the whole system are still obscure. Here we spotlight the brassinosteroid (BR) plant hormone receptor BRASSINOSTEROID INSENSITIVE1 (BRI1) since it represents an outstanding model for understanding cell surface signalling and regulation. We summarize how BRI1 activity and dynamics are controlled by plasma membrane components and their associated factors to fine-tune signalling. The downstream signals, in turn, manipulate cell surface structures by transcriptional and post-translational mechanisms. Moreover, the changes in these architectures impact BR signalling, resulting in a feedback loop formation. This Review discusses how BRI1 and BR signalling function as central hubs to integrate cell surface regulation.
Collapse
Affiliation(s)
- Charlotte Delesalle
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France
| | - Satoshi Fujita
- Plant Science Research Laboratory (LRSV), UMR5546 CNRS/Université Toulouse 3, Auzeville-Tolosane, France.
| |
Collapse
|
9
|
Xie J, Cao B, Xu K. Uncovering the dominant role of root lignin accumulation in silicon-induced resistance to drought in tomato. Int J Biol Macromol 2024; 259:129075. [PMID: 38161004 DOI: 10.1016/j.ijbiomac.2023.129075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/04/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The role of lignin accumulation in silicon-induced resistance has not been fully elucidated. Based on the finding that the root cell wall is protected by silicon, this study explored the role of lignin accumulation in silicon-induced drought resistance in tomato. The decreased silicon concentration of the root confirmed the dominant role of lignin accumulation in silicon-induced drought resistance. The lignin monomer content in the root was enhanced by silicon, and was accompanied by the enhancement of drought resistance. Histochemical and transcriptional analyses of lignin showed that lignin accumulation was promoted by silicon under drought stress. In addition, in the root zone, silicon-induced lignin accumulation increased as the distance from the root tip increased under drought stress. Surprisingly, the Dwarf gene was upregulated by silicon in the roots. Micro Tom Dwarf gene mutation and Micro Tom-d + Dwarf gene functional complementation were further used to confirm that Dwarf regulates the spatial accuracy of SHR expression in the root. Therefore, root lignin accumulation plays a dominant role in silicon-induced drought resistance in tomato and the regulation of spatial accuracy of root lignification by silicon under drought stress is through the BR pathway, thereby avoiding the inhibition of root growth caused by root lignification.
Collapse
Affiliation(s)
- Jiaqi Xie
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China
| | - Bili Cao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China.
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China; Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Genetic Improvement of Horticultural Crops in Huanghuai Region, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
10
|
Mathura SR. Deciphering the hormone regulatory mechanisms of storage root initiation in sweet potato: challenges and future prospects. AOB PLANTS 2023; 15:plad027. [PMID: 37292251 PMCID: PMC10244897 DOI: 10.1093/aobpla/plad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Sweet potato (Ipomoea batatas) is an economically important food crop that is grown primarily for its edible storage roots. Several researchers have consequently been conducting studies to increase sweet potato yield, and an important aspect of this research involves understanding how storage root initiation occurs. Although significant progress has been made, several challenges associated with studying this crop have resulted in lagging progress compared to other crops and thus sweet potato storage root initiation is not clearly understood. This article highlights the most important aspects of the hormone signalling processes during storage root initiation that needs to be investigated further and suggests candidate genes that should be prioritized for further study, based on their importance in storage organ formation in other crops. Lastly, ways of overcoming the challenges associated with studying this crop are suggested.
Collapse
Affiliation(s)
- Sarah R Mathura
- The Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
11
|
Yao X, Li H, Nie J, Liu H, Guo Y, Lv L, Yang Z, Sui X. Disruption of the amino acid transporter CsAAP2 inhibits auxin-mediated root development in cucumber. THE NEW PHYTOLOGIST 2023. [PMID: 37129077 DOI: 10.1111/nph.18947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Amino acid transporters are the principal mediators of organic nitrogen distribution within plants and are essential for plant growth and development. Despite this importance, relatively few amino acid transporter genes have been explored and elucidated in cucumber (Cucumis sativus). Here, a total of 86 amino acid transporter genes were identified in the cucumber genome. We further identified Amino Acid Permease (AAP) subfamily members that exhibited distinct expression patterns in different tissues. We found that the CsAAP2 as a candidate gene encoding a functional amino acid transporter is highly expressed in cucumber root vascular cells. CsAAP2 knockout lines exhibited arrested development of root meristem, which then caused the delayed initiation of lateral root and the inhibition of root elongation. What is more, the shoot growth of aap2 mutants was strongly retarded due to defects in cucumber root development. Moreover, aap2 mutants exhibited higher concentrations of amino acids and lignin in roots. We found that the mutant roots had a stronger ability to acidize medium. Furthermore, in the aap2 mutants, polar auxin transport was disrupted in the root tip, leading to high auxin levels in roots. Interestingly, slightly alkaline media rescued their severely reduced root growth by stimulating auxin pathway.
Collapse
Affiliation(s)
- Xuehui Yao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hujian Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Huan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yicong Guo
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lijun Lv
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhen Yang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Piacentini D, Della Rovere F, D’Angeli S, Fattorini L, Falasca G, Betti C, Altamura MM. Convergence between Development and Stress: Ectopic Xylem Formation in Arabidopsis Hypocotyl in Response to 24-Epibrassinolide and Cadmium. PLANTS (BASEL, SWITZERLAND) 2022; 11:3278. [PMID: 36501318 PMCID: PMC9739498 DOI: 10.3390/plants11233278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Ectopic xylary element (EXE) formation in planta is a poorly investigated process, and it is unknown if it occurs as a response to the soil pollutant Cadmium (Cd). The pericycle cells of Arabidopsis thaliana hypocotyl give rise to EXEs under specific hormonal inputs. Cadmium triggers pericycle responses, but its role in EXE formation is unknown. Brassinosteroids (BRs) affect numerous developmental events, including xylogenesis in vitro, and their exogenous application by 24-epibrassinolide (eBL) helps to alleviate Cd-stress by increasing lateral/adventitious rooting. Epibrassinolide's effects on EXEs in planta are unknown, as well as its relationship with Cd in the control of the process. The research aims to establish an eBL role in pericycle EXE formation, a Cd role in the same process, and the possible interaction between the two. Results show that 1 nM eBL causes an identity reversal between the metaxylem and protoxylem within the stele, and its combination with Cd reduces the event. All eBL concentrations increase EXEs, also affecting xylary identity by changing from protoxylem to metaxylem in a concentration-dependent manner. Cadmium does not affect EXE identity but increases EXEs when combined with eBL. The results suggest that eBL produces EXEs to form a mechanical barrier against the pollutant.
Collapse
Affiliation(s)
- Diego Piacentini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Simone D’Angeli
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giuseppina Falasca
- Department of Environmental Biology, Sapienza University of Rome, 00185 Rome, Italy
| | - Camilla Betti
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | | |
Collapse
|