1
|
Jiang J, Wu H, Yuan Y. Comparative analysis of different Phyllostachys species on gut microbiome and fecal metabolome in giant pandas (Ailuropoda melanoleuca). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 55:101529. [PMID: 40347566 DOI: 10.1016/j.cbd.2025.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
The influences of different bamboo species on the microbiome and metabolome of giant pandas (Ailuropoda melanoleuca) remain understudied. The aim of this study was to investigate the effects of different Phyllostachys species on the gut microbial communities and fecal metabolite profiles in giant pandas. Metagenome and metabolome were performed on the feces of giant pandas fed with different Phyllostachys species (P. edulis, P. iridescens, P. glauca, and P. violascens). The results of metagenome showed that dietary with P. glauca could notably decrease the microbial Shannon index. The relative abundances of both Cellulosilyticum and Pseudomonas were enhanced after dietary with P. iridescens, suggesting P. iridescens could enhance the cellulose-degrading function in giant pandas. However, dietary with P. glauca or P. violascens could increase the relative abundances of certain pathogenic bacteria (Escherichia, Shigella, and Klebsiella). Metabolomics analysis further revealed that all experimental groups exhibited notably elevated levels of fecal flavonoids and fatty acids. In addition, the correlation analysis showed that certain nutrients of bamboo leaves (mainly crude protein and Cu) were significantly correlated with several differential gut bacteria and fecal metabolites. Based on the present results, P. iridescens might be a substitute for the routinely used Phyllostachys species (P. edulis) in the captive management of giant pandas. The results have revealed that bamboo species is an important factor affecting the gut microbiota and fecal metabolites in giant pandas. Our results could provide important information about bamboo species-induced alterations on the microbiome and metabolome in giant pandas.
Collapse
Affiliation(s)
- Jingle Jiang
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China.
| | - Haili Wu
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China
| | - Yaohua Yuan
- Shanghai Endangered Species Conservation and Research Centre, Shanghai Zoo, Shanghai 200335, China.
| |
Collapse
|
2
|
Wang W, Wu Q, Wang N, Ye S, Wang Y, Zhang J, Lin C, Zhu Q. Advances in bamboo genomics: Growth and development, stress tolerance, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025. [PMID: 40317920 DOI: 10.1111/jipb.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/10/2025] [Indexed: 05/07/2025]
Abstract
Bamboo is a fast-growing and ecologically significant plant with immense economic value due to its applications in construction, textiles, and bioenergy. However, research on bamboo has been hindered by its long vegetative period, unpredictable flowering cycles, and challenges in genetic transformation. Recent developments in advanced sequencing and genetic engineering technologies have provided new insights into bamboo's evolutionary history, developmental biology, and stress resilience, paving the way for improved conservation and sustainable utilization. This review synthesizes the latest findings on bamboo's genomics, biotechnology, and the molecular mechanisms governing its growth, development, and stress response. Key genes and regulatory pathways controlling its rapid growth, internode elongation, rhizome development, culm lignification, flowering, and abiotic stress responses have been identified through multi-omics and functional studies. Complex interactions among transcription factors, epigenetic regulators, and functionally important genes shape bamboo's unique growth characteristics. Moreover, progress in genetic engineering techniques, including clustered regularly interspaced short palindromic repeats-based genome editing, has opened new avenues for targeted genetic improvements. However, technical challenges, particularly the complexity of polyploid bamboo genomes and inefficient regeneration systems, remain significant barriers to functional studies and large-scale breeding efforts. By integrating recent genomic discoveries with advancements in biotechnology, this review proposes potential strategies to overcome existing technological limitations and to accelerate the development of improved bamboo varieties. Continued efforts in multi-omics research, gene-editing applications, and sustainable cultivation practices will be essential for harnessing bamboo as a resilient and renewable resource for the future. The review presented here not only deepens our understanding of bamboo's genetic architecture but also provides a foundation for future research aimed at optimizing its ecological and industrial potential.
Collapse
Affiliation(s)
- Wenjia Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Qiyao Wu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Nannan Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanwen Ye
- Fujian Academy of Forestry, 35 Shangchiqiao, Xindian, Fuzhou, 350012, China
| | - Yujun Wang
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiang Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Chentao Lin
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiang Zhu
- Basic Forestry and Proteomics Center (BFPC), College of Forestry, Haixia Institute for Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
3
|
Gao Y, Chen A, Zhu D, Zhou M, Huang H, Pan R, Wang X, Li L, Shen J. Mitochondrial Energy Homeostasis and Membrane Interaction Regulate the Rapid Growth of Moso Bamboo. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40255185 DOI: 10.1111/pce.15559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
The rapid growth of moso bamboo is primarily attributed to the swift elongation of its internodes. While mitochondria are known to provide energy for various cellular processes, the specific mechanisms by which they facilitate rapid growth in bamboo remain elusive. In this study, we optimised the procedures for mitochondria isolation and performed a comprehensive analysis of mitochondrial dynamics and proteomics from internodes at various growth stages, including the initial growth (IG) stage, the starting of cell division (SD), and the rapid elongation (RE). Confocal observation demonstrated that cells in the RE stage have a higher mitochondrial density and increased mitochondrial motility compared to other stages. Proteomic analysis of isolated mitochondria revealed an upregulation of the tricarboxylic acid cycle, along with a synchronous increase in both mitochondrial- and nuclear-encoded components of oxidative phosphorylation in RE cells. Moreover, the upregulation of various mitochondrial membrane transporters in RE cells suggests an enhanced exchange of metabolic intermediates and inorganic ions with the cytosol. Intriguingly, ultrastructural analysis and pharmacological treatments revealed membrane interactions between the endoplasmic reticulum (ER) and mitochondria in RE cells. In conclusion, our study provides novel insights into mitochondrial function and the intracellular dynamics that regulate the rapid growth of moso bamboo.
Collapse
Affiliation(s)
- Yanli Gao
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Anjing Chen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Dongmei Zhu
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| | - Mingbing Zhou
- National Key Laboratory for Development and Utilization of Forest Food Resources, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, China
| | - Huahong Huang
- Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University, Hangzhou, China
| | - Ronghui Pan
- State Key Laboratory of Rice Biology and Breeding, College of Agriculture and Biotechnology & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Xu Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Frontiers Science Center for Cell Responses, Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinbo Shen
- National Key Laboratory for Development and Utilization of Forest Food Resources, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
4
|
Huang L, Liao X, Ma D, Li Z, Xu Z. The relationship between growth, anatomical structure, and quality in different parts and stages of edible bamboo shoots of Dendrocalamus latiflorus. BMC PLANT BIOLOGY 2025; 25:314. [PMID: 40069623 PMCID: PMC11899434 DOI: 10.1186/s12870-025-06294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/24/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Dendrocalamus latiflorus is widely distributed in southern China and has high ornamental and edible value. The growth dynamics and the associations between growth and the distribution of nutrients or chemical components across various parts and stages of shoot development remain inadequately understood. In this study, tender shoots of D. latiflorus from Guangxi, China, were used to conduct experiments. During the edible growth period, the height, ground diameter, and morphology of the tender shoots were investigated, and the growth stages were classified by conducting ordered sample cluster analysis. The internal internode anatomy and nutritional/chemical components of the tender shoots at different growth stages and parts were measured and analyzed. The optimal harvesting stages and parts were determined by conducting a comprehensive analysis using the technique for order preference by similarity to the ideal solution (TOPSIS). RESULTS The height growth of D. latiflorus tender shoots lasted for 21 days and can be divided into four stages: I (0-9 d), II (10-13 d), III (14-17 d), and IV (18-21 d), while thickening growth lasted about 19 days. The moisture content of D. latiflorus tender shoots decreased as growth increased. Cell division and elongation increased the height of tender shoots. Among the four stages, cell division dominated in Stages I and II, whereas cell elongation dominated in Stages III and IV. The changes in nutrients and chemical components in different parts and stages of tender shoot development have distinct characteristics, and the differences are significant. The starch and reducing sugar contents reached a maximum value in the lower part of Stage II (10.19 mg·g-1, 18.87 mg·g-1), whereas the soluble sugar content reached a maximum value in the middle of Stage III (2.15 mg·g-1). The protein and fat contents were the highest in the upper part of Stage IV (3.84% and 4.8%). The contents of the chemical components of flavonoids and vitamin C were the highest in the middle of Stage IV (5.51 mg·g-1, 33.58 mg·100 g-1), whereas the contents of cellulose and lignin in the later part of Stage IV were the highest (9.43% and 13.67%, respectively). Stage II (10-13 d) was the best harvest stage for D. latiflorus tender shoots, according to the comprehensive TOPSIS analysis, and the comprehensive quality of the upper part was the best in this stage. Additionally, the middle part of Stage III and the lower part of Stage IV were also high quality and could also be harvested. CONCLUSIONS This study revealed the growth patterns of the tender shoots of D. latiflorus from morphological, anatomical, and physiological perspectives, as well as the dynamic changes in nutrient content during their growth. Within the 21-day edible stage, Stage II (10-13 days) was identified as the optimal harvesting stage, with the upper part of the shoot being the best section for harvest. This study provided a theoretical basis for further cultivating high-quality D. latiflorus for shoot production and has significant potential for increasing economic benefits.
Collapse
Affiliation(s)
- Lixin Huang
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Xiting Liao
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Daocheng Ma
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China
| | - Zailiu Li
- Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, China.
| | - Zhenguo Xu
- Guangxi Forestry Research Institute, Nanning, 530002, China.
| |
Collapse
|
5
|
Mao L, Guo C, Niu LZ, Wang YJ, Jin G, Yang YZ, Qian KC, Yang Y, Zhang X, Ma PF, Li DZ, Guo ZH. Subgenome asymmetry of gibberellins-related genes plays important roles in regulating rapid growth of bamboos. PLANT DIVERSITY 2025; 47:68-81. [PMID: 40041567 PMCID: PMC11873579 DOI: 10.1016/j.pld.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/27/2024] [Accepted: 10/19/2024] [Indexed: 03/06/2025]
Abstract
Rapid growth is an innovative trait of woody bamboos that has been widely studied. However, the genetic basis and evolution of this trait are poorly understood. Taking advantage of genomic resources of 11 representative bamboos at different ploidal levels, we integrated morphological, physiological, and transcriptomic datasets to investigate rapid growth. In particular, these bamboos include two large-sized and a small-sized woody species, compared with a diploid herbaceous species. Our results showed that gibberellin A1 was important for the rapid shoot growth of the world's largest bamboo, Dendrocalamus sinicus, and indicated that two gibberellins (GAs)-related genes, KAO and SLRL1, were key to the rapid shoot growth and culm size in woody bamboos. The expression of GAs-related genes exhibited significant subgenome asymmetry with subgenomes A and C demonstrating expression dominance in the large-sized woody bamboos while the generally submissive subgenomes B and D dominating in the small-sized species. The subgenome asymmetry was found to be correlated with the subgenome-specific gene structure, particularly UTRs and core promoters. Our study provides novel insights into the molecular mechanism and evolution of rapid shoot growth following allopolyploidization in woody bamboos, particularly via subgenome asymmetry. These findings are helpful for understanding of how polyploidization in general and subgenome asymmetry in particular contributed to the origin of innovative traits in plants.
Collapse
Affiliation(s)
- Ling Mao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Cen Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- Center for Integrative Conservation & Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Liang-Zhong Niu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yu-Jiao Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Guihua Jin
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yi-Zhou Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Ke-Cheng Qian
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Yang Yang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Xuemei Zhang
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan 650500, China
| | - Peng-Fei Ma
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Guo
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
6
|
Zhu XT, Sanz-Jimenez P, Ning XT, Tahir Ul Qamar M, Chen LL. Direct RNA sequencing in plants: Practical applications and future perspectives. PLANT COMMUNICATIONS 2024; 5:101064. [PMID: 39155503 PMCID: PMC11589328 DOI: 10.1016/j.xplc.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
The transcriptome serves as a bridge that links genomic variation to phenotypic diversity. A vast number of studies using next-generation RNA sequencing (RNA-seq) over the last 2 decades have emphasized the essential roles of the plant transcriptome in response to developmental and environmental conditions, providing numerous insights into the dynamic changes, evolutionary traces, and elaborate regulation of the plant transcriptome. With substantial improvement in accuracy and throughput, direct RNA sequencing (DRS) has emerged as a new and powerful sequencing platform for precise detection of native and full-length transcripts, overcoming many limitations such as read length and PCR bias that are inherent to short-read RNA-seq. Here, we review recent advances in dissecting the complexity and diversity of plant transcriptomes using DRS as the main technological approach, covering many aspects of RNA metabolism, including novel isoforms, poly(A) tails, and RNA modification, and we propose a comprehensive workflow for processing of plant DRS data. Many challenges to the application of DRS in plants, such as the need for machine learning tools tailored to plant transcriptomes, remain to be overcome, and together we outline future biological questions that can be addressed by DRS, such as allele-specific RNA modification. This technology provides convenient support on which the connection of distinct RNA features is tightly built, sustainably refining our understanding of the biological functions of the plant transcriptome.
Collapse
Affiliation(s)
- Xi-Tong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| | - Pablo Sanz-Jimenez
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Tong Ning
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Muhammad Tahir Ul Qamar
- Integrative Omics and Molecular Modeling Laboratory, Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad 38000, Pakistan
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Zhang J, Wu L, Mu L, Wang Y, Zhao M, Wang H, Li X, Zhao L, Lin C, Zhang H, Gu L. Evolution and post-transcriptional regulation insights of m 6A writers, erasers, and readers in plant epitranscriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:505-525. [PMID: 39167634 DOI: 10.1111/tpj.16996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/30/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
As a dynamic and reversible post-transcriptional marker, N6-methyladenosine (m6A) plays an important role in the regulation of biological functions, which are mediated by m6A pathway components including writers (MT-A70, FIP37, VIR and HAKAI family), erasers (ALKBH family) and readers (YTH family). There is an urgent need for a comprehensive analysis of m6A pathway components across species at evolutionary levels. In this study, we identified 4062 m6A pathway components from 154 plant species including green algae, utilizing large-scale phylogenetic to explore their origin and evolution. We discovered that the copy number of writers was conserved among different plant lineages, with notable expansions in the ALKBH and YTH families. Synteny network analysis revealed conserved genomic contexts and lineage-specific transpositions. Furthermore, we used Direct RNA Sequencing (DRS) to reveal the Poly(A) length (PAL) and m6A ratio profiles in six angiosperms species, with a particular focus on the m6A pathway components. The ECT1/2-Poeaece4 sub-branches (YTH family) with unique genomic contexts exhibited significantly higher expression level than genes of other ECT1/2 poeaece sub-branches (ECT1/2-Poeaece1-3), accompanied by lower m6A modification and PAL. Besides, conserved m6A sites distributed in CDS and 3'UTR were detected in the ECT1/2-Poaceae4, and the dual-luciferase assay further demonstrated that these conserved m6A sites in the 3'UTR negatively regulated the expression of Firefly luciferase (LUC) gene. Finally, we developed transcription factor regulatory networks for m6A pathway components, using yeast one-hybrid assay demonstrated that PheBPC1 could interact with the PheECT1/2-5 promoter. Overall, this study presents a comprehensive evolutionary and functional analysis of m6A pathway components and their modifications in plants, providing a valuable resource for future functional analysis in this field.
Collapse
Affiliation(s)
- Jun Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lin Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lele Mu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuhua Wang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengna Zhao
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiangrong Li
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liangzhen Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hangxiao Zhang
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
8
|
Li Q, Fu C, Hu B, Yang B, Yu H, He H, Xu Q, Chen X, Dai X, Fang R, Xiong X, Zhou K, Yang S, Zou X, Liu Z, Ou L. Lysine 2-hydroxyisobutyrylation proteomics analyses reveal the regulatory mechanism of CaMYB61-CaAFR1 module in regulating stem development in Capsicum annuum L. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1039-1058. [PMID: 38804740 DOI: 10.1111/tpj.16815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Plant stems constitute the most abundant renewable resource on earth. The function of lysine (K)-2-hydroxyisobutyrylation (Khib), a novel post-translational modification (PTM), has not yet been elucidated in plant stem development. Here, by assessing typical pepper genotypes with straight stem (SS) and prostrate stem (PS), we report the first large-scale proteomics analysis for protein Khib to date. Khib-modifications influenced central metabolic processes involved in stem development, such as glycolysis/gluconeogenesis and protein translation. The high Khib level regulated gene expression and protein accumulation associated with cell wall formation in the pepper stem. Specially, we found that CaMYB61 knockdown lines that exhibited prostrate stem phenotypes had high Khib levels. Most histone deacetylases (HDACs, e.g., switch-independent 3 associated polypeptide function related 1, AFR1) potentially function as the "erasing enzymes" involved in reversing Khib level. CaMYB61 positively regulated CaAFR1 expression to erase Khib and promote cellulose and hemicellulose accumulation in the stem. Therefore, we propose a bidirectional regulation hypothesis of "Khib modifications" and "Khib erasing" in stem development, and reveal a novel epigenetic regulatory network in which the CaMYB61-CaAFR1 molecular module participating in the regulation of Khib levels and biosynthesis of cellulose and hemicellulose for the first time.
Collapse
Affiliation(s)
- Qing Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Canfang Fu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Bowen Hu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Bozhi Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Huiyang Yu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Huan He
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Qing Xu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Xuejun Chen
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Rong Fang
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xingyao Xiong
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Kunhua Zhou
- Vegetable and Flower Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Sha Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Zhoubin Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| | - Lijun Ou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha, 410125, China
- Yuelushan Lab, Changsha, 410128, China
| |
Collapse
|
9
|
Zhang Q, Chu X, Gao Z, Ding Y, Que F, Ahmad Z, Yu F, Ramakrishnan M, Wei Q. Culm Morphological Analysis in Moso Bamboo Reveals the Negative Regulation of Internode Diameter and Thickness by Monthly Precipitation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1484. [PMID: 38891293 PMCID: PMC11175016 DOI: 10.3390/plants13111484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
The neglect of Moso bamboo's phenotype variations hinders its broader utilization, despite its high economic value globally. Thus, this study investigated the morphological variations of 16 Moso bamboo populations. The analysis revealed the culm heights ranging from 9.67 m to 17.5 m, with average heights under the first branch ranging from 4.91 m to 7.67 m. The total internode numbers under the first branch varied from 17 to 36, with internode lengths spanning 2.9 cm to 46.4 cm, diameters ranging from 5.10 cm to 17.2 cm, and wall thicknesses from 3.20 mm to 33.3 mm, indicating distinct attributes among the populations. Furthermore, strong positive correlations were observed between the internode diameter, thickness, length, and volume. The coefficient of variation of height under the first branch showed strong positive correlations with several parameters, indicating variability in their contribution to the total culm height. A regression analysis revealed patterns of covariation among the culm parameters, highlighting their influence on the culm height and structural characteristics. Both the diameter and thickness significantly contribute to the internode volume and culm height, and the culm parameters tend to either increase or decrease together, influencing the culm height. Moreover, this study also identified a significant negative correlation between monthly precipitation and the internode diameter and thickness, especially during December and January, impacting the primary thickening growth and, consequently, the internode size.
Collapse
Affiliation(s)
- Qianwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Xue Chu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Zhipeng Gao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Yulong Ding
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Feng Que
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Fen Yu
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang 330045, China;
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, China; (Q.Z.); (Y.D.)
- Jiangxi Provincial Key Laboratory for Bamboo Germplasm Resources and Utilization, Jiangxi Agriculture University, Nanchang 330045, China;
| |
Collapse
|
10
|
Ramakrishnan M, Rajan KS, Mullasseri S, Ahmad Z, Zhou M, Sharma A, Ramasamy S, Wei Q. Exploring N6-methyladenosine (m 6A) modification in tree species: opportunities and challenges. HORTICULTURE RESEARCH 2024; 11:uhad284. [PMID: 38371641 PMCID: PMC10871907 DOI: 10.1093/hr/uhad284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/17/2023] [Indexed: 02/20/2024]
Abstract
N 6-methyladenosine (m6A) in eukaryotes is the most common and widespread internal modification in mRNA. The modification regulates mRNA stability, translation efficiency, and splicing, thereby fine-tuning gene regulation. In plants, m6A is dynamic and critical for various growth stages, embryonic development, morphogenesis, flowering, stress response, crop yield, and biomass. Although recent high-throughput sequencing approaches have enabled the rapid identification of m6A modification sites, the site-specific mechanism of this modification remains unclear in trees. In this review, we discuss the functional significance of m6A in trees under different stress conditions and discuss recent advancements in the quantification of m6A. Quantitative and functional insights into the dynamic aspect of m6A modification could assist researchers in engineering tree crops for better productivity and resistance to various stress conditions.
Collapse
Affiliation(s)
- Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - K Shanmugha Rajan
- Department of Chemical and Structural Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sileesh Mullasseri
- Department of Zoology, St. Albert’s College (Autonomous), Kochi 682018, Kerala, India
| | - Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
- Zhejiang Provincial Collaborative Innovation Center for Bamboo Resources and High-Efficiency Utilization, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Lin’an, Hangzhou 311300, Zhejiang, China
| | - Subbiah Ramasamy
- Cardiac Metabolic Disease Laboratory, Department of Biochemistry, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, Tamilnadu, India
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| |
Collapse
|
11
|
Liufu Y, Xi F, Wu L, Zhang Z, Wang H, Wang H, Zhang J, Wang B, Kou W, Gao J, Zhao L, Zhang H, Gu L. Inhibition of DNA and RNA methylation disturbs root development of moso bamboo. TREE PHYSIOLOGY 2023; 43:1653-1674. [PMID: 37294626 DOI: 10.1093/treephys/tpad074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/25/2023] [Accepted: 06/03/2023] [Indexed: 06/11/2023]
Abstract
DNA methylation (5mC) and N6-methyladenosine (m6A) are two important epigenetics regulators, which have a profound impact on plant growth development. Phyllostachys edulis (P. edulis) is one of the fastest spreading plants due to its well-developed root system. However, the association between 5mC and m6A has seldom been reported in P. edulis. In particular, the connection between m6A and several post-transcriptional regulators remains uncharacterized in P. edulis. Here, our morphological and electron microscope observations showed the phenotype of increased lateral root under RNA methylation inhibitor (DZnepA) and DNA methylation inhibitor (5-azaC) treatment. RNA epitranscriptome based on Nanopore direct RNA sequencing revealed that DZnepA treatment exhibits significantly decreased m6A level in the 3'-untranslated region (3'-UTR), which was accompanied by increased gene expression, full-length ratio, higher proximal poly(A) site usage and shorter poly(A) tail length. DNA methylation levels of CG and CHG were reduced in both coding sequencing and transposable element upon 5-azaC treatment. Cell wall synthesis was impaired under methylation inhibition. In particular, differentially expressed genes showed a high percentage of overlap between DZnepA and 5-azaC treatment, which suggested a potential correlation between two methylations. This study provides preliminary information for a better understanding of the link between m6A and 5mC in root development of moso bamboo.
Collapse
Affiliation(s)
- Yuxiang Liufu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| | - Feihu Xi
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin Wu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| | - Huihui Wang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| | - Huiyuan Wang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| | - Jun Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| | - Baijie Wang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| | - Wenjing Kou
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| | - Jian Gao
- Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Liangzhen Zhao
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hangxiao Zhang
- Key Laboratory of Bamboo and Rattan Science and Technology, State Forestry Administration, International Center for Bamboo and Rattan, Beijing 100102, China
| | - Lianfeng Gu
- Basic Forestry and Proteomics Research Center, College of Forestry, School of Future Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou City, Fujian Province 350002, China
| |
Collapse
|
12
|
Zhang(张宇鹏) Y, Fan G, Toivainen T, Tengs T, Yakovlev I, Krokene P, Hytönen T, Fossdal CG, Grini PE. Warmer temperature during asexual reproduction induce methylome, transcriptomic, and lasting phenotypic changes in Fragaria vesca ecotypes. HORTICULTURE RESEARCH 2023; 10:uhad156. [PMID: 37719273 PMCID: PMC10500154 DOI: 10.1093/hr/uhad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Plants must adapt with increasing speed to global warming to maintain their fitness. One rapid adaptation mechanism is epigenetic memory, which may provide organisms sufficient time to adapt to climate change. We studied how the perennial Fragaria vesca adapted to warmer temperatures (28°C vs. 18°C) over three asexual generations. Differences in flowering time, stolon number, and petiole length were induced by warmer temperature in one or more ecotypes after three asexual generations and persisted in a common garden environment. Induced methylome changes differed between the four ecotypes from Norway, Iceland, Italy, and Spain, but shared methylome responses were also identified. Most differentially methylated regions (DMRs) occurred in the CHG context, and most CHG and CHH DMRs were hypermethylated at the warmer temperature. In eight CHG DMR peaks, a highly similar methylation pattern could be observed between ecotypes. On average, 13% of the differentially methylated genes between ecotypes also showed a temperature-induced change in gene expression. We observed ecotype-specific methylation and expression patterns for genes related to gibberellin metabolism, flowering time, and epigenetic mechanisms. Furthermore, we observed a negative correlation with gene expression when repetitive elements were found near (±2 kb) or inside genes. In conclusion, lasting phenotypic changes indicative of an epigenetic memory were induced by warmer temperature and were accompanied by changes in DNA methylation patterns. Both shared methylation patterns and transcriptome differences between F. vesca accessions were observed, indicating that DNA methylation may be involved in both general and ecotype-specific phenotypic variation.
Collapse
Affiliation(s)
- YuPeng Zhang(张宇鹏)
- EVOGENE, Department of Biosciences, University of Oslo, 0313 Oslo, Norway
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Tuomas Toivainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Torstein Tengs
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Igor Yakovlev
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Paal Krokene
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Carl Gunnar Fossdal
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, 1431 Ås, Norway
| | - Paul E. Grini
- EVOGENE, Department of Biosciences, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
13
|
Zheng S, Shin K, Lin W, Wang W, Yang X. Identification and Characterization of PRE Genes in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2023; 24:ijms24086886. [PMID: 37108050 PMCID: PMC10138968 DOI: 10.3390/ijms24086886] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/24/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Basic helix-loop-helix (bHLH)/HLH transcription factors are involved in various aspects of the growth and development of plants. Here, we identified four HLH genes, PePRE1-4, in moso bamboo plants that are homologous to Arabidopsis PRE genes. In bamboo seedlings, PePRE1/3 were found to be highly expressed in the internode and lamina joint by using quantitative RT-PCR analysis. In the elongating internode of bamboo shoots, PePRE genes are expressed at higher levels in the basal segment than in the mature top segment. Overexpression of PePREs (PePREs-OX) in Arabidopsis showed longer petioles and hypocotyls, as well as earlier flowering. PePRE1 overexpression restored the phenotype due to the deficiency of AtPRE genes caused by artificial micro-RNA. PePRE1-OX plants showed hypersensitivity to propiconazole treatment compared with the wild type. In addition, PePRE1/3 but not PePRE2/4 proteins accumulated as punctate structures in the cytosol, which was disrupted by the vesicle recycling inhibitor brefeldin A (BFA). PePRE genes have a positive function in the internode elongation of moso bamboo shoots, and overexpression of PePREs genes promotes flowering and growth in Arabidopsis. Our findings provided new insights about the fast-growing mechanism of bamboo shoots and the application of PRE genes from bamboo.
Collapse
Affiliation(s)
- Sujin Zheng
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kihye Shin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Microbiology and Immunology, Jeju National University College of Medicine, Jeju 63243, Republic of Korea
| | - Wenxiong Lin
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenfei Wang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuelian Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|