1
|
Bankaitis VA, Khan D, Chen XR, Wang Y, Igumenova TI. A brief history of phosphatidylinositol transfer proteins: from the backwaters of cell biology to prime time in lipid signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159625. [PMID: 40354930 DOI: 10.1016/j.bbalip.2025.159625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
How lipids are sorted between intracellular compartments and what mechanisms support inter-organellar lipid transport define questions that have enjoyed long-standing interest in the cell biology community. Despite tantalizing evidence to the effect that lipids can move between organelles independently of standard modes of vesicular membrane trafficking through the secretory pathway, biochemical dissection of these non-vesicular pathways was initially fraught with experimental challenges. Many of the obstacles have now been overcome and, following initial breakthroughs, the last two decades have witnessed a renaissance in the field of lipid trafficking. Indeed, lipid trafficking and mobilization are now significant components of any discussion regarding secretory vesicle trafficking, organelle biogenesis, agonist-stimulated lipid signaling, and inter-compartmental communication pathways that involve every organelle in the eukaryotic cell. In accord with the theme of this special issue, we focus on the topic of soluble lipid transfer proteins that interface with the metabolism of phosphatidylinositol (PtdIns) and its phosphorylated derivatives - the phosphoinositides. Although phosphoinositides are quantitatively minor lipids in cells, these molecules represent the chemical codes for a major pathway of intracellular signaling in all eukaryotic cells. It is now clear that soluble PtdIns transfer proteins (PITPs) are physiologically critical regulators of specific pathways of phosphoinositide - particularly PtdIns-4-phosphate - signaling. The 'where' PITPs determine the biological outcomes of phosphoinositide signaling, and the 'how' by which PITPs do so, represent increasingly active areas of research in contemporary cell biology. It is these issues we explore from a historical perspective with a focus on the Sec14-like PITPs.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX 77843, USA.
| | - Danish Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiao-Ru Chen
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Tatyana I Igumenova
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Zhang J, Zou L, Wang L, Zhang D, Shen A, Lei Y, Chao M, Xu X, Xue Z, Huang Z. Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max). BMC Genomics 2025; 26:73. [PMID: 39863853 PMCID: PMC11762097 DOI: 10.1186/s12864-025-11270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/21/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied. RESULTS In this study, we identified 77 Sec14 genes in the soybean genome that were unevenly distributed across 19 chromosomes. Based on the classification method used for Arabidopsis Sec14 members, GmSec14s can be categorized into three classes: GmPITP1 to GmPITP37, GmSFH1 to GmSFH25, and GmPATL1 to GmPATL15. Structural analysis of the GmSec14 genes revealed that the SFH subfamily contained more introns than the other subfamilies. A total of 10 conserved protein motifs were detected within GmSec14 proteins, with each subfamily possessing unique motifs. Two tandem duplications and 73 segmental duplications were identified among the GmSec14 genes. Additionally, a large number of cis-acting elements, particularly those related to plant hormones, were abundant in the promoter regions of the GmSec14 genes. Tissue expression analysis of the GmSec14 genes indicated that they exhibited distinct tissue-specific expression patterns. In response to salt stress, multiple genes were found to be either upregulated or downregulated. In contrast, the majority of genes were downregulated under drought stress conditions. Notably, 12 GmSec14 genes exhibited significant alterations in expression following salt or drought stress, suggesting a potential role for these genes in stress response mechanisms. Furthermore, the protein interaction network and miRNA regulation associated with GmSec14s were predicted to elucidate the potential functions of GmSec14 members. CONCLUSIONS This study provides a systematic and comprehensive examination of the Sec14 gene family in soybean, which will facilitate further functional research into their roles in response to salt and drought tolerance.
Collapse
Affiliation(s)
- Jinyu Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Liying Zou
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Li Wang
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Dongchao Zhang
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Ao Shen
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Yongqi Lei
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Maoni Chao
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Xinjuan Xu
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Zhiwei Xue
- Anyang Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhongwen Huang
- Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| |
Collapse
|
3
|
Zhang R, Li M, Lv J, Li P, Mo Y, Zhang X, Cheng H, Deng Q, Gui M, Deng M. Characterization of Thirty Germplasms of Millet Pepper ( Capsicum frutescens L.) in Terms of Fruit Morphology, Capsaicinoids, and Nutritional Components. Metabolites 2025; 15:47. [PMID: 39852389 PMCID: PMC11767324 DOI: 10.3390/metabo15010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Millet peppers have rich and diverse germplasm resources. It is of great significance to characterize their phenotypes and physicochemical indicators. METHODS 30 millet germplasms were selected to measure the fruit length and width, flesh thickness, number of ventricles, fruit stalk length, and single fruit weight, and the texture characteristics of fruit such as hardness, cohesiveness, springiness, gumminess, and chewiness were determined by a texture analyzer. At the same time, high-performance liquid chromatography (HPLC) and gas chromatography (GC) were used to determine the fruit of capsaicin, dihydrocapsaicin, nordihydrocapsaicin, fatty acids, vitamin E (VE), total phenol, total sugar, and total dietary fiber. RESULTS M11 showed outstanding parameters in phenotype and texture. The coefficient of variation (CV) for VE was as high as 94.943% and the highest diversity index (H') was total soluble solid, at 1.988%. M5 and M18 contained rich and diverse fatty acids. At the same time, the content of capsaicinoids in M18 also ranks among the top, second only to M27 (with a total capsaicin content of 5623.96 μg/g). PCA analysis using phenotypic data and physicochemical data showed that the classification results were different. Further hierarchical group analysis was carried out using all the index data. The results showed that 30 millet pepper germplasms were divided into three new categories: M5, M9, M18, and M24 formed one group (C1), M10, M14, M16, M19, M20, M22, M25, M26, M28, M29, and M30 formed another cluster (C2), and the remaining germplasms formed a third cluster (C3). Among them, the abundance of fatty acids in the C1 germplasm was higher than that in the other two groups. CONCLUSIONS Our study showed that different germplasms had significant differences in morphological traits and nutritional metabolic components and were rich in genetic diversity. This study provides a theoretical basis for the improvement of millet varieties and the development of functional food.
Collapse
Affiliation(s)
- Ruihao Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Mengjuan Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
| | - Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
| | - Pingping Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
| | - Yunrong Mo
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
| | - Xiang Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
| | - Hong Cheng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
| | - Qiaoling Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
| | - Min Gui
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China; (R.Z.); (M.L.); (J.L.); (P.L.); (Y.M.); (X.Z.); (H.C.); (Q.D.)
| |
Collapse
|
4
|
Mohr I, Eutebach M, Knopf MC, Schommen N, Gratz R, Angrand K, Genders L, Brumbarova T, Bauer P, Ivanov R. The small ARF-like 2 GTPase TITAN5 is linked with the dynamic regulation of IRON-REGULATED TRANSPORTER 1. J Cell Sci 2024; 137:jcs263645. [PMID: 39544154 DOI: 10.1242/jcs.263645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Iron acquisition is crucial for plants. The abundance of IRON-REGULATED TRANSPORTER 1 (IRT1) is controlled through endomembrane trafficking, a process that requires small ARF-like GTPases. Only few components that are involved in the vesicular trafficking of specific cargo are known. Here, we report that the ARF-like GTPase TITAN5 (TTN5) interacts with the large cytoplasmic variable region and protein-regulatory platform of IRT1. Heterozygous ttn5-1 plants can display reduced root iron reductase activity. This activity is needed for iron uptake via IRT1. Fluorescent fusion proteins of TTN5 and IRT1 colocalize at locations where IRT1 sorting and cycling between the plasma membrane and the vacuole are coordinated. TTN5 can also interact with peripheral membrane proteins that are components of the IRT1 regulation machinery, like the trafficking factor SNX1, the C2 domain protein EHB1 and the SEC14-GOLD protein PATL2. Hence, the link between iron acquisition and vesicular trafficking involving a small GTPase of the ARF family opens up the possibility to study the involvement of TTN5 in nutritional cell biology and the endomembrane system.
Collapse
Affiliation(s)
- Inga Mohr
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Monique Eutebach
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Marie C Knopf
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Naima Schommen
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Regina Gratz
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Kalina Angrand
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Lara Genders
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Tzvetina Brumbarova
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
5
|
Wang Y, Zhang X, Yan Y, Niu T, Zhang M, Fan C, Liang W, Shu Y, Guo C, Guo D, Bi Y. GmABCG5, an ATP-binding cassette G transporter gene, is involved in the iron deficiency response in soybean. FRONTIERS IN PLANT SCIENCE 2024; 14:1289801. [PMID: 38250443 PMCID: PMC10796643 DOI: 10.3389/fpls.2023.1289801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Iron deficiency is a major nutritional problem causing iron deficiency chlorosis (IDC) and yield reduction in soybean, one of the most important crops. The ATP-binding cassette G subfamily plays a crucial role in substance transportation in plants. In this study, we cloned the GmABCG5 gene from soybean and verified its role in Fe homeostasis. Analysis showed that GmABCG5 belongs to the ABCG subfamily and is subcellularly localized at the cell membrane. From high to low, GmABCG5 expression was found in the stem, root, and leaf of young soybean seedlings, and the order of expression was flower, pod, seed stem, root, and leaf in mature soybean plants. The GUS assay and qRT-PCR results showed that the GmABCG5 expression was significantly induced by iron deficiency in the leaf. We obtained the GmABCG5 overexpressed and inhibitory expressed soybean hairy root complexes. Overexpression of GmABCG5 promoted, and inhibition of GmABCG5 retarded the growth of soybean hairy roots, independent of nutrient iron conditions, confirming the growth-promotion function of GmABCG5. Iron deficiency has a negative effect on the growth of soybean complexes, which was more obvious in the GmABCG5 inhibition complexes. The chlorophyll content was increased in the GmABCG5 overexpression complexes and decreased in the GmABCG5 inhibition complexes. Iron deficiency treatment widened the gap in the chlorophyll contents. FCR activity was induced by iron deficiency and showed an extraordinary increase in the GmABCG5 overexpression complexes, accompanied by the greatest Fe accumulation. Antioxidant capacity was enhanced when GmABCG5 was overexpressed and reduced when GmABCG5 was inhibited under iron deficiency. These results showed that the response mechanism to iron deficiency is more actively mobilized in GmABCG5 overexpression seedlings. Our results indicated that GmABCG5 could improve the plant's tolerance to iron deficiency, suggesting that GmABCG5 might have the function of Fe mobilization, redistribution, and/or secretion of Fe substances in plants. The findings provide new insights into the ABCG subfamily genes in the regulation of iron homeostasis in plants.
Collapse
Affiliation(s)
- Yu Wang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Xuemeng Zhang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yuhan Yan
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Tingting Niu
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Miao Zhang
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Chao Fan
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Wenwei Liang
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yongjun Shu
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Changhong Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Donglin Guo
- Heilongjiang Provincial Key Laboratory of Molecular Cell Genetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin, China
| | - Yingdong Bi
- Institute of Crops Tillage and Cultivation, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
6
|
Melicher P, Dvořák P, Řehák J, Šamajová O, Pechan T, Šamaj J, Takáč T. Methyl viologen-induced changes in the Arabidopsis proteome implicate PATELLIN 4 in oxidative stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:405-421. [PMID: 37728561 PMCID: PMC10735431 DOI: 10.1093/jxb/erad363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
The photosynthesis-induced accumulation of reactive oxygen species in chloroplasts can lead to oxidative stress, triggering changes in protein synthesis, degradation, and the assembly/disassembly of protein complexes. Using shot-gun proteomics, we identified methyl viologen-induced changes in protein abundance in wild-type Arabidopsis and oxidative stress-hypersensitive fsd1-1 and fsd1-2 knockout mutants, which are deficient in IRON SUPEROXIDE DISMUTASE 1 (FSD1). The levels of proteins that are localized in chloroplasts and the cytoplasm were modified in all lines treated with methyl viologen. Compared with the wild-type, fsd1 mutants showed significant changes in metabolic protein and chloroplast chaperone levels, together with increased ratio of cytoplasmic, peroxisomal, and mitochondrial proteins. Different responses in proteins involved in the disassembly of photosystem II-light harvesting chlorophyll a/b binding proteins were observed. Moreover, the abundance of PATELLIN 4, a phospholipid-binding protein enriched in stomatal lineage, was decreased in response to methyl viologen. Reverse genetic studies using patl4 knockout mutants and a PATELLIN 4 complemented line indicate that PATELLIN 4 affects plant responses to oxidative stress by effects on stomatal closure.
Collapse
Affiliation(s)
- Pavol Melicher
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Petr Dvořák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Řehák
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Olga Šamajová
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Starkville, MS, USA
| | - Jozef Šamaj
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Tomáš Takáč
- Department of Biotechnology, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
7
|
Spielmann J, Fanara S, Cotelle V, Vert G. Multilayered regulation of iron homeostasis in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2023; 14:1250588. [PMID: 37841618 PMCID: PMC10570522 DOI: 10.3389/fpls.2023.1250588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development due to its role in crucial processes such as photosynthesis and modulation of the redox state as an electron donor. While Fe is one of the five most abundant metals in the Earth's crust, it is poorly accessible to plants in alkaline soils due to the formation of insoluble complexes. To limit Fe deficiency symptoms, plant have developed a highly sophisticated regulation network including Fe sensing, transcriptional regulation of Fe-deficiency responsive genes, and post-translational modifications of Fe transporters. In this mini-review, we detail how plants perceive intracellular Fe status and how they regulate transporters involved in Fe uptake through a complex cascade of transcription factors. We also describe the current knowledge about intracellular trafficking, including secretion to the plasma membrane, endocytosis, recycling, and degradation of the two main Fe transporters, IRON-REGULATED TRANSPORTER 1 (IRT1) and NATURAL RESISTANCE ASSOCIATED MACROPHAGE PROTEIN 1 (NRAMP1). Regulation of these transporters by their non-Fe substrates is discussed in relation to their functional role to avoid accumulation of these toxic metals during Fe limitation.
Collapse
Affiliation(s)
- Julien Spielmann
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Steven Fanara
- InBioS-PhytoSystems, Functional Genomics and Plant Molecular Imaging, Department of Life Sciences, University of Liège, Liège, Belgium
| | - Valérie Cotelle
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| | - Grégory Vert
- Plant Science Research Laboratory (LRSV), University of Toulouse, CNRS, UPS, Toulouse INP, Auzeville-Tolosane, France
| |
Collapse
|
8
|
Cui M, Gupta SK, Bauer P. Role of the plant-specific calcium-binding C2-DOMAIN ABSCISIC ACID-RELATED (CAR) protein family in environmental signaling. Eur J Cell Biol 2023; 102:151322. [PMID: 37211005 DOI: 10.1016/j.ejcb.2023.151322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Many signaling processes rely on information decoding at the plasma membrane, and membrane-associated proteins and their complexes are fundamental for regulating this process. Still many questions exist as to how protein complexes are assembled and function at membrane sites to change identity and dynamics of membrane systems. Peripheral membrane proteins containing a calcium and phospholipid-binding C2-domain can act in membrane-related signaling by providing a tethering function so that protein complexes form. C2 domain proteins termed C2-DOMAIN ABSCISIC ACID-RELATED (CAR) proteins are plant-specific, and the functional relevance of this C2 domain protein subgroup is just emerging. The ten Arabidopsis CAR proteins CAR1 to CAR10 have a single C2 domain with a plant-specific insertion, the so-called "CAR-extra-signature" or also termed "sig domain". Via this "sig domain" CAR proteins can bind signaling protein complexes of different kinds and act in biotic and abiotic stress, blue light and iron nutrition. Interestingly, CAR proteins can oligomerize in membrane microdomains, and their presence in the nucleus can be linked with nuclear protein regulation. This shows that CAR proteins may play unprecedented roles in coordinating environmental responses and assembling required protein complexes to transmit information cues between plasma membrane and nucleus. The aim of this review is to summarize structure-function characteristics of the CAR protein family and assemble findings from CAR protein interactions and physiological functions. From this comparative investigation we extract common principles about the molecular operations that CAR proteins may fulfill in the cell. We also deduce functional properties of the CAR protein family based on its evolution and gene expression profiles. We highlight open questions and suggest novel avenues to prove and understand the functional networks and roles played by this protein family in plants.
Collapse
Affiliation(s)
- Mingming Cui
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Shishir K Gupta
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf 40225, Germany; Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany.
| |
Collapse
|
9
|
Montag K, Ivanov R, Bauer P. Role of SEC14-like phosphatidylinositol transfer proteins in membrane identity and dynamics. FRONTIERS IN PLANT SCIENCE 2023; 14:1181031. [PMID: 37255567 PMCID: PMC10225987 DOI: 10.3389/fpls.2023.1181031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023]
Abstract
Membrane identity and dynamic processes, that act at membrane sites, provide important cues for regulating transport, signal transduction and communication across membranes. There are still numerous open questions as to how membrane identity changes and the dynamic processes acting at the surface of membranes are regulated in diverse eukaryotes in particular plants and which roles are being played by protein interaction complexes composed of peripheral and integral membrane proteins. One class of peripheral membrane proteins conserved across eukaryotes comprises the SEC14-like phosphatidylinositol transfer proteins (SEC14L-PITPs). These proteins share a SEC14 domain that contributes to membrane identity and fulfills regulatory functions in membrane trafficking by its ability to sense, bind, transport and exchange lipophilic substances between membranes, such as phosphoinositides and diverse other lipophilic substances. SEC14L-PITPs can occur as single-domain SEC14-only proteins in all investigated organisms or with a modular domain structure as multi-domain proteins in animals and streptophytes (comprising charales and land plants). Here, we present an overview on the functional roles of SEC14L-PITPs, with a special focus on the multi-domain SEC14L-PITPs of the SEC14-nodulin and SEC14-GOLD group (PATELLINs, PATLs in plants). This indicates that SEC14L-PITPs play diverse roles from membrane trafficking to organism fitness in plants. We concentrate on the structure of SEC14L-PITPs, their ability to not only bind phospholipids but also other lipophilic ligands, and their ability to regulate complex cellular responses through interacting with proteins at membrane sites.
Collapse
Affiliation(s)
- Karolin Montag
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University, Düsseldorf, Germany
- Center of Excellence on Plant Sciences (CEPLAS), Germany
| |
Collapse
|