1
|
Sato H, Yamane H. Histone modifications affecting plant dormancy and dormancy release: common regulatory effects on hormone metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6142-6158. [PMID: 38721634 DOI: 10.1093/jxb/erae205] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
As sessile organisms, plants enter periods of dormancy in response to environmental stresses to ensure continued growth and reproduction in the future. During dormancy, plant growth is suppressed, adaptive/survival mechanisms are exerted, and stress tolerance increases over a prolonged period until the plants resume their development or reproduction under favorable conditions. In this review, we focus on seed dormancy and bud dormancy, which are critical for adaptation to fluctuating environmental conditions. We provide an overview of the physiological characteristics of both types of dormancy as well as the importance of the phytohormones abscisic acid and gibberellin for establishing and releasing dormancy, respectively. Additionally, recent epigenetic analyses have revealed that dormancy establishment and release are associated with the removal and deposition of histone modifications at the loci of key regulatory genes influencing phytohormone metabolism and signaling, including DELAY OF GERMINATION 1 and DORMANCY-ASSOCIATED MADS-box genes. We discuss our current understanding of the physiological and molecular mechanisms required to establish and release seed dormancy and bud dormancy, while also describing how environmental conditions control dormancy depth, with a focus on the effects of histone modifications.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8562, Japan
| | - Hisayo Yamane
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Kumari N, Kumari Manhas S, Jose-Santhi J, Kalia D, Sheikh FR, Singh RK. Emerging into the world: regulation and control of dormancy and sprouting in geophytes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6125-6141. [PMID: 38738685 DOI: 10.1093/jxb/erae216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
Geophytic plants synchronize growth and quiescence with the external environment to survive and thrive under changing seasons. Together with seasonal growth adaptation, dormancy and sprouting are critical factors determining crop yield and market supply, as various geophytes also serve as major food, floriculture, and ornamental crops. Dormancy in such crops determines crop availability in the market, as most of them are consumed during the dormant stage. On the other hand, uniform/maximal sprouting is crucial for maximum yield. Thus, dormancy and sprouting regulation have great economic importance. Dormancy-sprouting cycles in geophytes are regulated by genetic, exogenous (environmental), and endogenous (genetic, metabolic, hormonal, etc.) factors. Comparatively, the temperature is more dominant in regulating dormancy and sprouting in geophytes, unlike above-ground tissues, where both photoperiod and temperature control are involved. Despite huge economic importance, studies concerning the regulation of dormancy and sprouting are scarce in the majority of geophytes. To date, only a few molecular factors involved in the process have been suggested. Recently, omics studies on molecular and metabolic factors involved in dormancy and growth regulation of underground vegetative tissues have provided more insight into the mechanism. Here, we discuss current knowledge of the environmental and molecular regulation and control of dormancy and sprouting in geophytes, and discuss challenges/questions that need to be addressed in the future for crop improvement.
Collapse
Affiliation(s)
- Nirupma Kumari
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sonali Kumari Manhas
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Joel Jose-Santhi
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Diksha Kalia
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Firdous Rasool Sheikh
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Kumar Singh
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Kalia D, Jose-Santhi J, Sheikh FR, Singh D, Singh RK. Tobacco rattle virus-based virus-induced gene silencing (VIGS) as an aid for functional genomics in Saffron ( Crocus sativus L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:749-755. [PMID: 38846460 PMCID: PMC11150356 DOI: 10.1007/s12298-024-01459-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
Several limitations in genetic engineering interventions in saffron exist, hindering the development of genetically modified varieties and the widespread application of genetic engineering in this crop. Lack of genome sequence information, the complexity of genetic makeup, and lack of well-established genetic transformation protocols limit its in planta functional validation of genes that would eventually lead toward crop optimization. In this study, we demonstrate agro infiltration in leaves of adult plants and whole corm before sprouting are suitable for transient gene silencing in saffron using Tobacco Rattle Virus (TRV) based virus-induced gene silencing (VIGS) targeting phytoene desaturase (PDS). Silencing of PDS resulted in bleached phenotype in leaves in both methods. TRV-mediated VIGS could be attained in saffron leaves and corms, providing an opportunity for functional genomics studies in this expensive spice crop. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01459-0.
Collapse
Affiliation(s)
- Diksha Kalia
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Joel Jose-Santhi
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Firdous Rasool Sheikh
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Deepika Singh
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
| | - Rajesh Kumar Singh
- Plant Adaptation and Developmental Biology Lab, Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P. 176061 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
4
|
Zhao H, Wan S, Huang Y, Li X, Jiao T, Zhang Z, Ma B, Zhu L, Ma F, Li M. The transcription factor MdBPC2 alters apple growth and promotes dwarfing by regulating auxin biosynthesis. THE PLANT CELL 2024; 36:585-604. [PMID: 38019898 PMCID: PMC10896295 DOI: 10.1093/plcell/koad297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Auxin plays important roles throughout plant growth and development. However, the mechanisms of auxin regulation of plant structure are poorly understood. In this study, we identified a transcription factor (TF) of the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE (BBR/BPC) family in apple (Malus × domestica), MdBPC2. It was highly expressed in dwarfing rootstocks, and it negatively regulated auxin biosynthesis. Overexpression of MdBPC2 in apple decreased plant height, altered leaf morphology, and inhibited root system development. These phenotypes were due to reduced auxin levels and were restored reversed after exogenous indole acetic acid (IAA) treatment. Silencing of MdBPC2 alone had no obvious phenotypic effect, while silencing both Class I and Class II BPCs in apple significantly increased auxin content in plants. Biochemical analysis demonstrated that MdBPC2 directly bound to the GAGA-rich element in the promoters of the auxin synthesis genes MdYUC2a and MdYUC6b, inhibiting their transcription and reducing auxin accumulation in MdBPC2 overexpression lines. Further studies established that MdBPC2 interacted with the polycomb group (PcG) protein LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) to inhibit MdYUC2a and MdYUC6b expression via methylation of histone 3 lysine 27 (H3K27me3). Silencing MdLHP1 reversed the negative effect of MdBPC2 on auxin accumulation. Our results reveal a dwarfing mechanism in perennial woody plants involving control of auxin biosynthesis by a BPC transcription factor, suggesting its use for genetic improvement of apple rootstock.
Collapse
Affiliation(s)
- Haiyan Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuyuan Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yanni Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xiaoqiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tiantian Jiao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Baiquan Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lingcheng Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Mingjun Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
5
|
Zhao Y, Pan W, Xin Y, Wu J, Li R, Shi J, Long S, Qu L, Yang Y, Yi M, Wu J. Regulating bulb dormancy release and flowering in lily through chemical modulation of intercellular communication. PLANT METHODS 2023; 19:136. [PMID: 38012626 PMCID: PMC10683273 DOI: 10.1186/s13007-023-01113-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023]
Abstract
Lily is a bulbous plant with an endogenous dormancy trait. Fine-tuning bulb dormancy release is still a challenge in the development of bulb storage technology. In this study, we identified three regulators of symplastic transport, 2,3-Butanedione oxime (BDM), N-Ethyl maleimide (NEM), and 2-Deoxy-D-glucose (DDG), that also regulate bulb dormancy release. We demonstrated that BDM and DDG inhibited callose synthesis between cells and promoted symplastic transport and soluble sugars in the shoot apical meristem (SAM), eventually accelerating bulb dormancy release and flowering in lilies. Conversely, NEM had the opposite effect. These three regulators can be flexibly applied to either accelerate or delay lily bulb dormancy release.
Collapse
Affiliation(s)
- Yajie Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Wenqiang Pan
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Yin Xin
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Jingxiang Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Rong Li
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Jinxin Shi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Shuo Long
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Lianwei Qu
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Yingdong Yang
- Institute of Floriculture, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China
| | - Jian Wu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian, Beijing, 100193, China.
| |
Collapse
|
6
|
Partap M, Verma V, Thakur M, Bhargava B. Designing of future ornamental crops: a biotechnological driven perspective. HORTICULTURE RESEARCH 2023; 10:uhad192. [PMID: 38023473 PMCID: PMC10681008 DOI: 10.1093/hr/uhad192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/14/2023] [Indexed: 12/01/2023]
Abstract
With a basis in human appreciation of beauty and aesthetic values, the new era of ornamental crops is based on implementing innovative technologies and transforming symbols into tangible assets. Recent advances in plant biotechnology have attracted considerable scientific and industrial interest, particularly in terms of modifying desired plant traits and developing future ornamental crops. By utilizing omics approaches, genomic data, genetic engineering, and gene editing tools, scientists have successively explored the underlying molecular mechanism and potential gene(s) behind trait regulation such as floral induction, plant architecture, stress resistance, plasticity, adaptation, and phytoremediation in ornamental crop species. These signs of progress lay a theoretical and practical foundation for designing and enhancing the efficiency of ornamental plants for a wide range of applications. In this review, we briefly summarized the existing literature and advances in biotechnological approaches for the improvement of vital traits in ornamental plants. The future ornamental plants, such as light-emitting plants, biotic/abiotic stress detectors, and pollution abatement, and the introduction of new ornamental varieties via domestication of wild species are also discussed.
Collapse
Affiliation(s)
- Mahinder Partap
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| | - Vipasha Verma
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Meenakshi Thakur
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
| | - Bhavya Bhargava
- Floriculture Laboratory, Agrotechnology Division, Council of Scientific and Industrial Research (CSIR), Institute of Himalayan Bioresource Technology (IHBT), Post Box No. 6, 176 061 (HP) Palampur, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India
| |
Collapse
|