1
|
Pereira JP, Bevilacqua I, Santos RB, Varotto S, Chitarra W, Nerva L, Figueiredo A. Epigenetic regulation and beyond in grapevine-pathogen interactions: a biotechnological perspective. PHYSIOLOGIA PLANTARUM 2025; 177:e70216. [PMID: 40234103 PMCID: PMC11999821 DOI: 10.1111/ppl.70216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/12/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
As one of the most important crop plants worldwide, understanding the mechanisms underlying grapevine response to pathogen attacks is key to achieving a productive and sustainable viticulture. Recently, epigenetic regulation in plant immunity has gained significant traction in the scientific community, not only for its role in gene expression regulation but also for its heritability, giving it enormous biotechnological potential. Epigenetic marks have been shown to be dynamically modulated in key genomic regions upon infection, with some being maintained after such, being responsible for priming defense genes. In grapevine, however, knowledge of epigenetic mechanisms is still limited, especially regarding biotic stress responses, representing a glaring gap in knowledge in this important crop plant. Here, we report and integrate current knowledge on grapevine epigenetic regulation as well as non-epigenetic non-coding RNAs in the response to biotic stress. We also explore how epigenetic marks may be useful in grapevine breeding for resistance, considering different approaches, from uncovering and exploiting natural variation to inducing it through different means.
Collapse
Affiliation(s)
- João Proença Pereira
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
| | - Ivan Bevilacqua
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE)University of PadovaLegnaro(PD)Italy
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Rita B. Santos
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
- Plant Biology Department, Faculty of SciencesBioISI, University of LisbonLisboaPortugal
| | - Serena Varotto
- Department of Agronomy Food Natural Resources, Animals and Environment (DAFNAE)University of PadovaLegnaro(PD)Italy
| | - Walter Chitarra
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Luca Nerva
- Council for Agricultural Research and Economics—Research Centre for Viticulture and Enology (CREA‐VE)Conegliano(TV)Italy
| | - Andreia Figueiredo
- Grapevine Pathogen Systems LabBioISI – Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of LisbonLisboaPortugal
- Plant Biology Department, Faculty of SciencesBioISI, University of LisbonLisboaPortugal
| |
Collapse
|
2
|
Jiang D, Zhang X, Luo L, Li T, Chen H, Ma N, Fu L, Tian P, Mao F, Lü P, Guo H, Zhu F. Cytosine Methylation Changes the Preferred Cis-Regulatory Configuration of Arabidopsis WUSCHEL-Related Homeobox 14. Int J Mol Sci 2025; 26:763. [PMID: 39859480 PMCID: PMC11765556 DOI: 10.3390/ijms26020763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/31/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The Arabidopsis transcription factor WUSCHEL-related homeobox 14 (AtWOX14) plays versatile roles in plant growth and development. However, its biochemical specificity of DNA binding, its genome-wide regulatory targets, and how these are affected by DNA methylation remain uncharacterized. To clarify the biochemistry underlying the regulatory function of AtWOX14, using the recently developed 5mC-incorporation strategy, this study performed SELEX and DAP-seq for AtWOX14 both in the presence and absence of cytosine methylation, systematically curated 65 motif models and identified 51,039 genomic binding sites for AtWOX14, and examined how 5mC affects DNA binding of AtWOX14 through bioinformatic analyses. Overall, 5mC represses the DNA binding of AtWOX14 monomers but facilitates the binding of its dimers, and the methylation effect on a cytosine's affinity to AtWOX14 is position-dependent. Notably, we found that the most preferred homodimeric configuration of AtWOX14 has changed from ER1 to ER0 upon methylation. This change has the potential to rewire the regulatory network downstream of AtWOX14, as suggested by the GO analyses and the strength changes in the DAP-seq peaks upon methylation. Therefore, this work comprehensively illustrates the specificity and targets of AtWOX14 and reports a previously unrecognized effect of DNA methylation on transcription factor binding.
Collapse
Affiliation(s)
- Dingkun Jiang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Xinfeng Zhang
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Lin Luo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Tian Li
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Hao Chen
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Nana Ma
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Lufeng Fu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Tian
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Fei Mao
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Peitao Lü
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Sanya 572024, China
| | - Honghong Guo
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| | - Fangjie Zhu
- College of Life Science, Haixia Institute of Science and Technology, National Engineering Research Center of JUNCAO, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.J.)
| |
Collapse
|
3
|
Zhang H, Zhu JK. Epigenetic gene regulation in plants and its potential applications in crop improvement. Nat Rev Mol Cell Biol 2025; 26:51-67. [PMID: 39192154 DOI: 10.1038/s41580-024-00769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
DNA methylation, also known as 5-methylcytosine, is an epigenetic modification that has crucial functions in plant growth, development and adaptation. The cellular DNA methylation level is tightly regulated by the combined action of DNA methyltransferases and demethylases. Protein complexes involved in the targeting and interpretation of DNA methylation have been identified, revealing intriguing roles of methyl-DNA binding proteins and molecular chaperones. Structural studies and in vitro reconstituted enzymatic systems have provided mechanistic insights into RNA-directed DNA methylation, the main pathway catalysing de novo methylation in plants. A better understanding of the regulatory mechanisms will enable locus-specific manipulation of the DNA methylation status. CRISPR-dCas9-based epigenome editing tools are being developed for this goal. Given that DNA methylation patterns can be stably transmitted through meiosis, and that large phenotypic variations can be contributed by epimutations, epigenome editing holds great promise in crop breeding by creating additional phenotypic variability on the same genetic material.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Genetics and Developmental Science, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
4
|
Yung WS, Wang Q, Chan LY, Wang Z, Huang M, Li MW, Wong FL, Lam HM. DNA Hypomethylation Is One of the Epigenetic Mechanisms Involved in Salt-Stress Priming in Soybean Seedlings. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39601237 DOI: 10.1111/pce.15297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024]
Abstract
Salt-stress priming enhances the tolerance of plants against subsequent exposure to a similar stress. Priming-induced transcriptomic reprogramming is mediated by multiple epigenetic mechanisms, the best known of which is histone modifications. However, not much is known about other epigenetic responses. In this study, salt-stress priming resulted in global DNA hypomethylation in the leaves of soybean seedlings. The DNA methyltransferase activities in primed seedlings were reduced, contributing to the overall DNA hypomethylation. Genes associated with the hypomethylated DNA regions in primed seedlings also showed a higher mean level of the active histone mark, histone 3 lysine 4 trimethylation (H3K4me3), and a lower mean level of the repressive histone mark, H3K4me2. Transcriptomic analyses supported that DNA hypomethylation played a role in fine-tuning the chromatin status in primed seedlings to potentiate gene expressions. Motif and transcriptional network analyses revealed that DNA hypomethylation may facilitate the responses mediated by key transcription factors in the abscisic acid (ABA)-dependent pathway. A pre-treatment using a DNA methyltransferase inhibitor, 5-azacytidine, could enhance salt tolerance in non-primed soybean seedlings, similar to the priming effect, suggesting the role of DNA hypomethylation in salt-stress priming. Overall, this research furthers our understanding of the epigenetic mechanisms involved in salt-stress priming in soybean.
Collapse
Affiliation(s)
- Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qianwen Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Long-Yiu Chan
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mingkun Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
5
|
Ahmad Z, Ramakrishnan M, Wang C, Rehman S, Shahzad A, Wei Q. Unravelling the role of WRKY transcription factors in leaf senescence: Genetic and molecular insights. J Adv Res 2024:S2090-1232(24)00428-4. [PMID: 39362333 DOI: 10.1016/j.jare.2024.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Leaf senescence (LS), the final phase in leaf development, is an important and precisely regulated process crucial for plant well-being and the redistribution of nutrients. It is intricately controlled by various regulatory factors, including WRKY transcription factors (TFs). WRKYs are one of the most significant plant TF families, and several of them are differentially regulated and important during LS. Recent research has enhanced our understanding of the structural and functional characteristics of WRKY TFs, providing insights into their regulatory roles. AIM OF REVIEW This review aims to elucidate the genetic and molecular mechanisms underlying the intricate regulatory networks associated with LS by investigating the role of WRKY TFs. We seek to highlight the importance of WRKY-mediated signaling pathways in understanding LS, plant evolution, and response to varying environmental conditions. KEY SCIENTIFIC CONCEPTS OF REVIEW WRKY TFs exhibit specific DNA-binding activity at the N-terminus and dynamic interactions of the intrinsically disordered domain at the C-terminus with various proteins. These WRKY TFs not only control the activity of other WRKYs, but also interact with either WRKYs or other TFs, thereby fine- tuning the expression of target genes. By unraveling the complex interactions and regulatory mechanisms of WRKY TFs, this review broadens our knowledge of the genetic and molecular basis of LS. Understanding WRKY-mediated signalling pathways provides crucial insights into specific aspects of plant development, such as stress-induced senescence, and offers potential strategies for improving crop resilience to environmental stresses like drought and pathogen attacks. By targeting these pathways, it may be possible to enhance specific productivity traits, such as increased yield stability under adverse conditions, thereby contributing to more reliable agricultural outputs.
Collapse
Affiliation(s)
- Zishan Ahmad
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Muthusamy Ramakrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Chunyue Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Shamsur Rehman
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang 261325, China
| | - Anwar Shahzad
- Plant Biotechnology Section, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Qiang Wei
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Centre for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
6
|
Frost JM, Rhee JH, Choi Y. Dynamics of DNA methylation and its impact on plant embryogenesis. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102593. [PMID: 38941722 DOI: 10.1016/j.pbi.2024.102593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/08/2024] [Accepted: 06/09/2024] [Indexed: 06/30/2024]
Abstract
Flowering plants exhibit unique DNA methylation dynamics during development. Particular attention can be focused on seed development and the embryo, which represents the starting point of the sporophytic life cycle. A build-up of CHH methylation is now recognized as highly characteristic of embryo development. This process is thought to occur in order to silence potentially harmful transposable element expression, though roles in promoting seed dormancy and dessication tolerance have also been revealed. Recent studies show that increased CHH methylation in embryos inhabits both novel loci, unmethylated elsewhere in the plant, as well as shared loci, exhibiting more dense methylation. The role of DNA methylation in cis-regulatory gene regulation in plants is less well established compared to mammals, and here we discuss both transposable element regulation and the potential role of DNA methylation in dynamic gene expression.
Collapse
Affiliation(s)
- Jennifer M Frost
- Medical and Molecular Genetics, King's College London, St Thomas' Street, London SE1 9RT, UK.
| | - Ji Hoon Rhee
- Department of Biological Sciences, Seoul National University, Seoul, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea
| | - Yeonhee Choi
- Department of Biological Sciences, Seoul National University, Seoul, South Korea; Research Center for Plant Plasticity, Seoul National University, Seoul, South Korea.
| |
Collapse
|
7
|
Zhang Z, Yang C, Xi J, Wang Y, Guo J, Liu Q, Liu Y, Ma Y, Zhang J, Ma F, Li C. The MdHSC70-MdWRKY75 module mediates basal apple thermotolerance by regulating the expression of heat shock factor genes. THE PLANT CELL 2024; 36:3631-3653. [PMID: 38865439 PMCID: PMC11371167 DOI: 10.1093/plcell/koae171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/12/2024] [Accepted: 05/18/2024] [Indexed: 06/14/2024]
Abstract
Heat stress severely restricts the growth and fruit development of apple (Malus domestica). Little is known about the involvement of WRKY proteins in the heat tolerance mechanism in apple. In this study, we found that the apple transcription factor (TF) MdWRKY75 responds to heat and positively regulates basal thermotolerance. Apple plants that overexpressed MdWRKY75 were more tolerant to heat stress while silencing MdWRKY75 caused the opposite phenotype. RNA-seq and reverse transcription quantitative PCR showed that heat shock factor genes (MdHsfs) could be the potential targets of MdWRKY75. Electrophoretic mobility shift, yeast one-hybrid, β-glucuronidase, and dual-luciferase assays showed that MdWRKY75 can bind to the promoters of MdHsf4, MdHsfB2a, and MdHsfA1d and activate their expression. Apple plants that overexpressed MdHsf4, MdHsfB2a, and MdHsfA1d exhibited heat tolerance and rescued the heat-sensitive phenotype of MdWRKY75-Ri3. In addition, apple heat shock cognate 70 (MdHSC70) interacts with MdWRKY75, as shown by yeast two-hybrid, split luciferase, bimolecular fluorescence complementation, and pull-down assays. MdHSC70 acts as a negative regulator of the heat stress response. Apple plants that overexpressed MdHSC70 were sensitive to heat, while virus-induced gene silencing of MdHSC70 enhanced heat tolerance. Additional research showed that MdHSC70 exhibits heat sensitivity by interacting with MdWRKY75 and inhibiting MdHsfs expression. In summary, we proposed a mechanism for the response of apple to heat that is mediated by the "MdHSC70/MdWRKY75-MdHsfs" molecular module, which enhances our understanding of apple thermotolerance regulated by WRKY TFs.
Collapse
Affiliation(s)
- Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Xi
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Qianwei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yusong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jing Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
8
|
Rehman S, Bahadur S, Xia W. Unlocking nature's secrets: The pivotal role of WRKY transcription factors in plant flowering and fruit development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112150. [PMID: 38857658 DOI: 10.1016/j.plantsci.2024.112150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
The WRKY transcription factor family is a key player in the regulatory mechanisms of flowering plants, significantly influencing both their biotic and abiotic response systems as well as being vital to numerous physiological and biological functions. Over the past two decades, the functionality of WRKY proteins has been the subject of extensive research in over 50 plant species, with a strong focus on their roles in responding to various stresses. Despite this extensive research, there remains a notable gap in comprehensive studies aimed at understanding how specific WRKY genes directly influence the timing of flowering and fruit development. This review offers an up-to-date look at WRKY family genes and provides insights into the key genes of WRKY to control flowering, enhance fruit ripening and secondary metabolism synthesis, and maintain fruit quality of various plants, including annuals, perennials, medicinal, and crop plants. The WRKY transcription factors serve as critical regulators within the transcriptional regulatory network, playing a crucial role in the precise enhancement of flowering processes. It is also involved in the up-regulation of fruit ripening was strongly demonstrated by combined transcriptomics and metabolomic investigation. Therefore, we speculated that the WRKY family is known to be a key regulator of flowering and fruiting in plants. This detailed insight will enable the identification of the series of molecular occurrences featuring WRKY proteins throughout the stages of flowering and fruiting.
Collapse
Affiliation(s)
- Shazia Rehman
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Saraj Bahadur
- College of Forestry, Hainan University, Haikou 570228, China; College of Life and Health Sciences, Hainan University, Haikou 570228, China.
| | - Wei Xia
- Sanya Nanfan Research Institution, Hainan University, Sanya, China; College of Tropical Crops, Hainan University, Haikou 570228, China.
| |
Collapse
|
9
|
Dong J, Zhao X, Song X, Wang S, Zhao X, Liang B, Long Y, Xing Z. Identification of Eleutherococcus senticosus NAC transcription factors and their mechanisms in mediating DNA methylation of EsFPS, EsSS, and EsSE promoters to regulate saponin synthesis. BMC Genomics 2024; 25:536. [PMID: 38816704 PMCID: PMC11140872 DOI: 10.1186/s12864-024-10442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The formation of pharmacologically active components in medicinal plants is significantly impacted by DNA methylation. However, the exact mechanisms through which DNA methylation regulates secondary metabolism remain incompletely understood. Research in model species has demonstrated that DNA methylation at the transcription factor binding site within functional gene promoters can impact the binding of transcription factors to target DNA, subsequently influencing gene expression. These findings suggest that the interaction between transcription factors and target DNA could be a significant mechanism through which DNA methylation regulates secondary metabolism in medicinal plants. RESULTS This research conducted a comprehensive analysis of the NAC family in E. senticosus, encompassing genome-wide characterization and functional analysis. A total of 117 EsNAC genes were identified and phylogenetically divided into 15 subfamilies. Tandem duplications and chromosome segment duplications were found to be the primary replication modes of these genes. Motif 2 was identified as the core conserved motif of the genes, and the cis-acting elements, gene structures, and expression patterns of each EsNAC gene were different. EsJUB1, EsNAC047, EsNAC098, and EsNAC005 were significantly associated with the DNA methylation ratio in E. senticosus. These four genes were located in the nucleus or cytoplasm and exhibited transcriptional self-activation activity. DNA methylation in EsFPS, EsSS, and EsSE promoters significantly reduced their activity. The methyl groups added to cytosine directly hindered the binding of the promoters to EsJUB1, EsNAC047, EsNAC098, and EsNAC005 and altered the expression of EsFPS, EsSS, and EsSE genes, eventually leading to changes in saponin synthesis in E. senticosus. CONCLUSIONS NAC transcription factors that are hindered from binding by methylated DNA are found in E. senticosus. The incapacity of these NACs to bind to the promoter of the methylated saponin synthase gene leads to subsequent alterations in gene expression and saponin synthesis. This research is the initial evidence showcasing the involvement of EsNAC in governing the impact of DNA methylation on saponin production in E. senticosus.
Collapse
Affiliation(s)
- Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xuelei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xin Song
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Xueying Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Baoxiang Liang
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China
| | - Yuehong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| | - Zhaobin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, 063210, Hebei, China.
| |
Collapse
|
10
|
Wang S, Zhao X, Li C, Dong J, Ma J, Long Y, Xing Z. DNA methylation regulates the secondary metabolism of saponins to improve the adaptability of Eleutherococcus senticosus during drought stress. BMC Genomics 2024; 25:330. [PMID: 38565995 PMCID: PMC10986080 DOI: 10.1186/s12864-024-10237-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/18/2024] [Indexed: 04/04/2024] Open
Abstract
Plant growth and development can be significantly impacted by drought stress. Plants will adjust the synthesis and accumulation of secondary metabolites to improve survival in times of water constraint. Simultaneously, drought stress can lead to modifications in the DNA methylation status of plants, and these modifications can directly impact gene expression and product synthesis by changing the DNA methylation status of functional genes involved in secondary metabolite synthesis. However, further research is needed to fully understand the extent to which DNA methylation modifies the content of secondary metabolites to mediate plants' responses to drought stress, as well as the underlying mechanisms involved. Our study found that in Eleutherococcus senticosus (E. senticosus), moderate water deprivation significantly decreased DNA methylation levels throughout the genome and at the promoters of EsFPS, EsSS, and EsSE. Transcription factors like EsMYB-r1, previously inhibited by DNA methylation, can re-bind to the EsFPS promotor region following DNA demethylation. This process promotes gene expression and, ultimately, saponin synthesis and accumulation. The increased saponin levels in E. senticosus acted as antioxidants, enhancing the plant's adaptability to drought stress.
Collapse
Affiliation(s)
- Shuo Wang
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - XueLei Zhao
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Chang Li
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - Jing Dong
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - JiaCheng Ma
- College of Life Sciences, North China University of Science and Technology, Tangshan, China
| | - YueHong Long
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| | - ZhaoBin Xing
- College of Life Sciences, North China University of Science and Technology, Tangshan, China.
| |
Collapse
|
11
|
Javed T, Gao SJ. WRKY transcription factors in plant defense. Trends Genet 2023; 39:787-801. [PMID: 37633768 DOI: 10.1016/j.tig.2023.07.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 08/28/2023]
Abstract
Environmental stressors caused by climate change are fundamental barriers to agricultural sustainability. Enhancing the stress resilience of crops is a key strategy in achieving global food security. Plants perceive adverse environmental conditions and initiate signaling pathways to activate precise responses that contribute to their survival. WRKY transcription factors (TFs) are essential players in several signaling cascades and regulatory networks that have crucial implications for defense responses in plants. This review summarizes advances in research concerning how WRKY TFs mediate various signaling cascades and metabolic adjustments as well as how epigenetic modifications involved in environmental stress responses in plants can modulate WRKYs and/or their downstream genes. Emerging research shows that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas)-mediated genome editing of WRKYs could be used to improve crop resilience.
Collapse
Affiliation(s)
- Talha Javed
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
12
|
Zhang Y, Xu J, Li R, Ge Y, Li Y, Li R. Plants' Response to Abiotic Stress: Mechanisms and Strategies. Int J Mol Sci 2023; 24:10915. [PMID: 37446089 DOI: 10.3390/ijms241310915] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Abiotic stress is the adverse effect of any abiotic factor on a plant in a given environment, impacting plants' growth and development. These stress factors, such as drought, salinity, and extreme temperatures, are often interrelated or in conjunction with each other. Plants have evolved mechanisms to sense these environmental challenges and make adjustments to their growth in order to survive and reproduce. In this review, we summarized recent studies on plant stress sensing and its regulatory mechanism, emphasizing signal transduction and regulation at multiple levels. Then we presented several strategies to improve plant growth under stress based on current progress. Finally, we discussed the implications of research on plant response to abiotic stresses for high-yielding crops and agricultural sustainability. Studying stress signaling and regulation is critical to understand abiotic stress responses in plants to generate stress-resistant crops and improve agricultural sustainability.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Jing Xu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Ruofan Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yanrui Ge
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Yufei Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|