1
|
Miao H, Zhang J, Zheng Y, Jia C, Hu Y, Wang J, Zhang J, Sun P, Jin Z, Zhou Y, Zheng S, Wang W, Rouard M, Xie J, Liu J. Shaping the future of bananas: advancing genetic trait regulation and breeding in the postgenomics era. HORTICULTURE RESEARCH 2025; 12:uhaf044. [PMID: 40236735 PMCID: PMC11997438 DOI: 10.1093/hr/uhaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 04/17/2025]
Abstract
Bananas (Musa spp.) are among the top-produced food crops, serving as a primary source of food for millions of people. Cultivated bananas originated primarily from the wild diploid species Musa acuminata (A genome) and Musa balbisiana (B genome) through intra- and interspecific hybridization and selections via somatic variation. Following the publication of complete A- and B-genome sequences, prospects for complementary studies on S- and T-genome traits, key gene identification for yield, ripening, quality, and stress resistance, and advances in molecular breeding have significantly expanded. In this review, latest research progress on banana A, B, S, and T genomes is briefly summarized, highlighting key advances in banana cytoplasmic inheritance, flower and fruit development, sterility, and parthenocarpy, postharvest ripening and quality regulation, and biotic and abiotic stress resistance associated with desirable economic traits. We provide updates on transgenic, gene editing, and molecular breeding. We also explore future directions for banana breeding and genetic improvement.
Collapse
Affiliation(s)
- Hongxia Miao
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jianbin Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yunke Zheng
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Caihong Jia
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yulin Hu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xiuhu Road 1, Mazhang District, Zhanjiang 524000, China
| | - Jingyi Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jing Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Peiguang Sun
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Zhiqiang Jin
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Yongfeng Zhou
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Pengfei Road 7, Dapengxin District, Shenzhen 518000, China
| | - Sijun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
- Bioversity International, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
| | - Wei Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier 34397, Cedex 5, France
| | - Jianghui Xie
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Juhua Liu
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| |
Collapse
|
2
|
Ma H, Hu L, Zhao J, He J, Wen A, Lv D, Xu Z, Lan W, Pan L. Comparative Analysis of Chilling Injury in Banana Fruit During Storage: Physicochemical and Microstructural Changes, and Early Optical-Based Nondestructive Identification. Foods 2025; 14:1319. [PMID: 40282721 PMCID: PMC12026267 DOI: 10.3390/foods14081319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Chilling injury (CI) during postharvest storage seriously impairs bananas' quality and marketability. This study systematically investigated CI mechanisms through physicochemical, microstructural, and optical analyses and innovatively developed a hyperspectral imaging (HSI)-based approach for early CI detection. Bananas stored at suboptimal (7 °C) and optimal (13 °C) conditions exhibited distinct physicochemical changes. CI progression was related to increased browning symptoms, an abnormal moisture redistribution (reduced pulp moisture content), and delayed softening. Microstructural analysis revealed membrane destabilization, cellular lysis, intercellular cavity formation, and inhibited starch hydrolysis under chilling stress. Hyperspectral microscope imaging (HMI) captured chilling-induced spectral variations (400-1000 nm), enabling the t-SNE-based clustering of CI-affected tissues. Machine learning models using first derivative (1-st)-processed spectra achieved a high accuracy. Both PLS-DA and RF had a 99% calibration accuracy and 98.5% prediction accuracy for CI classification. Notably, HSI detected spectral signatures of early CI (2 days post-chilling treatment) before visible symptoms, achieving a 100% identification accuracy with an optimized PLS-DA combined with 1-st processing. This study provides a theoretical basis for studying fruit CI mechanisms and a novel nondestructive optical method for early CI monitoring in postharvest supply chains.
Collapse
Affiliation(s)
- Hui Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.M.); (L.H.); (J.Z.); (J.H.); (A.W.)
| | - Lingmeng Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.M.); (L.H.); (J.Z.); (J.H.); (A.W.)
| | - Jingyuan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.M.); (L.H.); (J.Z.); (J.H.); (A.W.)
| | - Jie He
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.M.); (L.H.); (J.Z.); (J.H.); (A.W.)
| | - Anqi Wen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.M.); (L.H.); (J.Z.); (J.H.); (A.W.)
| | - Daizhu Lv
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.L.); (Z.X.)
| | - Zhi Xu
- Analysis and Testing Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (D.L.); (Z.X.)
| | - Weijie Lan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.M.); (L.H.); (J.Z.); (J.H.); (A.W.)
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.M.); (L.H.); (J.Z.); (J.H.); (A.W.)
- Sanya Institute of Nanjing Agricultural University, Sanya 572024, China
| |
Collapse
|
3
|
Zang N, Li X, Zhang Z, Liu W, Qi L, Yang Y, Sun Q, Yin Z, Wang A. Transcription factors PuNAC37/PuWRKY74 and E3 ubiquitin ligase PuRDUF2 inhibit volatile ester synthesis in 'Nanguo' pear. PLANT PHYSIOLOGY 2024; 197:kiae635. [PMID: 39607735 DOI: 10.1093/plphys/kiae635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
As major contributors to flavor in many fruit species, volatile esters are useful for investigating the regulation of the biosynthesis pathways of volatile aroma compounds in plants. Ethylene promotes the biosynthesis of volatile esters during fruit storage while accelerating fruit ripening; thus, the ethylene perception inhibitor 1-methylcyclopropene (1-MCP) is employed to prolong the shelf life of fruits. However, the mechanisms by which 1-MCP regulates volatiles synthesis remain unclear. In this study, we analyzed the pathway of 1-MCP-mediated volatile ester synthesis in 'Nanguo' pear (Pyrus ussuriensis). 1-MCP significantly decreased volatile ester synthesis during storage. Comparative transcriptome analysis showed that the genes encoding two transcription factors (PuNAC37 and PuWRKY74) and a RING-type E3 ubiquitin ligase that have a domain of unknown function (PuRDUF2) were expressed at high levels, whereas ALCOHOL ACYLTRANSFERASE 1 (PuAAT1), encoding an enzyme responsible for volatile ester synthesis, was expressed at low levels in 1-MCP-treated fruit. Moreover, PuNAC37 inhibited the expression of PuWRKY74 via transcriptional regulation, whereas PuNAC37 and PuWRKY74, after directly binding to the promoter of PuAAT1, synergistically inhibited its expression in 1-MCP-treated fruit. In addition, in vitro and in vivo ubiquitination experiments revealed that PuRDUF2 functions as an E3 ubiquitin ligase that ubiquitinates PuAAT1, causing its degradation via the 26S proteasome pathway following 1-MCP treatment. Subsequent PuAAT1 degradation resulted in a reduction of volatile esters during fruit storage. Our findings provide insights into the complex transcriptional regulation of volatile ester formation in 'Nanguo' pears and contribute to future research on AAT protein ubiquitination in other species.
Collapse
Affiliation(s)
- Nannan Zang
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaojing Li
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xinghai South Street 98, Xingcheng 125100, China
| | - Zhuoran Zhang
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Weiting Liu
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Liyong Qi
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xinghai South Street 98, Xingcheng 125100, China
| | - Yueming Yang
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qitian Sun
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Zepeng Yin
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology of Liaoning Province, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Guo Z, Liu H, Zheng S, Qi K, Xie Z, Wang X, Hong Y, Cui Y, Liu X, Gu C, Zhang SL. The transcription factor PbbHLH164 is destabilized by PbRAD23C/D.1 and mediates ethylene biosynthesis during pear fruit ripening. J Adv Res 2024; 66:119-131. [PMID: 38190939 PMCID: PMC11674782 DOI: 10.1016/j.jare.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/17/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
The phytohormone ethylene plays an important role in climacteric fruit ripening. However, the knowledge on molecular regulation of ethylene biosynthesis remains limited in pear fruit. Herein, a new basic helix-loop-helix transcription factor, PbbHLH164, was identified based on the transcriptome analysis of different developing and ripening fruits of two pear cultivars 'Sucui No. 1' and 'Cuiguan'. PbbHLH164 was more highly expressed in ripening fruit than in developing fruit and positively correlated with ethylene production in both cultivars. PbbHLH164 could directly bind to the promoter of 1-aminocyclopropane-1-carboxylate synthase, PbACS1b, to enhance the expression, leading to the increase of ethylene production and the acceleration of fruit ripening. Interestingly, PbbHLH164 physically interacted with an ubiquitin-like/ubiquitin-associated protein PbRAD23C/D.1, and the interaction of PbbHLH164 with PbRAD23C/D.1 attenuated the function of PbbHLH164 in enhancing the activity of the PbACS1b promoter. Notably, PbRAD23C/D.1 was involved in the degradation of PbbHLH164, and this degradation was inhibited by an ubiquitin proteasome inhibitor MG132. Different from PbbHLH164, PbRAD23C/D.1 was more highly expressed in developing fruit than in ripening fruit of both cultivars. These results suggest that the increase of ethylene production during pear fruit ripening results from the up-regulated expression of PbbHLH164 and the down-regulated expression of PbRAD23C/D.1. This information provided new insights into the molecular regulation of ethylene biosynthesis during fruit ripening.
Collapse
Affiliation(s)
- ZhiHua Guo
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hong Liu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - SiQi Zheng
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - KaiJie Qi
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - ZhiHua Xie
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - XuePing Wang
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - YeMei Hong
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - YanBo Cui
- Nanjing Ningcui Biological Seed Company Limited, Nanjing, Jiangsu, China
| | - Xiaoxiang Liu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Gu
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shao-Ling Zhang
- Jiangsu Engineering Research Centre for Pear, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
5
|
Huang Y, Zhu C, Hu Y, Yan S, Luo Z, Zou Y, Wu W, Zeng J. Integrated hormone and transcriptome profiles provide insight into the pericarp differential development mechanism between Mandarin 'Shatangju' and 'Chunhongtangju'. FRONTIERS IN PLANT SCIENCE 2024; 15:1461316. [PMID: 39450074 PMCID: PMC11499144 DOI: 10.3389/fpls.2024.1461316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Introduction Citrus reticulata cv. 'Chunhongtangju' was mutated from Mandarin 'Shatangju', which has been identified as a new citrus variety. Mandarin 'Chunhongtangju' fruits were late-ripening for about two months than Mandarin 'Shatangju'. Methods To understand the pericarp differential development mechanism in Mandarin 'Shatangju' (CK) and 'Chunhongtangju' (LM), hormones and transcriptome profiles of pericarps were performed in different development stages: Young fruit stage (CK1/LM1), Expansion and Turning color stage (CK2), Expansion stage (LM2), Turning color stage (LM3), and Maturity stage (CK3/LM4). Results In this study, the development of LM was significantly slower, and the maturity was significantly delayed. At the same stage, most hormones in Mandarin 'Chunhongtangju' pericarps were higher than that in 'Shatangju' such as gibberellin A24, cis(+)-12-oxophytodienoic acid, and L-phenylalanine. The deficiency of hormones in late-maturing pericarps was mainly manifested in ABA, 12-OHJA, MeSAG, and ABA-GE. Differences in transcriptome profiles between the two citrus varieties are primarily observed in energy metabolism, signal transduction such as MAPK signaling pathway and plant hormone signaling, and biosynthesis of secondary metabolites. After analyzing the hormones and transcriptome data, we found that the top genes and hormones, such as Cs_ont_5g020040 (transcription elongation factor, TFIIS), Cs_ont_7g021670 (BAG family molecular chaperone regulator 5, BAG5), Cs_ont_2g025760 (40S ribosomal protein S27, Rps27), 5-deoxystrigol, salicylic acid 2-O-β-glucosid, and gibberellin A24, contributed significantly to gene transcription and hormone synthesis. Discussion This study suggests that the variances of pericarp development between the two varieties are linked to variations in the transcription levels of genes associated with energy and secondary metabolism, signal transduction related genes. These findings expand our understanding of the complex transcriptional and hormonal regulatory hierarchy during pericarp development.
Collapse
Affiliation(s)
- Yongjing Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Congyi Zhu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Yibo Hu
- Deqing County Agricultural Technology Promotion Center, Zhaoqing, China
| | - Sanjiao Yan
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Zhimin Luo
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Yanping Zou
- Longmen County Agricultural and Rural Comprehensive Service Center, Huizhou, China
| | - Wen Wu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| | - Jiwu Zeng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Trees, Guangzhou, China
| |
Collapse
|
6
|
Zhang QY, Ma CN, Gu KD, Wang JH, Yu JQ, Liu B, Wang Y, He JX, Hu DG, Sun Q. The BTB-BACK-TAZ domain protein MdBT2 reduces drought resistance by weakening the positive regulatory effect of MdHDZ27 on apple drought tolerance via ubiquitination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:283-299. [PMID: 38606500 DOI: 10.1111/tpj.16761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Drought stress is one of the dominating challenges to the growth and productivity in crop plants. Elucidating the molecular mechanisms of plants responses to drought stress is fundamental to improve fruit quality. However, such molecular mechanisms are poorly understood in apple (Malus domestica Borkh.). In this study, we explored that the BTB-BACK-TAZ protein, MdBT2, negatively modulates the drought tolerance of apple plantlets. Moreover, we identified a novel Homeodomain-leucine zipper (HD-Zip) transcription factor, MdHDZ27, using a yeast two-hybrid (Y2H) screen with MdBT2 as the bait. Overexpression of MdHDZ27 in apple plantlets, calli, and tomato plantlets enhanced their drought tolerance by promoting the expression of drought tolerance-related genes [responsive to dehydration 29A (MdRD29A) and MdRD29B]. Biochemical analyses demonstrated that MdHDZ27 directly binds to and activates the promoters of MdRD29A and MdRD29B. Furthermore, in vitro and in vivo assays indicate that MdBT2 interacts with and ubiquitinates MdHDZ27, via the ubiquitin/26S proteasome pathway. This ubiquitination results in the degradation of MdHDZ27 and weakens the transcriptional activation of MdHDZ27 on MdRD29A and MdRD29B. Finally, a series of transgenic analyses in apple plantlets further clarified the role of the relationship between MdBT2 and MdHDZ27, as well as the effect of their interaction on drought resistance in apple plantlets. Collectively, our findings reveal a novel mechanism by which the MdBT2-MdHDZ27 regulatory module controls drought tolerance, which is of great significance for enhancing the drought resistance of apple and other plants.
Collapse
Affiliation(s)
- Quan-Yan Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Kai-Di Gu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jia-Hui Wang
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jian-Qiang Yu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Bo Liu
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Yun Wang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Jun-Xia He
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, Shandong, 276000, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
7
|
Chen H, Ji H, Huang W, Zhang Z, Zhu K, Zhu S, Chai L, Ye J, Deng X. Transcription factor CrWRKY42 coregulates chlorophyll degradation and carotenoid biosynthesis in citrus. PLANT PHYSIOLOGY 2024; 195:728-744. [PMID: 38394457 DOI: 10.1093/plphys/kiae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/21/2023] [Indexed: 02/25/2024]
Abstract
Chlorophyll degradation and carotenoid biosynthesis, which occur almost simultaneously during fruit ripening, are essential for the coloration and nutritional value of fruits. However, the synergistic regulation of these 2 processes at the transcriptional level remains largely unknown. In this study, we identified a WRKY transcription factor, CrWRKY42, from the transcriptome data of the yellowish bud mutant "Jinlegan" ([Citrus unshiu × C. sinensis] × C. reticulata) tangor and its wild-type "Shiranui" tangor, which was involved in the transcriptional regulation of both chlorophyll degradation and carotenoid biosynthesis pathways. CrWRKY42 directly bound to the promoter of β-carotene hydroxylase 1 (CrBCH1) and activated its expression. The overexpression and interference of CrWRKY42 in citrus calli demonstrated that CrWRKY42 promoted carotenoid accumulation by inducing the expression of multiple carotenoid biosynthetic genes. Further assays confirmed that CrWRKY42 also directly bound to and activated the promoters of the genes involved in carotenoid biosynthesis, including phytoene desaturase (CrPDS) and lycopene β-cyclase 2 (CrLCYB2). In addition, CrWRKY42 could bind to the promoters of NONYELLOW COLORING (CrNYC) and STAY-GREEN (CrSGR) and activate their expression, thus promoting chlorophyll degradation. The overexpression and silencing of CrWRKY42 in citrus fruits indicated that CrWRKY42 positively regulated chlorophyll degradation and carotenoid biosynthesis by synergistically activating the expression of genes involved in both pathways. Our data revealed that CrWRKY42 acts as a positive regulator of chlorophyll degradation and carotenoid biosynthesis to alter the conversion of citrus fruit color. Our findings provide insight into the complex transcriptional regulation of chlorophyll and carotenoid metabolism during fruit ripening.
Collapse
Affiliation(s)
- Hongyan Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Hubei Hongshan Laboratory, Wuhan 430070, P.R. China
| | - Huiyu Ji
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Wenkai Huang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Zhehui Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Kaijie Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Shiping Zhu
- National Citrus Engineering Research Center, Southwest University, Chongqing 400715, P.R. China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Hubei Hongshan Laboratory, Wuhan 430070, P.R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, P.R. China
- Hubei Hongshan Laboratory, Wuhan 430070, P.R. China
| |
Collapse
|
8
|
Wei W, Luo Q, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. E3 ubiquitin ligase MaRZF1 modulates high temperature-induced green ripening of banana by degrading MaSGR1. PLANT, CELL & ENVIRONMENT 2024; 47:1128-1140. [PMID: 38093692 DOI: 10.1111/pce.14782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/29/2023] [Indexed: 03/05/2024]
Abstract
High temperatures (>24°C) prevent the development of a yellow peel on bananas called green ripening, owing to the inhibition of chlorophyll degradation. This phenomenon greatly reduces the marketability of banana fruit, but the mechanisms underlining high temperature-repressed chlorophyll catabolism need to be elucidated. Herein, we found that the protein accumulation of chlorophyll catabolic enzyme MaSGR1 (STAY-GREEN 1) was reduced when bananas ripened at high temperature. Transiently expressing MaSGR1 in banana peel showed its positive involvement in promoting chlorophyll degradation under high temperature, thereby weakening green ripening phenotype. Using yeast two-hybrid screening, we identified a RING-type E3 ubiquitin ligase, MaRZF1 (RING Zinc Finger 1), as a putative MaSGR1-interacting protein. MaRZF1 interacts with and targets MaSGR1 for ubiquitination and degradation via the proteasome pathway. Moreover, upregulating MaRZF1 inhibited chlorophyll degradation, and attenuated MaSGR1-promoted chlorophyll degradation in bananas during green ripening, indicating that MaRZF1 negatively regulates chlorophyll catabolism via the degradation of MaSGR1. Taken together, MaRZF1 and MaSGR1 form a regulatory module to mediate chlorophyll degradation associated with high temperature-induced green ripening in bananas. Therefore, our findings expand the understanding of posttranslational regulatory mechanisms of temperature stress-caused fruit quality deterioration.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Qi Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Chao-Jie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Postharvest Science of Fruit and Vegetables, Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
9
|
Wu J, Cheng L, Espley R, Ma F, Malnoy M. Focus on fruit crops. PLANT PHYSIOLOGY 2023; 192:1659-1665. [PMID: 37148289 PMCID: PMC10315308 DOI: 10.1093/plphys/kiad259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Affiliation(s)
- Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Richard Espley
- New Zealand Institute for Plant and Food Research Limited, Mt. Albert Research Centre, Auckland 1025, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Edmund Mach Foundation, Via Edmund Mach 1, San Michele all’Adige 38098, Italy
| |
Collapse
|