1
|
Shan C, Dong K, Wen D, Cui Z, Cao J. A review of m 6A modification in plant development and potential quality improvement. Int J Biol Macromol 2025; 308:142597. [PMID: 40157682 DOI: 10.1016/j.ijbiomac.2025.142597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
N6-methyladenosine (m6A) represents the most prevalent internal modification observed in eukaryotic mRNAs. As a pivotal regulator of gene expression, m6A exerts influence over a number of processes, including splicing, transport, translation, degradation, and the stability of mRNAs. It thus plays a crucial role in plant development and resistance to biotic and abiotic stressors. The writers, erasers, and readers of m6A, which deposit, eliminate and decode this modification, are also of critical importance and have been identified and characterized in multiple plant species. The advent of next-generation sequencing (NGS) and m6A detection technologies has precipitated a surge in research on m6A in recent years. Extensive research has elucidated the specific roles of m6A in plants and its underlying molecular mechanisms, indicating significant potential for crop improvement. This review presents a comprehensive overview of recent studies on m6A and its regulatory proteins in plant development and stress tolerance. It highlights the potential applications of this modification and its writers, erasers, and readers for plant improvement, with a particular focus on leaf development, floral transition, trichome morphogenesis, fruit ripening, and resilience to pests, diseases and abiotic stresses.
Collapse
Affiliation(s)
- Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Zifan Cui
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
2
|
Hou N, He J, Bao C, Zhi F, Shen X, Liu Y, Li C, Fan T, Yang X, Chu B, Qin G, Liu Z, Mei C, Tan B, Feng J, Ma F, Malnoy M, Li X, Guan Q. MdDSK2a-Like-MdMTA Module Functions in Apple Cold Response via Regulating ROS Detoxification and Cell Wall Deposition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2504405. [PMID: 40278790 DOI: 10.1002/advs.202504405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Indexed: 04/26/2025]
Abstract
N6-methyladenosine (m6A) is the most abundant internal RNA modification in eukaryotic cells. Although the importance of its roles in mRNA metabolism, plant development, and stress responses has been well documented, regulation of its machinery is largely unknown in plants. Here, it is reported that MdMTA positively regulates cold tolerance. Combining MeRIP-seq and RNA-seq, it is found that MdMTA regulates the m6A and expression levels of cold-responsive genes under cold stress, including those involved in reactive oxygen species (ROS) detoxification and cell wall deposition. Further analysis reveals that MdMTA promotes ROS scavenging and the deposition of cellulose and hemicellulose by regulating the mRNA stability of the relevant genes under cold conditions. MdDSK2a-like, a ubiquitin receptor protein, mediates MdMTA degradation by the 26S ubiquitin-dependent proteasome and autophagy pathways. MdDSK2a-like negatively regulates cold tolerance by reducing the m6A levels of MdMTA target genes. Consistently, MdDSK2a-like inhibits ROS scavenging and the deposition of cellulose and hemicellulose under cold conditions. Genetic dissection shows that MdDSK2a-like acts upstream of MdMTA in cold response. The results not only reveal the degradation of MdMTA, but also illustrate the molecular mechanism of the MdDSK2a-like-MdMTA module in m6A modification and cold response.
Collapse
Affiliation(s)
- Nan Hou
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chana Bao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fang Zhi
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yu Liu
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Chaoshuo Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianle Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Baohua Chu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Gege Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zeyuan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Mei
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 63 Nongye Road, Zhengzhou, 450002, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mickael Malnoy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach, San Michele all'Adige, 38010, Italy
| | - Xuewei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Ma L, Tao X, Fahim AM, Xu Y, Zhang Y, Li S, Yang G, Pu Y, Wang W, Liu L, Fan T, Wu J, Sun W. Novel insights into the unique characterization of N6-methyladenosine RNA modification and regulating cold tolerance in winter Brassica rapa. Int J Biol Macromol 2025; 303:140460. [PMID: 39919396 DOI: 10.1016/j.ijbiomac.2025.140460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Abstract
N6-methyladenosine (m6A) is an mRNA modification considered essential in plants, and is a key player in gene regulation at the transcriptional and translational levels. In present study, we mapped Brassica rapa's whole transcriptome m6A profile under low-temperature stress in different cold tolerant varieties to elucidate the m6A methylation pattern. The distribution of m6A modifications changed significantly under low temperature stress. More 5'UTR m6A was deposited in strong cold-resistant varieties and responded positively to cold resistance by regulating mRNA expression abundance. The increase in m6A abundance was correlated with the increase in mRNA abundance after low temperature stress. ZAT12 might positively regulate its mRNA expression through m6A methylation. MYBC1 might be a negative regulator to cope with low-temperature stress. The hypothetical protein was involved in starch and sucrose metabolic pathways, and that the Low-quality protein was involved in the regulation of DNA binding, DNA-binding, transcription factor activity, and proline biosynthetic processes and leaf senescence pathways. In addition, a number of m6A methyltransferases and m6A demethylases play crucial roles in response to cold stress. These results revealed the critical role of m6A -modified genes under cold stress and provide new insights into the study of cold resistance in winter Brassica rapa.
Collapse
Affiliation(s)
- Li Ma
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Xiaolei Tao
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Abbas Muhammad Fahim
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanxia Xu
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zhang
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shiyi Li
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Gang Yang
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Pu
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wangtian Wang
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Lijun Liu
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Tingting Fan
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Junyan Wu
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| | - Wancang Sun
- State Key Laboratory of Aridland Crop Science/ College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
4
|
Wang H, Wang H, Jia Y, Jin X, Wu H, Yang S, Zhao L, Zhang H, Gu L. The RNA m 6A Methyltransferase PheMTA1 and PheMTA2 of Moso Bamboo Regulate Root Development and Resistance to Salt Stress in Plant. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40165397 DOI: 10.1111/pce.15494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/01/2025] [Accepted: 03/15/2025] [Indexed: 04/02/2025]
Abstract
As the most prevalent RNA modification in eukaryotes, N6-methyladenosine (m6A) plays a crucial role in regulating various biological processes in plants, including embryonic development and flowering. However, the function of m6A RNA methyltransferase in moso bamboo remains poorly understood. In this study, we identified two m6A methyltransferases in moso bamboo, PheMTA1 and PheMTA2. Overexpression of PheMTA1 and PheMTA2 significantly promoted root development and enhanced salt tolerance in rice. Using the HyperTRIBE method, we fused PheMTA1 and PheMTA2 with ADARcdE488Q and introduced them into rice. RNA sequencing (RNA-seq) of the overexpressing rice identified the target RNAs bound by PheMTA1 and PheMTA2. PheMTA1 and PheMTA2 bind to OsATM3 and OsSF3B1, which were involved in the development of root and salt resistance. Finally, we revealed the effects of transcription or alternative splicing on resistance-related genes like OsRS33, OsPRR73, OsAPX2 and OsHAP2E, which are associated with the observed phenotype. In conclusion, our study demonstrates that the m6A methyltransferases PheMTA1 and PheMTA2 from moso bamboo are involved in root development and enhance plant resistance to salt stress.
Collapse
Affiliation(s)
- Huihui Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huiyuan Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yue Jia
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoxia Jin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongwei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Siyu Yang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangzhen Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hangxiao Zhang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Basic Forestry and Proteomics Research Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Wu W, Wang X, Liang X, Huang X, Nawaz MA, Jing C, Fan Y, Niu J, Wu J, Feng X. Characterization of the m 6A Regulatory Gene Family in Phaseolus vulgaris L. and Functional Analysis of PvMTA in Response to BCMV Infection. Int J Mol Sci 2025; 26:2748. [PMID: 40141390 PMCID: PMC11942742 DOI: 10.3390/ijms26062748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/13/2025] [Accepted: 03/15/2025] [Indexed: 03/28/2025] Open
Abstract
Common bean (Phaseolus vulgaris L.) is known for its high protein, dietary fiber, and various trace element contents, making it a widely grown leguminous crop globally. The bean common mosaic virus (BCMV) poses a significant threat to leguminous crop production, causing substantial yield reductions when common beans are infected. Widely occurring in mRNA, the m6A modification is vital for maintaining mRNA stability, facilitating splicing, enabling nuclear export, supporting polyadenylation, and initiating translation. Recent studies have identified the m6A regulatory gene family in various plant species, and its ability to regulate plant virus infection has been confirmed. There is currently insufficient information regarding the m6A regulatory gene family in beans and how it responds to BCMV infection. Consequently, we carried out a genome-wide characterization of the m6A regulatory gene family in common bean, which led to the identification of 31 potential regulatory gene members associated with m6A. According to evolutionary analysis, the increase in the bean m6A regulatory gene family appears to be linked to either whole-genome duplication or segmental duplication events. Subsequent investigations into the expression levels of these genes throughout different phases of BCMV infection showed that all candidate genes responded to the infection with various changes in expression. Moreover, we characterized the methyltransferase activity of PvMTA and validated the interactive relationship between mRNA adenosine methyltransferase A (MTA) and mRNA adenosine methyltransferase B (MTB) in common beans. Through overexpressing and silencing PvMTA, we further ascertained that this particular gene has a detrimental impact on the regulation of BCMV infection. This research provides fresh perspectives on the molecular processes that govern the interaction between the common bean and BCMV and aids progress in molecular bean breeding.
Collapse
Affiliation(s)
- Wenyan Wu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Xinhua Wang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Xingrui Liang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Xinqi Huang
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Muhammad Amjad Nawaz
- Advanced Engineering School (Agrobiotek), National Research Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia;
- Centre for Research in the Field of Materials and Technologies, National Research Tomsk State University, Lenin Ave, 36, 634050 Tomsk, Tomsk Oblast, Russia
| | - Chenchen Jing
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Yaru Fan
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Jingya Niu
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xue Feng
- College of Plant Protection, Shanxi Agricultural University, Jinzhong 030801, China; (W.W.); (X.W.); (X.L.); (X.H.); (C.J.); (Y.F.); (J.N.)
| |
Collapse
|
6
|
Cai J, Shen L, Kang H, Xu T. RNA modifications in plant adaptation to abiotic stresses. PLANT COMMUNICATIONS 2025; 6:101229. [PMID: 39709520 PMCID: PMC11897461 DOI: 10.1016/j.xplc.2024.101229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/15/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
Epitranscriptomic chemical modifications of RNAs have emerged as potent regulatory mechanisms in the process of plant stress adaptation. Currently, over 170 distinct chemical modifications have been identified in mRNAs, tRNAs, rRNAs, microRNAs (miRNAs), and long noncoding RNAs (lncRNAs). Genetic and molecular studies have identified the genes responsible for addition and removal of chemical modifications from RNA molecules, which are known as "writers" and "erasers," respectively. N6-methyladenosine (m6A) is the most prevalent chemical modification identified in eukaryotic mRNAs. Recent studies have identified m6A writers and erasers across different plant species, including Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), cotton (Gossypium hirsutum), and tomato (Solanum lycopersicum). Accumulating discoveries have improved our understanding of the functions of RNA modifications in plant stress responses. This review highlights the latest research on RNA modification, emphasizing the biological and cellular roles of diverse chemical modifications of mRNAs, tRNAs, rRNAs, miRNAs, and lncRNAs in plant responses to environmental and hormonal signals. We also propose and discuss critical questions and future challenges for enhancing our understanding of the cellular and mechanistic roles of RNA modifications in plant stress responses. Integrating molecular insights into the regulatory roles of RNA modifications in stress responses with novel genome- and RNA-editing technologies will facilitate the breeding of stress-tolerant crops through precise engineering of RNA modifications.
Collapse
Affiliation(s)
- Jing Cai
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Ling Shen
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China
| | - Hunseung Kang
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, South Korea.
| | - Tao Xu
- Jiangsu International Joint Center of Genomics, Jiangsu Key Laboratory of Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| |
Collapse
|
7
|
Li X, Wang C, Chen Y, Liu W, Zhang M, Wang N, Xiang C, Gao L, Dong Y, Zhang W. m5C and m6A modifications regulate the mobility of pumpkin CHOLINE KINASE 1 mRNA under chilling stress. PLANT PHYSIOLOGY 2025; 197:kiae511. [PMID: 39325727 DOI: 10.1093/plphys/kiae511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024]
Abstract
Mobile messenger RNAs (mRNAs) serve as crucial long-distance signaling molecules, responding to environmental stimuli in plants. Although many mobile transcripts have been identified, only a limited subset has been characterized as functional long-distance signals within specific plant species, raising an intriguing question about whether the prevalence of species specificity in mobile transcripts implies a divergence in the mechanisms governing mRNA mobility across distinct plant species. Our study delved into the notable case of CHOLINE KINASE 1 (CK1), an extensively studied instance of mobile mRNAs regulated by a transfer RNA-like sequence (TLS) in Arabidopsis (Arabidopsis thaliana). We established an association between mRNA mobility and length, independent of TLS numbers. Notably, neither the mobile mRNAs nor the mechanisms underpinning their mobility proved to be conserved across different plant species. The exclusive mobility of pumpkin CK1 mRNA under chilling stress was pivotal in enhancing the chilling tolerance of cucumber/pumpkin heterografts. Distinct from the TLS-mediated mobility of AtCK1 mRNA, the mobility of CmoCK1 mRNA is orchestrated by both m5C and m6A modifications, adding dimensions to our understanding of mRNA transport mechanisms.
Collapse
Affiliation(s)
- Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Cuicui Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Ying Chen
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Miao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Naonao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Chenggang Xiang
- College of Life Science and Technology, Honghe University, Mengzi, Yunnan, 661100, China
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| | - Yihan Dong
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, 67084, France
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
8
|
Shan C, Dong K, Wen D, Ye Z, Hu F, Zekraoui M, Cao J. Writers, readers, and erasers of N6-Methyladenosine (m6A) methylomes in oilseed rape: identification, molecular evolution, and expression profiling. BMC PLANT BIOLOGY 2025; 25:147. [PMID: 39905321 PMCID: PMC11792417 DOI: 10.1186/s12870-025-06127-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND m6A RNA modifications are the most prevalent internal modifications in eukaryotic mRNAs and are crucial for plant growth and development, as well as for responses to biotic or abiotic stresses. The modification is catalyzed by writers, removed by erasers, and decoded by various m6A-binding proteins, which are readers. Brassica napus is a major oilseed crop. The dynamic regulation of m6A modifications by writers, erasers, and readers offers potential targets for improving the quality of this crop. RESULTS In this study, we identified 92 m6A-regulatory genes in B. napus, including 13 writers, 29 erasers, and 50 readers. A phylogenetic analysis revealed that they could be further divided into four, three, and two clades, respectively. The distribution of protein motifs and gene structures among members of the same clade exhibited notable similarity. During the course of evolution, whole genome duplication (WGD) and segmental duplication were the primary drivers of the expansion of m6A-related gene families. The genes were subjected to rigorous purification selection. Additionally, several sites under positive selection were identified in the proteins. RNA-seq and quantitative real-time PCR (qRT-PCR) expression analyses revealed that the identified Bnam6As exhibit tissue-specific expression patterns, as well as their expression patterns in response to various abiotic and biotic stresses. The 2000 bp sequence upstream of Bnam6As contained a number of cis-acting elements that regulate plant growth and environmental response. Furthermore, the protein interaction network revealed their interactions with a number of proteins of significant functional importance. CONCLUSION The identification of m6A modifiers in oilseed rape and their molecular evolution and expression profiling have revealed potential functions and molecular mechanisms of m6A, thus establishing a foundation for further functional validation and molecular breeding.
Collapse
Affiliation(s)
- Chaofan Shan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Kui Dong
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Dongyu Wen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Meryem Zekraoui
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
9
|
Li Y, Yin M, Wang J, Zhao X, Xu J, Wang W, Fu B. Epitranscriptome profiles reveal participation of the RNA methyltransferase gene OsMTA1 in rice seed germination and salt stress response. BMC PLANT BIOLOGY 2025; 25:115. [PMID: 39865266 PMCID: PMC11771074 DOI: 10.1186/s12870-025-06134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND RNA m6A methylation installed by RNA methyltransferases plays a crucial role in regulating plant growth and development and environmental stress responses. However, the underlying molecular mechanisms of m6A methylation involved in seed germination and stress responses are largely unknown. In the present study, we surveyed global m6A methylation in rice seed germination under salt stress and the control (no stress) using an osmta1 mutant and its wild type. RESULTS The knockout of OsMTA1 resulted in a decreased level of m6A methylation and delayed seed germination, together with increased oxidative damage in the osmta1-1 mutant, especially under salt stress, indicating that OsMTA1 performs a crucial function in rice seed germination and salt stress response. Comparative analysis of m6A profiling using methylated RNA immunoprecipitation sequencing revealed that a unique set of genes that functioned in seed germination, cell growth, and development, including OsbZIP78 and OsA8, were hypomethylated in osmta1-1 embryos and germinating seeds. Numerous genes involved in plant growth and stress response were hypomethylated in the osmta1-1 mutant during seed germination under salt stress. Further combined analysis of the m6A methylome and transcriptome revealed that the loss of function of OsMTA1 had a more complex impact on gene expression in osmta1-1. Several hypomethylated genes with a negative role in growth and development, such as OsHsfA7 and OsHDAC3, were highly up-regulated in the osmta1-1 mutant under the control condition. In contrast, several hypomethylated genes positively associated with stress response were down-regulated, whereas a different set of hypomethylated genes that functioned as negative regulators of growth and stress response were up-regulated in the osmta1-1 mutant under salt stress. These results further demonstrated that OsMTA1-mediated m6A methylation modulated rice seed germination and salt stress response by regulating transcription of a unique set of genes with diverse functions. CONCLUSION Our results reveal a crucial role for the m6A methyltransferase gene OsMTA1 in regulating rice seed germination and salt stress response, and provide candidate genes to assist in breeding new stress-tolerant rice varieties.
Collapse
Affiliation(s)
- Yingbo Li
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Ming Yin
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Juan Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Xiuqin Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China
| | - Wensheng Wang
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Binying Fu
- State Key Laboratory of Crop Gene Resources and Breeding/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, South Zhong-Guan-Cun Street 12#, Beijing, 100081, China.
| |
Collapse
|
10
|
Zheng H, Dang Y, Gao Y, Li S, Wu F, Zhang F, Wang X, Du X, Wang L, Song J, Sui N. An mRNA methylase and demethylase regulate sorghum salt tolerance by mediating N6-methyladenosine modification. PLANT PHYSIOLOGY 2024; 196:3048-3070. [PMID: 39405192 DOI: 10.1093/plphys/kiae529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 12/14/2024]
Abstract
N 6-methyladenosine (m6A) modification is a crucial and widespread molecular mechanism governing plant development and stress tolerance. The specific impact of m6A regulation on plants with inherently high salt tolerance remains unclear. Existing research primarily focuses on the overexpression or knockout of individual writer or eraser components to alter m6A levels. However, a comprehensive study simultaneously altering overall m6A modification levels within the same experiment is lacking. Such an investigation is essential to determine whether opposing changes in m6A modification levels exert entirely different effects on plant salt tolerance. In this study, we identified the major writer member mRNA adenosine methylase A (SbMTA) in sorghum (Sorghum bicolor) as critical for sorghum survival. The sbmta mutant exhibits a phenotype characterized by reduced overall m6A, developmental arrest, and, ultimately, lethality. Overexpression of SbMTA increased m6A levels and salt tolerance, while overexpression of the m6A eraser alkylated DNA repair protein AlkB homolog 10B (SbALKBH10B) in sorghum showed the opposite phenotype. Comparative analyses between sorghum with different m6A levels reveal that SbMTA- and SbALKBH10B-mediated m6A alterations significantly impact the stability and expression levels of genes related to the abscisic acid signaling pathway and growth under salt stress. In summary, this study unveils the intricate relationship between m6A modifications and salt tolerance in sorghum, providing valuable insights into how m6A modification levels on specific transcripts influence responses to salt stress.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yinping Gao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Simin Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - FengHui Wu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Fangning Zhang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xihua Du
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Jie Song
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| |
Collapse
|
11
|
Nguyen TKH, Kang H. Reading m 6A marks in mRNA: A potent mechanism of gene regulation in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2586-2599. [PMID: 39364713 PMCID: PMC11622538 DOI: 10.1111/jipb.13781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024]
Abstract
Modifications to RNA have recently been recognized as a pivotal regulator of gene expression in living organisms. More than 170 chemical modifications have been identified in RNAs, with N6-methyladenosine (m6A) being the most abundant modification in eukaryotic mRNAs. The addition and removal of m6A marks are catalyzed by methyltransferases (referred to as "writers") and demethylases (referred to as "erasers"), respectively. In addition, the m6A marks in mRNAs are recognized and interpreted by m6A-binding proteins (referred to as "readers"), which regulate the fate of mRNAs, including stability, splicing, transport, and translation. Therefore, exploring the mechanism underlying the m6A reader-mediated modulation of RNA metabolism is essential for a much deeper understanding of the epigenetic role of RNA modification in plants. Recent discoveries have improved our understanding of the functions of m6A readers in plant growth and development, stress response, and disease resistance. This review highlights the latest developments in m6A reader research, emphasizing the diverse RNA-binding domains crucial for m6A reader function and the biological and cellular roles of m6A readers in the plant response to developmental and environmental signals. Moreover, we propose and discuss the potential future research directions and challenges in identifying novel m6A readers and elucidating the cellular and mechanistic role of m6A readers in plants.
Collapse
Affiliation(s)
- Thi Kim Hang Nguyen
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju61186Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life SciencesChonnam National UniversityGwangju61186Korea
| |
Collapse
|
12
|
Ramadan E, Ahmed A, Naguib YW. Advances in mRNA LNP-Based Cancer Vaccines: Mechanisms, Formulation Aspects, Challenges, and Future Directions. J Pers Med 2024; 14:1092. [PMID: 39590584 PMCID: PMC11595619 DOI: 10.3390/jpm14111092] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
After the COVID-19 pandemic, mRNA-based vaccines have emerged as a revolutionary technology in immunization and vaccination. These vaccines have shown remarkable efficacy against the virus and opened up avenues for their possible application in other diseases. This has renewed interest and investment in mRNA vaccine research and development, attracting the scientific community to explore all its other applications beyond infectious diseases. Recently, researchers have focused on the possibility of adapting this vaccination approach to cancer immunotherapy. While there is a huge potential, challenges still remain in the design and optimization of the synthetic mRNA molecules and the lipid nanoparticle delivery system required to ensure the adequate elicitation of the immune response and the successful eradication of tumors. This review points out the basic mechanisms of mRNA-LNP vaccines in cancer immunotherapy and recent approaches in mRNA vaccine design. This review displays the current mRNA modifications and lipid nanoparticle components and how these factors affect vaccine efficacy. Furthermore, this review discusses the future directions and clinical applications of mRNA-LNP vaccines in cancer treatment.
Collapse
Affiliation(s)
- Eslam Ramadan
- Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, H-6720 Szeged, Hungary;
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ali Ahmed
- Department of Clinical Pharmacy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Youssef Wahib Naguib
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Hu J, Xu T, Kang H. Crosstalk between RNA m 6A modification and epigenetic factors in plant gene regulation. PLANT COMMUNICATIONS 2024; 5:101037. [PMID: 38971972 PMCID: PMC11573915 DOI: 10.1016/j.xplc.2024.101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant modification observed in eukaryotic mRNAs. Advances in transcriptome-wide m6A mapping and sequencing technologies have enabled the identification of several conserved motifs in plants, including the RRACH (R = A/G and H = A/C/U) and UGUAW (W = U or A) motifs. However, the mechanisms underlying deposition of m6A marks at specific positions in the conserved motifs of individual transcripts remain to be clarified. Evidence from plant and animal studies suggests that m6A writer or eraser components are recruited to specific genomic loci through interactions with particular transcription factors, 5-methylcytosine DNA methylation marks, and histone marks. In addition, recent studies in animal cells have shown that microRNAs play a role in depositing m6A marks at specific sites in transcripts through a base-pairing mechanism. m6A also affects the biogenesis and function of chromatin-associated regulatory RNAs and long noncoding RNAs. Although we have less of an understanding of the link between m6A modification and epigenetic factors in plants than in animals, recent progress in identifying the proteins that interact with m6A writer or eraser components has provided insights into the crosstalk between m6A modification and epigenetic factors, which plays a crucial role in transcript-specific methylation and regulation of m6A in plants.
Collapse
Affiliation(s)
- Jianzhong Hu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Tao Xu
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China.
| | - Hunseung Kang
- Jiangsu Key Laboratory of Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province 221116, China; Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
14
|
Xia Z, Zhang S, Guo H, Gao X, Hao K, Dong X, Guo J, Li J, Wang Z, An M, Wu Y, Zhou X. N 6-Methyladenosine RNA Modification Regulates Maize Resistance to Maize Chlorotic Mottle Virus Infection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21935-21945. [PMID: 39311423 DOI: 10.1021/acs.jafc.4c04832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Maize chlorotic mottle virus (MCMV) is one of the main viruses causing significant losses in maize. N6-methyladenosine (m6A) RNA modification has been proven to play important regulatory roles in plant development and stress response. In this study, we found that MCMV infection significantly up-regulated the m6A level in maize, and methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) were performed to investigate the distribution of m6A modified peaks and gene expression patterns in MCMV-infected maize plants. The results showed that 1325 differentially methylated genes (DMGs) and 47 differentially methylated and expressed genes (DMEGs) were identified and analyzed. Moreover, the results of virus-induced gene silencing (VIGS) assays showed that ZmECT18 and ZmGST31 were required for MCMV infection, while silencing of ZmMTC, ZmSCI1 or ZmTIP1 significantly promoted MCMV infection in maize. Our findings provided novel insights into the regulatory roles of m6A modification in maize response to MCMV infection.
Collapse
Affiliation(s)
- Zihao Xia
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Sijia Zhang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Huiyan Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Xinran Gao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Kaiqiang Hao
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Xue Dong
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Jinxiu Guo
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Jian Li
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Zhiping Wang
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Mengnan An
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Yuanhua Wu
- Liaoning Key Laboratory of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Major Agricultural Invasion Biological Monitoring and Control of Shenyang, Shenyang 110866, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
15
|
Furci L, Berthelier J, Saze H. RNA N6-adenine methylation dynamics impact Hyaloperonospora arabidopsidis resistance in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:745-753. [PMID: 38991559 PMCID: PMC11812051 DOI: 10.1093/plphys/kiae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/03/2024] [Accepted: 06/16/2024] [Indexed: 07/13/2024]
Abstract
In plants, epitranscriptomic mark N6-adenine methylation (m6A) is dynamically regulated in response to environmental cues. However, little is known about m6A dynamics under biotic stresses and their role in environmental adaptation. Additionally, current methodologies limit the investigation of m6A dynamics at single-nucleotide resolution on specific RNA molecules. Using Oxford Nanopore Technology direct RNA sequencing and a neural network model, we show transcript-specific dynamics of m6A modification at single-nucleotide resolution during Hyaloperonospora arabidopsidis (Hpa) infection in Arabidopsis (Arabidopsis thaliana). In wild-type seedlings, pathogen infection causes a significant reduction in global m6A ratios, which corresponds with the activation of m6A-modified transcripts. Defect of m6A deposition in the m6A mutant hakai-1 mimics m6A reduction from Hpa infection at ∼70% of sites, resulting in constitutive overexpression of basal defense genes and enhanced resistance against the pathogen. Our results demonstrate that m6A dynamics impact defense response against Hpa, providing a promising target for future crop improvement strategies.
Collapse
Affiliation(s)
- Leonardo Furci
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| | - Jérémy Berthelier
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| |
Collapse
|
16
|
He Y, Si Z, Mei G, Cheng Y, Zhang J, Jiang T, Chen J, Xiong H, Zhang T, Hu Y. N6-methyladenosine RNA modification regulates photoperiod sensitivity in cotton. PLANT PHYSIOLOGY 2024; 196:1095-1109. [PMID: 39109985 PMCID: PMC11444288 DOI: 10.1093/plphys/kiae371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/01/2024] [Indexed: 10/03/2024]
Abstract
The methylation of N6-methyladenosine (m6A) involves writers, erasers, and readers, acting synergistically in posttranscriptional regulation. These processes influence various biological processes, including plant floral transition. However, the specific role of m6A modifications in photoperiod sensitivity in cotton (Gossypium hirsutum) remains obscure. To elucidate this, in this study, we conducted transcriptome-wide m6A sequencing during critical flowering transition stages in the photoperiod-sensitive wild G. hirsutum var. yucatanense (yucatanense) and the photoperiod-insensitive cultivated cotton G. hirsutum acc. TM-1 (TM-1). Our results revealed significant variations in m6A methylation of 2 cotton varieties, with yucatanense exhibiting elevated m6A modification levels compared with TM-1 under long-day conditions. Notably, distinct m6A peaks between TM-1 and yucatanense correlated significantly with photoperiod sensitivity. Moreover, our study highlighted the role of the demethylase G. hirsutum ALKB homolog 5 (GhALKBH5) in modulating m6A modification levels. Silencing GhALKBH5 led to a decreased mRNA level of key photoperiodic flowering genes (GhADO3, GhAGL24, and GhFT1), resulting in delayed bud emergence and flowering. Reverse transcription quantitative PCR analyses confirmed that silencing GhADO3 and GhAGL24 significantly downregulated the expression of the floral integrator GhFT1. Collectively, our findings unveiled a transcriptional regulatory mechanism in which GhALKBH5-mediated m6A demethylation of crucial photoperiodic flowering transcripts modulated photoperiod sensitivity in cotton.
Collapse
Affiliation(s)
- Ying He
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Zhanfeng Si
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Gaofu Mei
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310014, China
| | - Yu Cheng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jun Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Tao Jiang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jiani Chen
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Huifang Xiong
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Tianzhen Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic Crops, Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Yan Hu
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
- Precision Breeding and Germplasm Innovation Team for Cotton and Economic Crops, Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
17
|
Zhao J, Yang T, Liu P, Liu H, Zhang H, Guo S, Liu X, Chen X, Chen M. Genome-Wide Identification of the Soybean AlkB Homologue Gene Family and Functional Characterization of GmALKBH10Bs as RNA m 6A Demethylases and Expression Patterns under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2491. [PMID: 39273973 PMCID: PMC11397283 DOI: 10.3390/plants13172491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Soybean (Glycine max (L.) Merr) is one of the most important crops worldwide, but its yield is vulnerable to abiotic stresses. In Arabidopsis, the AlkB homologue (ALKBH) family genes plays a crucial role in plant development and stress response. However, the identification and functions of its homologous genes in soybean remain obscured. Here, we identified a total of 22 ALKBH genes in soybean and classified them into seven subfamilies according to phylogenetic analysis. Gene duplication events among the family members and gene structure, conserved domains, and motifs of all candidate genes were analyzed. By comparing the changes in the m6A levels on mRNA from hair roots between soybean seedlings harboring the empty vector and those harboring the GmALKBH10B protein, we demonstrated that all four GmALKBH10B proteins are bona fide m6A RNA demethylases in vivo. Subcellular localization and expression patterns of the GmALKBH10B revealed that they might be functionally redundant. Furthermore, an analysis of cis-elements coupled with gene expression data demonstrated that GmALKBH10B subfamily genes, including GmALKBH10B1, GmALKBH10B2, GmALKBH10B3, and GmALKBH10B4, are likely involved in the cis-elements' response to various environmental stimuli. In summary, our study is the first to report the genome-wide identification of GmALKBH family genes in soybean and to determine the function of GmALKBH10B proteins as m6A RNA demethylases, providing insights into GmALKBH10B genes in response to abiotic stresses.
Collapse
Affiliation(s)
- Jie Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tengfeng Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Huijie Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Sichao Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoye Liu
- Department of Criminal Science and Technology, Nanjing Police University, Nanjing 210023, China
| | - Xiaoguang Chen
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingjia Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
18
|
Su D, Shu P, Hu N, Chen Y, Wu Y, Deng H, Du X, Zhang X, Wang R, Li H, Zeng Y, Li D, Xie Y, Li M, Hong Y, Liu K, Liu M. Dynamic m6A mRNA methylation reveals the involvement of AcALKBH10 in ripening-related quality regulation in kiwifruit. THE NEW PHYTOLOGIST 2024; 243:2265-2278. [PMID: 39056285 DOI: 10.1111/nph.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yuan Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xumeng Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ruochen Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Huajia Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dawei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan, 430074, Hubei, China
| | - Yue Xie
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Mingzhang Li
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Yiguo Hong
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
19
|
Cai Z, Tang Q, Song P, Tian E, Yang J, Jia G. The m6A reader ECT8 is an abiotic stress sensor that accelerates mRNA decay in Arabidopsis. THE PLANT CELL 2024; 36:2908-2926. [PMID: 38835286 PMCID: PMC11289641 DOI: 10.1093/plcell/koae149] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
N 6-methyladenosine (m6A) is the most abundant mRNA modification and plays diverse roles in eukaryotes, including plants. It regulates various processes, including plant growth, development, and responses to external or internal stress responses. However, the mechanisms underlying how m6A is related to environmental stresses in both mammals and plants remain elusive. Here, we identified EVOLUTIONARILY CONSERVED C-TERMINAL REGION 8 (ECT8) as an m6A reader protein and showed that its m6A-binding capability is required for salt stress responses in Arabidopsis (Arabidopsis thaliana). ECT8 accelerates the degradation of its target transcripts through direct interaction with the decapping protein DECAPPING 5 within processing bodies. We observed a significant increase in the ECT8 expression level under various environmental stresses. Using salt stress as a representative stressor, we found that the transcript and protein levels of ECT8 rise in response to salt stress. The increased abundance of ECT8 protein results in the enhanced binding capability to m6A-modified mRNAs, thereby accelerating their degradation, especially those of negative regulators of salt stress responses. Our results demonstrated that ECT8 acts as an abiotic stress sensor, facilitating mRNA decay, which is vital for maintaining transcriptome homeostasis and enhancing stress tolerance in plants. Our findings not only advance the understanding of epitranscriptomic gene regulation but also offer potential applications for breeding more resilient crops in the face of rapidly changing environmental conditions.
Collapse
Affiliation(s)
- Zhihe Cai
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qian Tang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Enlin Tian
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junbo Yang
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Advanced Center of RNA Biology, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Hardy EC, Balcerowicz M. Untranslated yet indispensable-UTRs act as key regulators in the environmental control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4314-4331. [PMID: 38394144 PMCID: PMC11263492 DOI: 10.1093/jxb/erae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
To survive and thrive in a dynamic environment, plants must continuously monitor their surroundings and adjust their development and physiology accordingly. Changes in gene expression underlie these developmental and physiological adjustments, and are traditionally attributed to widespread transcriptional reprogramming. Growing evidence, however, suggests that post-transcriptional mechanisms also play a vital role in tailoring gene expression to a plant's environment. Untranslated regions (UTRs) act as regulatory hubs for post-transcriptional control, harbouring cis-elements that affect an mRNA's processing, localization, translation, and stability, and thereby tune the abundance of the encoded protein. Here, we review recent advances made in understanding the critical function UTRs exert in the post-transcriptional control of gene expression in the context of a plant's abiotic environment. We summarize the molecular mechanisms at play, present examples of UTR-controlled signalling cascades, and discuss the potential that resides within UTRs to render plants more resilient to a changing climate.
Collapse
Affiliation(s)
- Emma C Hardy
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| | - Martin Balcerowicz
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, UK
| |
Collapse
|
21
|
Xiang Y, Zhang D, Li L, Xue YX, Zhang CY, Meng QF, Wang J, Tan XL, Li YL. Detection, distribution, and functions of RNA N 6-methyladenosine (m 6A) in plant development and environmental signal responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1429011. [PMID: 39081522 PMCID: PMC11286456 DOI: 10.3389/fpls.2024.1429011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The epitranscriptomic mark N 6-methyladenosine (m6A) is the most common type of messenger RNA (mRNA) post-transcriptional modification in eukaryotes. With the discovery of the demethylase FTO (FAT MASS AND OBESITY-ASSOCIATED PROTEIN) in Homo Sapiens, this modification has been proven to be dynamically reversible. With technological advances, research on m6A modification in plants also rapidly developed. m6A modification is widely distributed in plants, which is usually enriched near the stop codons and 3'-UTRs, and has conserved modification sequences. The related proteins of m6A modification mainly consist of three components: methyltransferases (writers), demethylases (erasers), and reading proteins (readers). m6A modification mainly regulates the growth and development of plants by modulating the RNA metabolic processes and playing an important role in their responses to environmental signals. In this review, we briefly outline the development of m6A modification detection techniques; comparatively analyze the distribution characteristics of m6A in plants; summarize the methyltransferases, demethylases, and binding proteins related to m6A; elaborate on how m6A modification functions in plant growth, development, and response to environmental signals; and provide a summary and outlook on the research of m6A in plants.
Collapse
|
22
|
Wang G, Li H, Ye C, He K, Liu S, Jiang B, Ge R, Gao B, Wei J, Zhao Y, Li A, Zhang D, Zhang J, He C. Quantitative profiling of m 6A at single base resolution across the life cycle of rice and Arabidopsis. Nat Commun 2024; 15:4881. [PMID: 38849358 PMCID: PMC11161662 DOI: 10.1038/s41467-024-48941-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
N6-methyladenosine (m6A) plays critical roles in regulating mRNA metabolism. However, comprehensive m6A methylomes in different plant tissues with single-base precision have yet to be reported. Here, we present transcriptome-wide m6A maps at single-base resolution in different tissues of rice and Arabidopsis using m6A-SAC-seq. Our analysis uncovers a total of 205,691 m6A sites distributed across 22,574 genes in rice, and 188,282 m6A sites across 19,984 genes in Arabidopsis. The evolutionarily conserved m6A sites in rice and Arabidopsis ortholog gene pairs are involved in controlling tissue development, photosynthesis and stress response. We observe an overall mRNA stabilization effect by 3' UTR m6A sites in certain plant tissues. Like in mammals, a positive correlation between the m6A level and the length of internal exons is also observed in plant mRNA, except for the last exon. Our data suggest an active m6A deposition process occurring near the stop codon in plant mRNA. In addition, the MTA-installed plant mRNA m6A sites correlate with both translation promotion and translation suppression, depicting a more complicated regulatory picture. Our results therefore provide in-depth resources for relating single-base resolution m6A sites with functions in plants and uncover a suppression-activation model controlling m6A biogenesis across species.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Haoxuan Li
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Kayla He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Shun Liu
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Bochen Jiang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Ruiqi Ge
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Boyang Gao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Yutao Zhao
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Aixuan Li
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University and School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA.
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, 60637, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, Chicago, IL, 60637, USA.
| |
Collapse
|
23
|
Liu H, Lin M, Wang H, Li X, Zhou D, Bi X, Zhang Y. N 6-methyladenosine analysis unveils key mechanisms underlying long-term salt stress tolerance in switchgrass (Panicum virgatum). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112023. [PMID: 38320658 DOI: 10.1016/j.plantsci.2024.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/15/2024] [Accepted: 02/01/2024] [Indexed: 02/08/2024]
Abstract
N6-methyladenosine (m6A) RNA modification is critical for plant growth, development, and environmental stress response. While short-term stress impacts on m6A are well-documented, the consequences of prolonged stress remain underexplored. This study conducts a thorough transcriptome-wide analysis of m6A modifications following 28-day exposure to 200 mM NaCl. We detected 11,149 differentially expressed genes (DEGs) and 12,936 differentially methylated m6A peaks, along with a global decrease in m6A levels. Notably, about 62% of m6A-modified DEGs, including demethylase genes like PvALKBH6_N, PvALKBH9_K, and PvALKBH10_N, showed increased expression and reduced m6A peaks, suggesting that decreased m6A methylation may enhance gene expression under salt stress. Consistent expression and methylation patterns were observed in key genes related to ion homeostasis (e.g., H+-ATPase 1, High-affinity K+transporter 5), antioxidant defense (Catalase 1/2, Copper/zinc superoxide dismutase 2, Glutathione synthetase 1), and osmotic regulation (delta 1-pyrroline-5-carboxylate synthase 2, Pyrroline-5-carboxylate reductase). These findings provide insights into the adaptive mechanisms of switchgrass under long-term salt stress and highlight the potential of regulating m6A modifications as a novel approach for crop breeding strategies focused on stress resistance.
Collapse
Affiliation(s)
- Huayue Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengzhuo Lin
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Hui Wang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Li
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Die Zhou
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaojing Bi
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Yunwei Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
24
|
Cai J, Hu J, Xu T, Kang H. FIONA1-mediated mRNA m 6 A methylation regulates the response of Arabidopsis to salt stress. PLANT, CELL & ENVIRONMENT 2024; 47:900-912. [PMID: 38193282 DOI: 10.1111/pce.14807] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/03/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
N6 -methyladenosine (m6 A) is an mRNA modification widely found in eukaryotes and plays a crucial role in plant development and stress responses. FIONA1 (FIO1) is a recently identified m6 A methyltransferase that regulates Arabidopsis (Arabidopsis thaliana) floral transition; however, its role in stress response remains unknown. In this study, we demonstrate that FIO1-mediated m6 A methylation plays a vital role in salt stress response in Arabidopsis. The loss-of-function fio1 mutant was sensitive to salt stress. Importantly, the complementation lines expressing the wild-type FIO1 exhibited the wild-type phenotype, whereas the complementation lines expressing the mutant FIO1m , in which two critical amino acid residues essential for methyltransferase activity were mutated, did not recover the wild-type phenotype under salt stress, indicating that the salt sensitivity is associated with FIO1 methyltransferase activity. Furthermore, FIO1-mediated m6 A methylation regulated ROS production and affected the transcript level of several salt stress-responsive genes via modulating their mRNA stability in an m6 A-dependent manner in response to salt stress. Importantly, FIO1 is associated with salt stress response by specifically targeting and differentially modulating several salt stress-responsive genes compared with other m6 A writer. Collectively, our findings highlight the molecular mechanism of FIO1-mediated m6 A methylation in the salt stress adaptation.
Collapse
Affiliation(s)
- Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Tao Xu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, South Korea
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
25
|
Lang X, Yu C, Shen M, Gu L, Qian Q, Zhou D, Tan J, Li Y, Peng X, Diao S, Deng Z, Ruan Z, Xu Z, Xing J, Li C, Wang R, Ding C, Cao Y, Liu Q. PRMD: an integrated database for plant RNA modifications. Nucleic Acids Res 2024; 52:D1597-D1613. [PMID: 37831097 PMCID: PMC10768107 DOI: 10.1093/nar/gkad851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/23/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023] Open
Abstract
The scope and function of RNA modifications in model plant systems have been extensively studied, resulting in the identification of an increasing number of novel RNA modifications in recent years. Researchers have gradually revealed that RNA modifications, especially N6-methyladenosine (m6A), which is one of the most abundant and commonly studied RNA modifications in plants, have important roles in physiological and pathological processes. These modifications alter the structure of RNA, which affects its molecular complementarity and binding to specific proteins, thereby resulting in various of physiological effects. The increasing interest in plant RNA modifications has necessitated research into RNA modifications and associated datasets. However, there is a lack of a convenient and integrated database with comprehensive annotations and intuitive visualization of plant RNA modifications. Here, we developed the Plant RNA Modification Database (PRMD; http://bioinformatics.sc.cn/PRMD and http://rnainformatics.org.cn/PRMD) to facilitate RNA modification research. This database contains information regarding 20 plant species and provides an intuitive interface for displaying information. Moreover, PRMD offers multiple tools, including RMlevelDiff, RMplantVar, RNAmodNet and Blast (for functional analyses), and mRNAbrowse, RNAlollipop, JBrowse and Integrative Genomics Viewer (for displaying data). Furthermore, PRMD is freely available, making it useful for the rapid development and promotion of research on plant RNA modifications.
Collapse
Affiliation(s)
- Xiaoqiang Lang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chunyan Yu
- Frontiers Science Center for Disease-related Molecular Network, Laboratory of Omics Technology and Bioinformatics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Mengyuan Shen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Lei Gu
- Epigenetics Laboratory, Max Planck Institute for Heart and Lung Research & Cardiopulmonary Institute (CPI). Parkstr.1 61231 Bad Nauheim Germany
| | - Qian Qian
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Degui Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Jiantao Tan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yiliang Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization/Guangdong Academy of Forestry, Guangzhou, Guangdong 510520, China
| | - Xin Peng
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Shu Diao
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Zhujun Deng
- Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhaohui Ruan
- Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, 510060, Guangzhou, China
| | - Zhi Xu
- Guangxi Key Laboratory of Images and Graphics Intelligent Processing, Guilin University of Electronics Technology, Guilin, 541004, China
| | - Junlian Xing
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chen Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Runfeng Wang
- Guangdong Provincial Key Laboratory of Crop Genetic Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Changjun Ding
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yi Cao
- Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, College of Life Science, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| |
Collapse
|
26
|
Amara U, Hu J, Park SJ, Kang H. ECT12, an YTH-domain protein, is a potential mRNA m 6A reader that affects abiotic stress responses by modulating mRNA stability in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108255. [PMID: 38071803 DOI: 10.1016/j.plaphy.2023.108255] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 02/15/2024]
Abstract
N6-methyladenosine (m6A), the most abundant modification found in eukaryotic mRNAs, is interpreted by m6A "readers," thus playing a crucial role in regulating RNA metabolism. The YT521-B homology-domain (YTHD) proteins, also known as EVOLUTIONARILY CONSERVED C-TERMINAL REGION (ECT), are recognized as m6A reader proteins in plants and animals. Among the 13 potential YTHD family proteins in Arabidopsis thaliana, the functions of only a few members are known. In this study, we determined the function of ECT12 (YTH11) as a potential m6A reader that plays a crucial role in response to abiotic stresses. The loss-of-function ect12 mutants showed no noticeable developmental defects under normal conditions but displayed hypersensitivity to salt or dehydration stress. The salt- or dehydration-hypersensitive phenotypes were correlated with altered levels of several m6A-modified stress-responsive transcripts. Notably, the increased or decreased transcript levels were associated with each transcript's reduced or enhanced decay, respectively. Electrophoretic mobility shift and RNA-immunoprecipitation assays showed that ECT12 binds to m6A-modified RNAs both in vitro and in planta, suggesting its role as an m6A reader. Collectively, these results indicate that the potential m6A reader ECT12 regulates the stability of m6A-modified RNA transcripts, thereby facilitating the response of Arabidopsis to abiotic stresses.
Collapse
Affiliation(s)
- Umme Amara
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Jianzhong Hu
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Su Jung Park
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
27
|
Jiang B, Zhong Z, Gu L, Zhang X, Wei J, Ye C, Lin G, Qu G, Xiang X, Wen C, Hummel M, Bailey-Serres J, Wang Q, He C, Wang X, Lin C. Light-induced LLPS of the CRY2/SPA1/FIO1 complex regulating mRNA methylation and chlorophyll homeostasis in Arabidopsis. NATURE PLANTS 2023; 9:2042-2058. [PMID: 38066290 PMCID: PMC10724061 DOI: 10.1038/s41477-023-01580-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/30/2023] [Indexed: 12/17/2023]
Abstract
Light regulates chlorophyll homeostasis and photosynthesis via various molecular mechanisms in plants. The light regulation of transcription and protein stability of nuclear-encoded chloroplast proteins have been extensively studied, but how light regulation of mRNA metabolism affects abundance of nuclear-encoded chloroplast proteins and chlorophyll homeostasis remains poorly understood. Here we show that the blue light receptor cryptochrome 2 (CRY2) and the METTL16-type m6A writer FIONA1 (FIO1) regulate chlorophyll homeostasis in response to blue light. In contrast to the CRY2-mediated photo-condensation of the mRNA adenosine methylase (MTA), photoexcited CRY2 co-condenses FIO1 only in the presence of the CRY2-signalling protein SUPPRESSOR of PHYTOCHROME A (SPA1). CRY2 and SPA1 synergistically or additively activate the RNA methyltransferase activity of FIO1 in vitro, whereas CRY2 and FIO1, but not MTA, are required for the light-induced methylation and translation of the mRNAs encoding multiple chlorophyll homeostasis regulators in vivo. Our study demonstrates that the light-induced liquid-liquid phase separation of the photoreceptor/writer complexes is commonly involved in the regulation of photoresponsive changes of mRNA methylation, whereas the different photo-condensation mechanisms of the CRY/FIO1 and CRY/MTA complexes explain, at least partially, the writer-specific functions in plant photomorphogenesis.
Collapse
Affiliation(s)
- Bochen Jiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
- Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Zhenhui Zhong
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xueyang Zhang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangbo Wei
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Guifang Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Gaoping Qu
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xian Xiang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenjin Wen
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maureen Hummel
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA, USA
| | - Qin Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chuan He
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Xu Wang
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, China.
| | - Chentao Lin
- Basic Forestry and Plant Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China.
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Vicente AM, Manavski N, Rohn PT, Schmid LM, Garcia-Molina A, Leister D, Seydel C, Bellin L, Möhlmann T, Ammann G, Kaiser S, Meurer J. The plant cytosolic m 6A RNA methylome stabilizes photosynthesis in the cold. PLANT COMMUNICATIONS 2023; 4:100634. [PMID: 37287225 PMCID: PMC10721483 DOI: 10.1016/j.xplc.2023.100634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/10/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023]
Abstract
The sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes. Chloroplast dysfunctions, particularly those induced by the oxidative stress-inducing norflurazon in a largely GENOME UNCOUPLED-independent manner, triggered retrograde signals to remodel chloroplast-associated epitranscriptomic expression patterns. N6-methyladenosine (m6A) is known as the most prevalent RNA modification and impacts numerous developmental and physiological functions in living organisms. During cold treatment, expression of components of the primary nuclear m6A methyltransferase complex was upregulated, accompanied by a significant increase in cellular m6A mRNA marks. In the cold, the presence of FIP37, a core component of the writer complex, played an important role in positive regulation of thylakoid structure, photosynthetic functions, and accumulation of photosystem I, the Cytb6f complex, cyclic electron transport proteins, and Curvature Thylakoid1 but not that of photosystem II components and the chloroplast ATP synthase. Downregulation of FIP37 affected abundance, polysomal loading, and translation of cytosolic transcripts related to photosynthesis in the cold, suggesting m6A-dependent translational regulation of chloroplast functions. In summary, we identified multifaceted roles of the cellular m6A RNA methylome in coping with cold; these were predominantly associated with chloroplasts and served to stabilize photosynthesis.
Collapse
Affiliation(s)
- Alexandre Magno Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Paul Torben Rohn
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Lisa-Marie Schmid
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Charlotte Seydel
- Plant Development, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany
| | - Leo Bellin
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Torsten Möhlmann
- Plant Physiology, Faculty of Biology, University of Kaiserslautern, Erwin-Schrödinger-Street, 7, 67663 Kaiserslautern, Germany
| | - Gregor Ammann
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Stefanie Kaiser
- Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
29
|
Dhingra Y, Gupta S, Gupta V, Agarwal M, Katiyar-Agarwal S. The emerging role of epitranscriptome in shaping stress responses in plants. PLANT CELL REPORTS 2023; 42:1531-1555. [PMID: 37481775 DOI: 10.1007/s00299-023-03046-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
KEY MESSAGE RNA modifications and editing changes constitute 'epitranscriptome' and are crucial in regulating the development and stress response in plants. Exploration of the epitranscriptome and associated machinery would facilitate the engineering of stress tolerance in crops. RNA editing and modifications post-transcriptionally decorate almost all classes of cellular RNAs, including tRNAs, rRNAs, snRNAs, lncRNAs and mRNAs, with more than 170 known modifications, among which m6A, Ψ, m5C, 8-OHG and C-to-U editing are the most abundant. Together, these modifications constitute the "epitranscriptome", and contribute to changes in several RNA attributes, thus providing an additional structural and functional diversification to the "cellular messages" and adding another layer of gene regulation in organisms, including plants. Numerous evidences suggest that RNA modifications have a widespread impact on plant development as well as in regulating the response of plants to abiotic and biotic stresses. High-throughput sequencing studies demonstrate that the landscapes of m6A, m5C, Am, Cm, C-to-U, U-to-G, and A-to-I editing are remarkably dynamic during stress conditions in plants. GO analysis of transcripts enriched in Ψ, m6A and m5C modifications have identified bonafide components of stress regulatory pathways. Furthermore, significant alterations in the expression pattern of genes encoding writers, readers, and erasers of certain modifications have been documented when plants are grown in challenging environments. Notably, manipulating the expression levels of a few components of RNA editing machinery markedly influenced the stress tolerance in plants. We provide updated information on the current understanding on the contribution of RNA modifications in shaping the stress responses in plants. Unraveling of the epitranscriptome has opened new avenues for designing crops with enhanced productivity and stress resilience in view of global climate change.
Collapse
Affiliation(s)
- Yashika Dhingra
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Shitij Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, Bern, Switzerland
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Manu Agarwal
- Department of Botany, University of Delhi North Campus, Delhi, 110007, India
| | - Surekha Katiyar-Agarwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
30
|
Li J, Pang Q, Yan X. Unique Features of the m 6A Methylome and Its Response to Salt Stress in the Roots of Sugar Beet ( Beta vulgaris). Int J Mol Sci 2023; 24:11659. [PMID: 37511417 PMCID: PMC10380635 DOI: 10.3390/ijms241411659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Salt is one of the most important environmental factors in crop growth and development. N6-methyladenosine (m6A) is an epigenetic modification that regulates plant-environment interaction at transcriptional and translational levels. Sugar beet is a salt-tolerant sugar-yielding crop, but how m6A modification affects its response to salt stress remains unknown. In this study, m6A-seq was used to explore the role of m6A modification in response to salt stress in sugar beet (Beta vulgaris). Transcriptome-wide m6A methylation profiles and physiological responses to high salinity were investigated in beet roots. After treatment with 300 mM NaCl, the activities of peroxidase and catalase, the root activity, and the contents of Na+, K+, and Ca2+ in the roots were significantly affected by salt stress. Compared with the control plants, 6904 differentially expressed genes (DEGs) and 566 differentially methylated peaks (DMPs) were identified. Association analysis revealed that 243 DEGs contained DMP, and 80% of these DEGs had expression patterns that were negatively correlated with the extent of m6A modification. Further analysis verified that m6A methylation may regulate the expression of some genes by controlling their mRNA stability. Functional analysis revealed that m6A modifications primarily affect the expression of genes involved in energy metabolism, transport, signal transduction, transcription factors, and cell wall organization. This study provides evidence that a post-transcriptional regulatory mechanism mediates gene expression during salt stress by affecting the stability of mRNA in the root.
Collapse
Affiliation(s)
- Junliang Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
- Post-Doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
| | - Qiuying Pang
- Post-Doctoral Research Stations, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, Wenzhou 325035, China
| |
Collapse
|
31
|
Song P, Wei L, Chen Z, Cai Z, Lu Q, Wang C, Tian E, Jia G. m 6A readers ECT2/ECT3/ECT4 enhance mRNA stability through direct recruitment of the poly(A) binding proteins in Arabidopsis. Genome Biol 2023; 24:103. [PMID: 37122016 PMCID: PMC10150487 DOI: 10.1186/s13059-023-02947-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/20/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND RNA N6-methyladenosine (m6A) modification is critical for plant growth and crop yield. m6A reader proteins can recognize m6A modifications to facilitate the functions of m6A in gene regulation. ECT2, ECT3, and ECT4 are m6A readers that are known to redundantly regulate trichome branching and leaf growth, but their molecular functions remain unclear. RESULTS Here, we show that ECT2, ECT3, and ECT4 directly interact with each other in the cytoplasm and perform genetically redundant functions in abscisic acid (ABA) response regulation during seed germination and post-germination growth. We reveal that ECT2/ECT3/ECT4 promote the stabilization of their targeted m6A-modified mRNAs, but have no function in alternative polyadenylation and translation. We find that ECT2 directly interacts with the poly(A) binding proteins, PAB2 and PAB4, and maintains the stabilization of m6A-modified mRNAs. Disruption of ECT2/ECT3/ECT4 destabilizes mRNAs of ABA signaling-related genes, thereby promoting the accumulation of ABI5 and leading to ABA hypersensitivity. CONCLUSION Our study reveals a unified functional model of m6A mediated by m6A readers in plants. In this model, ECT2/ECT3/ECT4 promote stabilization of their target mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Peizhe Song
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Lianhuan Wei
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zixin Chen
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Zhihe Cai
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Qiang Lu
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Chunling Wang
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Enlin Tian
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Beijing, 100871, China.
| |
Collapse
|
32
|
Zhang L, Zhang Y, Liu J, Li H, Liu B, Zhao T. N6-methyladenosine mRNA methylation is important for the light response in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1153840. [PMID: 37082338 PMCID: PMC10110966 DOI: 10.3389/fpls.2023.1153840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is the most prevalent and abundant modification in eukaryotic mRNA and posttranscriptionally modulates the transcriptome at almost all stages of mRNA metabolism. In plants, m6A is crucial for embryonic-phase growth, flowering time control, microspore generation and fruit maturation. However, the role of m6A in plant responses to light, the most important environmental stimulus, remains unexplored. Here, we profile the m6A transcriptome of Williams 82, a soybean cultivar, and reveal that m6A is highly conserved and plays an important role in the response to light stimuli in soybean. Similar to the case in Arabidopsis, m6A in soybean is enriched not only around the stop codon and within the 3'UTR but also around the start codon. Moreover, genes with methylation occurring in the 3'UTR have higher expression levels and are more prone to alternative splicing. The core genes in the light signaling pathway, GmSPA1a, GmPRR5e and GmBIC2b, undergo changes in methylation modification and transcription levels in response to light. KEGG pathway analysis revealed that differentially expressed genes with differential m6A peaks were involved in the "photosynthesis" and "circadian rhythm" pathways. Our results highlight the important role played by epitranscriptomic mRNA methylation in the light response in soybean and provide a solid basis for determining the functional role of light on RNA m6A modification in this plant.
Collapse
|