1
|
Besten M, Hendriksz M, Michels L, Charrier B, Smakowska-Luzan E, Weijers D, Borst JW, Sprakel J. CarboTag: a modular approach for live and functional imaging of plant cell walls. Nat Methods 2025:10.1038/s41592-025-02677-4. [PMID: 40312511 DOI: 10.1038/s41592-025-02677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/07/2025] [Indexed: 05/03/2025]
Abstract
Plant cells are contained within a rigid network of cell walls. Cell walls serve as a structural material and a crucial signaling hub vital to all aspects of the plant life cycle. However, many features of the cell wall remain enigmatic, as it has been challenging to map its functional properties in live plants at subcellular resolution. Here, we introduce CarboTag, a modular toolbox for live functional imaging of plant walls. CarboTag uses a small molecular motif, a pyridine boronic acid, that directs its cargo to the cell wall. We designed a suite of cell wall imaging probes based on CarboTag in various colors for multiplexing. Additionally, we developed new functional reporters for live quantitative imaging of key cell wall characteristics: network porosity, cell wall pH and the presence of reactive oxygen species. CarboTag paves the way for dynamic and quantitative mapping of cell wall responses at subcellular resolution.
Collapse
Affiliation(s)
- Maarten Besten
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Milan Hendriksz
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Lucile Michels
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Bénédicte Charrier
- Institute of Function Genomics in Lyon (IGFL), UMR5242, ENS de Lyon, CNRS, UCBL, Lyon, France
| | - Elwira Smakowska-Luzan
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Jan Willem Borst
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
2
|
Roberts EM, Yuan K, Chaves AM, Pierce ET, Cresswell R, Dupree R, Yu X, Blanton RL, Wu SZ, Bezanilla M, Dupree P, Haigler CH, Roberts AW. An alternate route for cellulose microfibril biosynthesis in plants. SCIENCE ADVANCES 2024; 10:eadr5188. [PMID: 39671498 PMCID: PMC11641006 DOI: 10.1126/sciadv.adr5188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/08/2024] [Indexed: 12/15/2024]
Abstract
Similar to cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize β-1,4-glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown whether they form membrane complexes in vivo or produce microfibrillar cellulose. We produced viable CESA-deficient mutants of the moss Physcomitrium patens to investigate CSLD function without interfering CESA activity. Microscopy and spectroscopy showed that CESA-deficient mutants synthesize cellulose microfibrils that are indistinguishable from those in vascular plants. Correspondingly, freeze-fracture electron microscopy revealed rosette-shaped particle assemblies in the plasma membrane that are indistinguishable from CESA-containing rosette cellulose synthesis complexes (CSCs). Our data show that proteins other than CESAs, most likely CSLDs, produce cellulose microfibrils in P. patens protonemal filaments. The data suggest that the specialized roles of CSLDs in cytokinesis and tip growth are based on differential expression and different interactions with microtubules and possibly Ca2+, rather than structural differences in the microfibrils they produce.
Collapse
Affiliation(s)
- Eric M. Roberts
- Department of Biology, Rhode Island College, Providence, RI 02908, USA
| | - Kai Yuan
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Arielle M. Chaves
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Ethan T. Pierce
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Ray Dupree
- Department of Physics, University of Warwick, Coventry CV4 7AL, UK
| | - Xiaolan Yu
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Richard L. Blanton
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Shu-Zon Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Candace H. Haigler
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Alison W. Roberts
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| |
Collapse
|
3
|
Zhai K, Rhodes J, Zipfel C. A peptide-receptor module links cell wall integrity sensing to pattern-triggered immunity. NATURE PLANTS 2024; 10:2027-2037. [PMID: 39482527 DOI: 10.1038/s41477-024-01840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Plants employ cell-surface receptors to perceive non- or altered-self, including the integrity of their cell wall. Here we identify a specific ligand-receptor module responsive to cell wall damage that potentiates immunity in Arabidopsis. Disruption of cell wall integrity by inhibition of cellulose biosynthesis promotes pattern-triggered immunity transcriptionally in a manner dependent on the receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2). Notably, while MIK2 can perceive peptides of the large SERINE RICH ENDOGENOUS PEPTIDE family, a single member of this family, SCOOP18, is transcriptionally induced upon cell wall damage and is required for subsequent responses such as lignification and immunity potentiation. Collectively, our results identify the SCOOP18-MIK2 ligand-receptor module as an important central hub, connecting plant cell wall integrity sensing with immunity.
Collapse
Affiliation(s)
- Keran Zhai
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland
| | - Jack Rhodes
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cyril Zipfel
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, Zurich, Switzerland.
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
4
|
Broad RC, Ogden M, Dutta A, Dracatos PM, Whelan J, Persson S, Khan GA. The fnr-like mutants confer isoxaben tolerance by initiating mitochondrial retrograde signalling. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3000-3011. [PMID: 38935864 PMCID: PMC11500984 DOI: 10.1111/pbi.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/29/2024]
Abstract
Isoxaben is a pre-emergent herbicide used to control broadleaf weeds. While the phytotoxic mechanism is not completely understood, isoxaben interferes with cellulose synthesis. Certain mutations in cellulose synthase complex proteins can confer isoxaben tolerance; however, these mutations can cause compromised cellulose synthesis and perturbed plant growth, rendering them unsuitable as herbicide tolerance traits. We conducted a genetic screen to identify new genes associated with isoxaben tolerance by screening a selection of Arabidopsis thaliana T-DNA mutants. We found that mutations in a FERREDOXIN-NADP(+) OXIDOREDUCTASE-LIKE (FNRL) gene enhanced tolerance to isoxaben, exhibited as a reduction in primary root stunting, reactive oxygen species accumulation and ectopic lignification. The fnrl mutant did not exhibit a reduction in cellulose levels following exposure to isoxaben, indicating that FNRL operates upstream of isoxaben-induced cellulose inhibition. In line with these results, transcriptomic analysis revealed a highly reduced response to isoxaben treatment in fnrl mutant roots. The fnrl mutants displayed constitutively induced mitochondrial retrograde signalling, and the observed isoxaben tolerance is partially dependent on the transcription factor ANAC017, a key regulator of mitochondrial retrograde signalling. Moreover, FNRL is highly conserved across all plant lineages, implying conservation of its function. Notably, fnrl mutants did not show a growth penalty in shoots, making FNRL a promising target for biotechnological applications in breeding isoxaben tolerance in crops.
Collapse
Affiliation(s)
- Ronan C. Broad
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityBundooraVictoriaAustralia
| | - Michael Ogden
- Department of Plant & Environmental Sciences, Copenhagen Plant Science CenterUniversity of CopenhagenFrederiksberg CDenmark
| | - Arka Dutta
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityBundooraVictoriaAustralia
| | - Peter M. Dracatos
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityBundooraVictoriaAustralia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityBundooraVictoriaAustralia
- College of Life ScienceZhejiang UniversityHangzhouChina
| | - Staffan Persson
- Department of Plant & Environmental Sciences, Copenhagen Plant Science CenterUniversity of CopenhagenFrederiksberg CDenmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ghazanfar Abbas Khan
- Department of Animal, Plant and Soil Sciences, School of Agriculture, Biomedicine and EnvironmentLa Trobe UniversityBundooraVictoriaAustralia
- School of Life and Environmental SciencesDeakin UniversityWaurn PondsVictoriaAustralia
| |
Collapse
|
5
|
Hoffmann N, Mohammad E, McFarlane HE. Disrupting cell wall integrity impacts endomembrane trafficking to promote secretion over endocytic trafficking. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3731-3747. [PMID: 38676707 PMCID: PMC11194303 DOI: 10.1093/jxb/erae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
The plant cell wall provides a strong yet flexible barrier to protect cells from the external environment. Modifications of the cell wall, either during development or under stress conditions, can induce cell wall integrity responses and ultimately lead to alterations in gene expression, hormone production, and cell wall composition. These changes in cell wall composition presumably require remodelling of the secretory pathway to facilitate synthesis and secretion of cell wall components and cell wall synthesis/remodelling enzymes from the Golgi apparatus. Here, we used a combination of live-cell confocal imaging and transmission electron microscopy to examine the short-term and constitutive impact of isoxaben, which reduces cellulose biosynthesis, and Driselase, a cocktail of cell-wall-degrading fungal enzymes, on cellular processes during cell wall integrity responses in Arabidopsis. We show that both treatments altered organelle morphology and triggered rebalancing of the secretory pathway to promote secretion while reducing endocytic trafficking. The actin cytoskeleton was less dynamic following cell wall modification, and organelle movement was reduced. These results demonstrate active remodelling of the endomembrane system and actin cytoskeleton following changes to the cell wall.
Collapse
Affiliation(s)
- Natalie Hoffmann
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | - Eskandar Mohammad
- Department of Cell & Systems Biology, University of Toronto, M5S 3B2Canada
| | | |
Collapse
|
6
|
Molina A, Jordá L, Torres MÁ, Martín-Dacal M, Berlanga DJ, Fernández-Calvo P, Gómez-Rubio E, Martín-Santamaría S. Plant cell wall-mediated disease resistance: Current understanding and future perspectives. MOLECULAR PLANT 2024; 17:699-724. [PMID: 38594902 DOI: 10.1016/j.molp.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024]
Abstract
Beyond their function as structural barriers, plant cell walls are essential elements for the adaptation of plants to environmental conditions. Cell walls are dynamic structures whose composition and integrity can be altered in response to environmental challenges and developmental cues. These wall changes are perceived by plant sensors/receptors to trigger adaptative responses during development and upon stress perception. Plant cell wall damage caused by pathogen infection, wounding, or other stresses leads to the release of wall molecules, such as carbohydrates (glycans), that function as damage-associated molecular patterns (DAMPs). DAMPs are perceived by the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs) to activate pattern-triggered immunity (PTI) and disease resistance. Similarly, glycans released from the walls and extracellular layers of microorganisms interacting with plants are recognized as microbe-associated molecular patterns (MAMPs) by specific ECD-PRRs triggering PTI responses. The number of oligosaccharides DAMPs/MAMPs identified that are perceived by plants has increased in recent years. However, the structural mechanisms underlying glycan recognition by plant PRRs remain limited. Currently, this knowledge is mainly focused on receptors of the LysM-PRR family, which are involved in the perception of various molecules, such as chitooligosaccharides from fungi and lipo-chitooligosaccharides (i.e., Nod/MYC factors from bacteria and mycorrhiza, respectively) that trigger differential physiological responses. Nevertheless, additional families of plant PRRs have recently been implicated in oligosaccharide/polysaccharide recognition. These include receptor kinases (RKs) with leucine-rich repeat and Malectin domains in their ECDs (LRR-MAL RKs), Catharanthus roseus RECEPTOR-LIKE KINASE 1-LIKE group (CrRLK1L) with Malectin-like domains in their ECDs, as well as wall-associated kinases, lectin-RKs, and LRR-extensins. The characterization of structural basis of glycans recognition by these new plant receptors will shed light on their similarities with those of mammalians involved in glycan perception. The gained knowledge holds the potential to facilitate the development of sustainable, glycan-based crop protection solutions.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain.
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Elena Gómez-Rubio
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Sonsoles Martín-Santamaría
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
7
|
Geitmann A, Bacic A(T. Focus on cell walls. PLANT PHYSIOLOGY 2023; 194:1-4. [PMID: 37819051 PMCID: PMC10756750 DOI: 10.1093/plphys/kiad537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023]
Affiliation(s)
- Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Antony (Tony) Bacic
- La Trobe Institute for Sustainable Agriculture & Food, Department of Animal, Plant and Soil Science, La Trobe University, Bundoora, Victoria 3086, Australia
| |
Collapse
|