1
|
Jeong KH, Son HG, Kim S, Ryu JH, Lee S. Exploring the Relationship Between Different Pain Patterns and Depressive Symptom Among Older Koreans: Using Latent Growth Model. Psychiatry Investig 2025; 22:382-388. [PMID: 40262787 PMCID: PMC12022785 DOI: 10.30773/pi.2024.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/24/2024] [Accepted: 12/04/2024] [Indexed: 04/24/2025] Open
Abstract
OBJECTIVE The purpose of this study is to identify the types of pain changes that affect older Koreans, as well as their effects on depressive symptom. METHODS We analyzed the Korean Longitudinal Study of Aging data collected from 2010 to 2018. A data of total of 1,359 participants, aged 65 or older were used to estimate the change in pain. A latent growth model and growth mixture modeling were performed to estimate the overall change in pain and to categorize the types of pain changes. RESULTS The pain changes of older adults were classified into two categories: low-stable and high increasing. The depressive symptom showed a stronger relationship among the high-increasing type of pain than the low-stable type. The high-increasing type had a higher percentage of females, lower income, relatively low educational attainment, and a higher percentage of rural residents than the low-stable type. CONCLUSION The significance of this study is that it reiterated the importance of early pain diagnosis and intervention by identifying the types of pain changes in older adults and analyzing their effects on depressive symptoms. Therefore, it is especially important to pay attention to interventions that are designed to help vulnerable groups with a high risk of pain obtain effective pain management.
Collapse
Affiliation(s)
- Kyu-Hyoung Jeong
- Department of Social Welfare, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hye-Gyeong Son
- College of Nursing, Kosin University, Busan, Republic of Korea
| | - Sunghee Kim
- Interdisciplinary Graduate Program in Social Welfare Policy, Yonsei University, Seoul, Republic of Korea
| | - Ju Hyun Ryu
- Interdisciplinary Graduate Program in Social Welfare Policy, Yonsei University, Seoul, Republic of Korea
| | - Seoyoon Lee
- Department of Health Policy and Management, School of Public Health, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Grundtner S, Sondermann JR, Xian F, Malzl D, Segelcke D, Pogatzki-Zahn EM, Menche J, Gómez-Varela D, Schmidt M. Deep proteomics and network pharmacology reveal sex- and age-shared neuropathic pain signatures in mouse dorsal root ganglia. Pharmacol Res 2025; 211:107552. [PMID: 39694124 DOI: 10.1016/j.phrs.2024.107552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Our understanding of how sex and age influence chronic pain at the molecular level is still limited with wide-reaching consequences for adolescent patients. Here, we leveraged deep proteome profiling of mouse dorsal root ganglia (DRG) from adolescent (4-week-old) and adult (12-week-old) male and female mice to investigate the establishment of neuropathic pain in the spared nerve injury (SNI)-model in parallel. We quantified over 12,000 proteins, including notable ion channels involved in pain, highlighting the sensitivity of our approach. Differential expression revealed sex- and age-dependent proteome changes upon nerve injury. In contrast to most previous studies, our comprehensive dataset enabled us to determine differentially expressed proteins (DEPs), which were shared between male and female mice of both age groups. Among these, the vast majority (94 %) were also expressed and, in part, altered in human DRG of neuropathic pain patients, indicating evolutionary conservation. Proteome signatures represented numerous targets of FDA-approved drugs comprising both (i) known pain therapeutics (e.g. Pregabalin and opioids) and, importantly, (ii) compounds with high potential for future re-purposing, e.g. Ptprc-modulators and Epoetins. Protein network and multidimensional analysis uncovered distinct hubs of sex- and age-shared biological pathways impacted by neuropathic pain, such as neuronal activity and synaptic function, DNA-damage, and neuroimmune interactions. Taken together, our results capture the complexity of nerve injury-associated DRG alterations in mice at the network level, moving beyond single-candidate studies. Consequently, we provide an innovative resource of the molecular landscape of neuropathic pain, enabling novel opportunities for translational pain research and network-based drug discovery.
Collapse
Affiliation(s)
- Sabrina Grundtner
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Julia R Sondermann
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Feng Xian
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Daniel Malzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Daniel Segelcke
- Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Germany
| | - Esther M Pogatzki-Zahn
- Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Muenster, Germany
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria; Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria; Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria; Faculty of Mathematics, University of Vienna, Vienna, Austria
| | - David Gómez-Varela
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Manuela Schmidt
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Gautam M, Yamada A, Yamada AI, Wu Q, Kridsada K, Ling J, Yu H, Dong P, Ma M, Gu J, Luo W. Distinct local and global functions of mouse Aβ low-threshold mechanoreceptors in mechanical nociception. Nat Commun 2024; 15:2911. [PMID: 38575590 PMCID: PMC10995180 DOI: 10.1038/s41467-024-47245-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
The roles of Aβ low-threshold mechanoreceptors (LTMRs) in transmitting mechanical hyperalgesia and in alleviating chronic pain have been of great interest but remain contentious. Here we utilized intersectional genetic tools, optogenetics, and high-speed imaging to specifically examine functions of SplitCre labeled mouse Aβ-LTMRs in this regard. Genetic ablation of SplitCre-Aβ-LTMRs increased mechanical nociception but not thermosensation in both acute and chronic inflammatory pain conditions, indicating a modality-specific role in gating mechanical nociception. Local optogenetic activation of SplitCre-Aβ-LTMRs triggered nociception after tissue inflammation, whereas their broad activation at the dorsal column still alleviated mechanical hypersensitivity of chronic inflammation. Taking all data into consideration, we propose a model, in which Aβ-LTMRs play distinctive local and global roles in transmitting or alleviating mechanical hyperalgesia of chronic pain, respectively. Our model suggests a strategy of global activation plus local inhibition of Aβ-LTMRs for treating mechanical hyperalgesia.
Collapse
Affiliation(s)
- Mayank Gautam
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Akihiro Yamada
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ayaka I Yamada
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Qinxue Wu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kim Kridsada
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jennifer Ling
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter Dong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jianguo Gu
- Department of Anesthesiology and Perioperative Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Zerriouh M, De Clifford-Faugère G, Nguena Nguefack HL, Pagé MG, Guénette L, Blais L, Lacasse A. Pain relief and associated factors: a cross-sectional observational web-based study in a Quebec cohort of persons living with chronic pain. FRONTIERS IN PAIN RESEARCH 2024; 5:1306479. [PMID: 38560482 PMCID: PMC10978597 DOI: 10.3389/fpain.2024.1306479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Objectives Randomized clinical trials are used to evaluate the efficacy of various pain treatments individually, while a limited number of observational studies have portrayed the overall relief experienced by persons living with chronic pain. This study aimed to describe pain relief in real-world clinical settings and to identify associated factors. Methods This exploratory web-based cross-sectional study used data from 1,419 persons recruited in the community. Overall pain relief brought by treatments used by participants was assessed using a 0%-100% scale (10-unit increments). Results A total of 18.2% of participants reported minimal pain relief (0%-20%), 60.0% moderate to substantial pain relief (30%-60%), and 21.8% extensive pain relief (70%-100%). Multivariable multinomial regression analysis revealed factors significantly associated with greater pain relief, including reporting a stressful event as circumstances surrounding the onset of pain, living with pain for ≥10 years, milder pain intensity, less catastrophic thinking, use of prescribed pain medications, use of nonpharmacological pain treatments, access to a trusted healthcare professional, higher general health scores, and polypharmacy. Factors associated with lower pain relief included surgery as circumstances surrounding pain onset, use of over-the-counter pain medications, and severe psychological distress. Discussion In this community sample of persons living with chronic pain, 8 out of 10 persons reported experiencing at least moderate relief with their treatment. The analysis has enabled us to explore potential modifiable factors as opportunities for improving the well-being of persons living with chronic pain.
Collapse
Affiliation(s)
- Meriem Zerriouh
- Département des Sciences de la Santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada
| | - Gwenaelle De Clifford-Faugère
- Département des Sciences de la Santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada
| | - Hermine Lore Nguena Nguefack
- Département des Sciences de la Santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada
| | - M. Gabrielle Pagé
- Centre de Recherche, Centre Hospitalier de l’Université de Montréal (CHUM), Montréal, QC, Canada
- Département d’Anesthésiologie et de Médecine de la Douleur, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Line Guénette
- Faculté de Pharmacie, Université Laval, Quebec City, QC, Canada
- Centre de Recherche, Centre Hospitalier Universitaire (CHU) de Québec—Université Laval, Axe Santé des Populations et Pratiques Optimales en Santé, Quebec City, QC, Canada
| | - Lucie Blais
- Faculté de Pharmacie, Université de Montréal, Montréal, QC, Canada
| | - Anaïs Lacasse
- Département des Sciences de la Santé, Université du Québec en Abitibi-Témiscamingue (UQAT), Rouyn-Noranda, QC, Canada
| |
Collapse
|
5
|
Rech J, Schett G, Tufan A, Kuemmerle-Deschner JB, Özen S, Tascilar K, Geck L, Krickau T, Cohen E, Welzel T, Kuehn M, Vetterli M. Patient Experiences and Challenges in the Management of Autoinflammatory Diseases-Data from the International FMF & AID Global Association Survey. J Clin Med 2024; 13:1199. [PMID: 38592017 PMCID: PMC10931825 DOI: 10.3390/jcm13051199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Autoinflammatory diseases (AIDs) are rare, mostly genetic diseases that affect the innate immune system and are associated with inflammatory symptoms. Both paediatric and adult patients face daily challenges related to their disease, diagnosis and subsequent treatment. For this reason, a survey was developed in collaboration between the FMF & AID Global Association and the Erlangen Center for Periodic Systemic Autoinflammatory Diseases. METHODS The aim of the survey was to collect the personal assessment of affected patients with regard to their current status in terms of diagnostic timeframes, the interpretation of genetic tests, the number of misdiagnoses, and pain and fatigue despite treatment. RESULTS In total, data from 1043 AID patients (829 adults and 214 children/adolescents) from 52 countries were collected and analyzed. Familial Mediterranean fever (FMF) (521/50%) and Behçet's disease (311/30%) were the most frequently reported diseases. The average time to diagnosis was 3 years for children/adolescents and 14 years for adults. Prior to the diagnosis of autoinflammatory disease, patients received several misdiagnoses, including psychosomatic disorders. The vast majority of patients reported that genetic testing was available (92%), but only 69% were tested. A total of 217 patients reported that no increase in acute-phase reactants was detected during their disease episodes. The intensity of pain and fatigue was measured in AID patients and found to be high. A total of 88% of respondents received treatment again, while 8% reported no treatment. CONCLUSIONS AID patients, particularly adults, suffer from significant delays in diagnosis, misdiagnosis, and a variety of symptoms, including pain and fatigue. Based on the results presented, raising awareness of these diseases in the wider medical community is crucial to improving patient care and quality of life.
Collapse
Affiliation(s)
- Jürgen Rech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (G.S.); (K.T.); (L.G.)
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Center for Rare Diseases Erlangen (ZSEER), Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (G.S.); (K.T.); (L.G.)
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Center for Rare Diseases Erlangen (ZSEER), Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Abdurrahman Tufan
- Division of Rheumatology, Department of Internal Medicine, Gazi University Ankara, 06560 Ankara, Turkey;
| | - Jasmin B. Kuemmerle-Deschner
- Division of Pediatric Rheumatology, Autoinflammation Reference Center Tübingen, Department of Pediatrics, University Hospital Tübingen, 72016 Tübingen, Germany;
| | - Seza Özen
- Department of Pediatric Rheumatology, Hacettepe University, 06100 Ankara, Turkey;
| | - Koray Tascilar
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (G.S.); (K.T.); (L.G.)
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Center for Rare Diseases Erlangen (ZSEER), Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Leonie Geck
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany; (G.S.); (K.T.); (L.G.)
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Center for Rare Diseases Erlangen (ZSEER), Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Tobias Krickau
- Deutsches Zentrum Immuntherapie, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany;
- Center for Rare Diseases Erlangen (ZSEER), Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Department of Paediatrics, Friedrich-Alexander University (FAU), Erlangen-Nürnberg and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Ellen Cohen
- FMF & AID Global Association, 8306 Zurich, Switzerland; (E.C.); (M.V.)
| | - Tatjana Welzel
- Pediatric Rheumatology, University Children’s Hospital Basel (UKBB), University of Basel, 4001 Basel, Switzerland;
| | | | - Malena Vetterli
- FMF & AID Global Association, 8306 Zurich, Switzerland; (E.C.); (M.V.)
| |
Collapse
|
6
|
Giordano R, Ghafouri B, Arendt-Nielsen L, Petersen KKS. Inflammatory biomarkers in patients with painful knee osteoarthritis: exploring the potential link to chronic postoperative pain after total knee arthroplasty-a secondary analysis. Pain 2024; 165:337-346. [PMID: 37703399 DOI: 10.1097/j.pain.0000000000003042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/19/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Total knee arthroplasty (TKA) is the end-stage treatment of knee osteoarthritis (OA), and approximately 20% of patients experience chronic postoperative pain. Studies indicate that inflammatory biomarkers might be associated with pain in OA and potentially linked to the development of chronic postoperative pain after TKA. This study aimed to (1) evaluate preoperative serum levels of inflammatory biomarkers in patients with OA and healthy control subjects, (2) investigate preoperative differences of inflammatory biomarker profiles in subgroups of patients, and (3) compare subgroups of patients with and without postoperative pain 12 months after surgery. Serum samples from patients with OA scheduled for TKA (n = 127) and healthy participants (n = 39) were analyzed. Patients completed the Knee-injury-and-Osteoarthritis-Outcome-Score (KOOS) questionnaire and rated their clinical pain intensity using a visual analog scale (VAS) before and 12 months after TKA. Hierarchical cluster analysis and Orthogonal Partial Least Squares Discriminant Analysis were used to compare groups (patients vs control subjects) and to identify subgroups of patients in relation to postoperative outcomes. Difference in preoperative and postoperative VAS and KOOS scores were compared across subgroups. Twelve inflammatory markers were differentially expressed in patients when compared with control subjects. Cluster analysis identified 2 subgroups of patients with 23 proteins being significantly different ( P < 0.01). The 12-months postoperative VAS and KOOS scores were significantly different between subgroups of patients ( P < 0.05). This study identified differences in specific inflammatory biomarker profiles when comparing patients with OA and control subjects. Cluster analysis identified 2 subgroups of patients with OA, with one subgroup demonstrating comparatively worse 12-month postoperative pain intensity and function scores.
Collapse
Affiliation(s)
- Rocco Giordano
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Department of Oral and Maxillofacial Surgery, Aalborg University Hospital, Aalborg, Denmark
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Lars Arendt-Nielsen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
- Department of Gastroenterology & Hepatology, Mech-Sense, Aalborg University Hospital, Aalborg, Denmark
- Steno Diabetes Center North Denmark, Clinical Institute, Aalborg University Hospital, Aalborg, Denmark
| | - Kristian Kjær-Staal Petersen
- Center for Neuroplasticity and Pain (CNAP), SMI, Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Gistrup, Denmark
- Center for Mathematical Modeling of Knee Osteoarthritis (MathKOA), Department of Material and Production, Faculty of Engineering and Science, Aalborg University, Aalborg, Denmark
| |
Collapse
|
7
|
Gómez-Varela D, Xian F, Grundtner S, Sondermann JR, Carta G, Schmidt M. Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics. Front Microbiol 2023; 14:1258703. [PMID: 37908546 PMCID: PMC10613666 DOI: 10.3389/fmicb.2023.1258703] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/20/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Metaproteomics is a rapidly advancing field that offers unique insights into the taxonomic composition and the functional activity of microbial communities, and their effects on host physiology. Classically, data-dependent acquisition (DDA) mass spectrometry (MS) has been applied for peptide identification and quantification in metaproteomics. However, DDA-MS exhibits well-known limitations in terms of depth, sensitivity, and reproducibility. Consequently, methodological improvements are required to better characterize the protein landscape of microbiomes and their interactions with the host. Methods We present an optimized proteomic workflow that utilizes the information captured by Parallel Accumulation-Serial Fragmentation (PASEF) MS for comprehensive metaproteomic studies in complex fecal samples of mice. Results and discussion We show that implementing PASEF using a DDA acquisition scheme (DDA-PASEF) increased peptide quantification up to 5 times and reached higher accuracy and reproducibility compared to previously published classical DDA and data-independent acquisition (DIA) methods. Furthermore, we demonstrate that the combination of DIA, PASEF, and neuronal-network-based data analysis, was superior to DDA-PASEF in all mentioned parameters. Importantly, DIA-PASEF expanded the dynamic range towards low-abundant proteins and it doubled the quantification of proteins with unknown or uncharacterized functions. Compared to previous classical DDA metaproteomic studies, DIA-PASEF resulted in the quantification of up to 4 times more taxonomic units using 16 times less injected peptides and 4 times shorter chromatography gradients. Moreover, 131 additional functional pathways distributed across more and even uniquely identified taxa were profiled as revealed by a peptide-centric taxonomic-functional analysis. We tested our workflow on a validated preclinical mouse model of neuropathic pain to assess longitudinal changes in host-gut microbiome interactions associated with pain - an unexplored topic for metaproteomics. We uncovered the significant enrichment of two bacterial classes upon pain, and, in addition, the upregulation of metabolic activities previously linked to chronic pain as well as various hitherto unknown ones. Furthermore, our data revealed pain-associated dynamics of proteome complexes implicated in the crosstalk between the host immune system and the gut microbiome. In conclusion, the DIA-PASEF metaproteomic workflow presented here provides a stepping stone towards a deeper understanding of microbial ecosystems across the breadth of biomedical and biotechnological fields.
Collapse
|
8
|
Fabregat-Cid G, Cedeño DL, Harutyunyan A, Rodríguez-López R, Monsalve-Dolz V, Mínguez-Martí A, Hernández-Cádiz MJ, Escrivá-Matoses N, Villanueva-Pérez V, Asensio Samper JM, De Andrés J, Vallejo R. Effect of Conventional Spinal Cord Stimulation on Serum Protein Profile in Patients With Persistent Spinal Pain Syndrome: A Case-Control Study. Neuromodulation 2023; 26:1441-1449. [PMID: 37516956 DOI: 10.1016/j.neurom.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/30/2023] [Accepted: 05/30/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND Spinal cord stimulation (SCS) provides pain relief for most patients with persistent spinal pain syndrome type 2 (PSPS 2). Evidence is mounting on molecular changes induced by SCS as one of the mechanisms to explain pain improvement. We report the SCS effect on serum protein expression in vivo in patients with PSPS 2. MATERIALS AND METHODS Serum proteins were identified and quantified using mass spectrometry. Proteins with significantly different expression among patients with PSPS 2 relative to controls, responders, and nonresponders to SCS, or significantly modulated by SCS relative to baseline, were identified. Those most correlated with the presence and time course of pain were selected using multivariate discriminant analysis. Bioinformatic tools were used to identify related biological processes. RESULTS Thirty patients with PSPS 2, of whom 23 responded to SCS, were evaluated, together with 14 controls with no pain who also had undergone lumbar spinal surgery. A significant improvement in pain intensity, disability, and quality of life was recorded among responders. Five proteins differed significantly at baseline between patients with PSPS 2 and controls, with three proteins, mostly involved in immune processes and inflammation, being downregulated and two, mostly involved in vitamin metabolism, synaptic transmission, and restorative processes, being upregulated. In addition, four proteins, mostly related to immune processes and inflammation, decreased significantly, and three, mostly related to iron metabolism and containment of synaptic sprouting, increased significantly during SCS. CONCLUSION This study identifies various biological processes that may underlie PSPS 2 pain and SCS therapeutic effects, including the modulation of neuroimmune response and inflammation, synaptic sprouting, vitamin and iron metabolism, and restorative processes.
Collapse
Affiliation(s)
- Gustavo Fabregat-Cid
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain; Surgery Department, Medical School, University of Valencia, Valencia, Spain.
| | | | - Anushik Harutyunyan
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain
| | | | - Vicente Monsalve-Dolz
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain
| | - Ana Mínguez-Martí
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain
| | | | | | | | - Juan Marcos Asensio Samper
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain; Surgery Department, Medical School, University of Valencia, Valencia, Spain
| | - José De Andrés
- Multidisciplinary Pain Management Department, University General Hospital, Valencia, Spain; Surgery Department, Medical School, University of Valencia, Valencia, Spain
| | | |
Collapse
|
9
|
Gautam M, Yamada A, Yamada A, Wu Q, Kridsada K, Ling J, Yu H, Dong P, Ma M, Gu J, Luo W. Distinct Local and Global Functions of Aβ Low-Threshold Mechanoreceptors in Mechanical Pain Transmission. RESEARCH SQUARE 2023:rs.3.rs-2939309. [PMID: 37398333 PMCID: PMC10312941 DOI: 10.21203/rs.3.rs-2939309/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The roles of Aβ low-threshold mechanoreceptors (LTMRs) in transmitting mechanical hyperalgesia and in alleviating chronic pain have been of great interest but remain contentious. Here we utilized intersectional genetic tools, optogenetics, and high-speed imaging to specifically examine functions of SplitCre labeled Aβ-LTMRs in this regard. Genetic ablation of SplitCre-Aβ-LTMRs increased mechanical pain but not thermosensation in both acute and chronic inflammatory pain conditions, indicating their modality-specific role in gating mechanical pain transmission. Local optogenetic activation of SplitCre-Aβ-LTMRs triggered nociception after tissue inflammation, whereas their broad activation at the dorsal column still alleviated mechanical hypersensitivity of chronic inflammation. Taking all data into consideration, we propose a new model, in which Aβ-LTMRs play distinctive local and global roles in transmitting and alleviating mechanical hyperalgesia of chronic pain, respectively. Our model suggests a new strategy of global activation plus local inhibition of Aβ-LTMRs for treating mechanical hyperalgesia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Minghong Ma
- University of Pennsylvania School of Medicine
| | | | | |
Collapse
|
10
|
Gautam M, Yamada A, Yamada AI, Wu Q, Kridsada K, Ling J, Yu H, Dong P, Ma M, Gu J, Luo W. Distinct Local and Global Functions of Aβ Low-Threshold Mechanoreceptors in Mechanical Pain Transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540962. [PMID: 37293085 PMCID: PMC10245756 DOI: 10.1101/2023.05.16.540962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The roles of Aβ low-threshold mechanoreceptors (LTMRs) in transmitting mechanical hyperalgesia and in alleviating chronic pain have been of great interest but remain contentious. Here we utilized intersectional genetic tools, optogenetics, and high-speed imaging to specifically examine functions of Split Cre labeled Aβ-LTMRs in this regard. Genetic ablation of Split Cre -Aβ-LTMRs increased mechanical pain but not thermosensation in both acute and chronic inflammatory pain conditions, indicating their modality-specific role in gating mechanical pain transmission. Local optogenetic activation of Split Cre -Aβ-LTMRs triggered nociception after tissue inflammation, whereas their broad activation at the dorsal column still alleviated mechanical hypersensitivity of chronic inflammation. Taking all data into consideration, we propose a new model, in which Aβ-LTMRs play distinctive local and global roles in transmitting and alleviating mechanical hyperalgesia of chronic pain, respectively. Our model suggests a new strategy of global activation plus local inhibition of Aβ-LTMRs for treating mechanical hyperalgesia.
Collapse
|
11
|
Mitchell ME, Cook LC, Shiers S, Tavares-Ferreira D, Akopian AN, Dussor G, Price TJ. Characterization of Fragile X Mental Retardation Protein expression in human nociceptors and their axonal projections to the spinal dorsal horn. J Comp Neurol 2023; 531:814-835. [PMID: 36808110 PMCID: PMC10038933 DOI: 10.1002/cne.25463] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
Fragile X Mental Retardation Protein (FMRP) regulates activity-dependent RNA localization and local translation to modulate synaptic plasticity throughout the central nervous system. Mutations in the FMR1 gene that hinder or ablate FMRP function cause Fragile X Syndrome (FXS), a disorder associated with sensory processing dysfunction. FXS premutations are associated with increased FMRP expression and neurological impairments including sex dimorphic presentations of chronic pain. In mice, FMRP ablation causes dysregulated dorsal root ganglion (DRG) neuron excitability and synaptic vesicle exocytosis, spinal circuit activity, and decreased translation-dependent nociceptive sensitization. Activity-dependent, local translation is a key mechanism for enhancing primary nociceptor excitability that promotes pain in animals and humans. These works indicate that FMRP likely regulates nociception and pain at the level of the primary nociceptor or spinal cord. Therefore, we sought to better understand FMRP expression in the human DRG and spinal cord using immunostaining in organ donor tissues. We find that FMRP is highly expressed in DRG and spinal neuron subsets with substantia gelatinosa exhibiting the most abundant immunoreactivity in spinal synaptic fields. Here, it is expressed in nociceptor axons. FMRP puncta colocalized with Nav1.7 and TRPV1 receptor signals suggesting a pool of axoplasmic FMRP localizes to plasma membrane-associated loci in these branches. Interestingly, FMRP puncta exhibited notable colocalization with calcitonin gene-related peptide (CGRP) immunoreactivity selectively in female spinal cord. Our results support a regulatory role for FMRP in human nociceptor axons of the dorsal horn and implicate it in the sex dimorphic actions of CGRP signaling in nociceptive sensitization and chronic pain.
Collapse
Affiliation(s)
- Molly E Mitchell
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Lauren C Cook
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Stephanie Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Diana Tavares-Ferreira
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Armen N Akopian
- Department of Endodontics, UT Health San Antonio, San Antonio, Texas, USA
| | - Gregory Dussor
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
12
|
Tassou A, Thouaye M, Gilabert D, Jouvenel A, Leyris JP, Sonrier C, Diouloufet L, Mechaly I, Mallié S, Bertin J, Chentouf M, Neiveyans M, Pugnière M, Martineau P, Robert B, Capdevila X, Valmier J, Rivat C. Activation of neuronal FLT3 promotes exaggerated sensorial and emotional pain-related behaviors facilitating the transition from acute to chronic pain. Prog Neurobiol 2023; 222:102405. [PMID: 36646299 DOI: 10.1016/j.pneurobio.2023.102405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/16/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Acute pain has been associated with persistent pain sensitization of nociceptive pathways increasing the risk of transition from acute to chronic pain. We demonstrated the critical role of the FLT3- tyrosine kinase receptor, expressed in sensory neurons, in pain chronification after peripheral nerve injury. However, it is unclear whether injury-induced pain sensitization can also promote long-term mood disorders. Here, we evaluated the emotional and sensorial components of pain after a single (SI) or double paw incision (DI) and the implication of FLT3. DI mice showed an anxiodepressive-like phenotype associated with extended mechanical pain hypersensitivity and spontaneous pain when compared to SI mice. Behavioral exaggeration was associated with peripheral and spinal changes including increased microglia activation after DI versus SI. Intrathecal microglial inhibitors not only eliminated the exaggerated pain hypersensitivity produced by DI but also prevented anxiodepressive-related behaviors. Behavioral and cellular changes produced by DI were blocked in Flt3 knock-out animals and recapitulated by repeated intrathecal FL injections in naive animals. Finally, humanized antibodies against FLT3 reduced DI-induced behavioral and microglia changes. Altogether our results show that the repetition of peripheral lesions facilitate not only exaggerated nociceptive behaviors but also induced anxiodepressive disorders supported by spinal central changes that can be blocked by targeting peripheral FLT3.
Collapse
Affiliation(s)
- Adrien Tassou
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Maxime Thouaye
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Damien Gilabert
- Univ Montpellier, Montpellier, France; CNRS UMR 5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Antoine Jouvenel
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Jean-Philippe Leyris
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Corinne Sonrier
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Lucie Diouloufet
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Ilana Mechaly
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Sylvie Mallié
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Juliette Bertin
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; BIODOL Therapeutics, Cap Alpha, Clapiers, France
| | - Myriam Chentouf
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Madeline Neiveyans
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Martine Pugnière
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Pierre Martineau
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Bruno Robert
- Univ Montpellier, Montpellier, France; IRCM, INSERM U1194, ICM, Montpellier F-34298, France
| | - Xavier Capdevila
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France; Département d'anesthésiologie, Hôpital Universitaire Lapeyronie, Montpellier, France
| | - Jean Valmier
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Cyril Rivat
- Univ Montpellier, Montpellier, France; Inserm U-1298, Institut des Neurosciences de Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Peterson JA, Staud R, Thomas PA, Goodin BR, Fillingim RB, Cruz-Almeida Y. Self-reported pain and fatigue are associated with physical and cognitive function in middle to older-aged adults. Geriatr Nurs 2023; 50:7-14. [PMID: 36640518 PMCID: PMC10316316 DOI: 10.1016/j.gerinurse.2022.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Persistent fatigue is often reported in those with chronic musculoskeletal pain. Separately, both chronic pain and chronic fatigue contribute to physical and cognitive decline in older adults. Concurrent pain and fatigue symptoms may increase disability and diminish quality of life, though little data exist to show this. The purpose of this study was to examine associations between self-reported pain and fatigue, both independently and combined, with cognitive and physical function in middle-older-aged adults with chronic knee pain. Using a cross-sectional study design participants (n = 206, age 58.0 ± 8.3) completed questionnaires on pain and fatigue, a physical performance battery to assess physical function, and the Montreal Cognitive Assessment. Hierarchical regressions and moderation analyses were used to assess the relationship between the variables of interest. Pain and fatigue both predicted physical function (β = -0.305, p < 0.001; β = -0.219, p = 0.003, respectively), however only pain significantly predicted cognitive function (β = -0.295, p <0.001). A centered pain*fatigue interaction was a significant predictor of both cognitive function (β = -0.137, p = 0.049) and physical function (β = -0.146, p = 0.048). These findings indicate that self-reported fatigue may contribute primarily to decline in physical function among individuals with chronic pain, and less so to decline in cognitive function. Future studies should examine the impact of both cognitive and physical function decline together on overall disability and health.
Collapse
Affiliation(s)
- Jessica A Peterson
- College of Dentistry, Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA; College of Dentistry, Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Roland Staud
- College of Dentistry, Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA; College of Medicine, Rheumatology, University of Florida, Gainesville, FL, USA
| | - Pavithra A Thomas
- College of Arts and Science, Psychology, University of Alabama at Birmingham, Birmingham, AL, USA; School of Medicine, Center for Addiction & Pain Prevention & Intervention (CAPPI), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Burel R Goodin
- College of Arts and Science, Psychology, University of Alabama at Birmingham, Birmingham, AL, USA; School of Medicine, Center for Addiction & Pain Prevention & Intervention (CAPPI), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roger B Fillingim
- College of Dentistry, Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA; College of Dentistry, Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA
| | - Yenisel Cruz-Almeida
- College of Dentistry, Pain Research & Intervention Center of Excellence (PRICE), University of Florida, Gainesville, FL, USA; College of Dentistry, Community Dentistry and Behavioral Science, University of Florida, Gainesville, FL, USA; Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
14
|
Thakkar B, Acevedo EO. BDNF as a biomarker for neuropathic pain: Consideration of mechanisms of action and associated measurement challenges. Brain Behav 2023; 13:e2903. [PMID: 36722793 PMCID: PMC10013954 DOI: 10.1002/brb3.2903] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 01/08/2023] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
INTRODUCTION The primary objective of this paper is to (1) provide a summary of human studies that have used brain derived neurotrophic factor (BDNF) as a biomarker, (2) review animal studies that help to elucidate the mechanistic involvement of BDNF in the development and maintenance of neuropathic pain (NP), and (3) provide a critique of the existing measurement techniques to highlight the limitations of the methods utilized to quantify BDNF in different biofluids in the blood (i.e., serum and plasma) with the intention of presenting a case for the most reliable and valid technique. Lastly, this review also explores potential moderators that can influence the measurement of BDNF and provides recommendations to standardize its quantification to reduce the inconsistencies across studies. METHODS In this manuscript we examined the literature on BDNF, focusing on its role as a biomarker, its mechanism of action in NP, and critically analyzed its measurement in serum and plasma to identify factors that contribute to the discrepancy in results between plasma and serum BDNF values. RESULTS A large heterogenous literature was reviewed that detailed BDNF's utility as a potential biomarker in healthy volunteers, patients with chronic pain, and patients with neuropsychiatric disorders but demonstrated inconsistent findings. The literature provides insight into the mechanism of action of BDNF at different levels of the central nervous system using animal studies. We identified multiple factors that influence the measurement of BDNF in serum and plasma and based on current evidence, we recommend assessing serum BDNF levels to quantify peripheral BDNF as they are more stable and sensitive to changes than plasma BDNF. CONCLUSION Although mechanistic studies clearly explain the role of BDNF, results from human studies are inconsistent. More studies are needed to evaluate the methodological challenges in using serum BDNF as a biomarker in NP.
Collapse
Affiliation(s)
- Bhushan Thakkar
- Department of Physical Therapy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Edmund O Acevedo
- Department of Kinesiology and Health Sciences, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
15
|
Ray PR, Shiers S, Caruso JP, Tavares-Ferreira D, Sankaranarayanan I, Uhelski ML, Li Y, North RY, Tatsui C, Dussor G, Burton MD, Dougherty PM, Price TJ. RNA profiling of human dorsal root ganglia reveals sex differences in mechanisms promoting neuropathic pain. Brain 2023; 146:749-766. [PMID: 35867896 PMCID: PMC10169414 DOI: 10.1093/brain/awac266] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/16/2022] [Accepted: 06/22/2022] [Indexed: 11/12/2022] Open
Abstract
Neuropathic pain is a leading cause of high-impact pain, is often disabling and is poorly managed by current therapeutics. Here we focused on a unique group of neuropathic pain patients undergoing thoracic vertebrectomy where the dorsal root ganglia is removed as part of the surgery allowing for molecular characterization and identification of mechanistic drivers of neuropathic pain independently of preclinical models. Our goal was to quantify whole transcriptome RNA abundances using RNA-seq in pain-associated human dorsal root ganglia from these patients, allowing comprehensive identification of molecular changes in these samples by contrasting them with non-pain-associated dorsal root ganglia. We sequenced 70 human dorsal root ganglia, and among these 50 met inclusion criteria for sufficient neuronal mRNA signal for downstream analysis. Our expression analysis revealed profound sex differences in differentially expressed genes including increase of IL1B, TNF, CXCL14 and OSM in male and CCL1, CCL21, PENK and TLR3 in female dorsal root ganglia associated with neuropathic pain. Coexpression modules revealed enrichment in members of JUN-FOS signalling in males and centromere protein coding genes in females. Neuro-immune signalling pathways revealed distinct cytokine signalling pathways associated with neuropathic pain in males (OSM, LIF, SOCS1) and females (CCL1, CCL19, CCL21). We validated cellular expression profiles of a subset of these findings using RNAscope in situ hybridization. Our findings give direct support for sex differences in underlying mechanisms of neuropathic pain in patient populations.
Collapse
Affiliation(s)
- Pradipta R Ray
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Stephanie Shiers
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - James P Caruso
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA.,Department of Neurological Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Diana Tavares-Ferreira
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Megan L Uhelski
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Yan Li
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Y North
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Claudio Tatsui
- Department of Neurosurgery, MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory Dussor
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Michael D Burton
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, MD Anderson Cancer Center, Houston, TX, USA
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
16
|
Natale CA, Christie MJ, Aubrey KR. Spinal glycinergic currents are reduced in a rat model of neuropathic pain following partial nerve ligation but not chronic constriction injury. J Neurophysiol 2023; 129:333-341. [PMID: 36541621 DOI: 10.1152/jn.00451.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Animal models have consistently indicated that central sensitization and the development of chronic neuropathic pain are linked to changes to inhibitory signaling in the dorsal horn of the spinal cord. However, replication of data investigating the cellular mechanisms that underlie these changes remains a challenge and there is still a lack of understanding about what aspects of spinal inhibitory transmission most strongly contribute to the disease. Here, we compared the effect of two different sciatic nerve injuries commonly used to generate rodent models of neuropathic pain on spinal glycinergic signaling. Using whole cell patch-clamp electrophysiology in spinal slices, we recorded from neurons in the lamina II of the dorsal horn and evoked inhibitory postsynaptic currents with a stimulator in lamina III, where glycinergic cell bodies are concentrated. We found that glycine inputs onto radial neurons were reduced following partial nerve ligation (PNL) of the sciatic nerve, consistent with a previous report. However, this finding was not replicated in animals that underwent chronic constriction injury (CCI) to the same nerve region. To limit the between-experiment variability, we kept the rat species, sex, and age consistent and had a single investigator carry out the surgeries. These data show that PNL and CCI cause divergent spinal signaling outcomes in the cord and add to the body of evidence suggesting that treatments for neuropathic pain should be triaged according to nerve injury or cellular dysfunction rather than the symptoms of the disease.NEW & NOTEWORTHY Neuropathic pain models are used in preclinical research to investigate the mechanisms underlying allodynia, a common symptom of neuropathic pain, and to test, develop, and validate therapies for persistent pain. We demonstrate that a glycinergic dysfunction is consistently associated with partial nerve ligation but not the chronic constriction injury model. This suggests that the cellular effects produced by each injury are distinct and that data from different neuropathic pain models should be considered separately.
Collapse
Affiliation(s)
- Claudia A Natale
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Macdonald J Christie
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia.,Northern Clinical School, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
17
|
Arya S, Yadav RK, Venkataraman S, Deepak KK, Bhatia R. Objective evidence for chronic back pain relief by Medical Yoga therapy. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1060685. [PMID: 36618581 PMCID: PMC9816867 DOI: 10.3389/fpain.2022.1060685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/30/2022] [Indexed: 12/25/2022]
Abstract
Chronic low back pain (CLBP) is a musculoskeletal ailment that affects millions globally. The pain is disturbing associated with impaired motor activity, reduced flexibility, decreased productivity and strained interpersonal relationships leading to poor quality of life. Inflammatory mediators in vicinity of nociceptors and amplification of neural signals cause peripheral and central sensitization presented as hyperalgesia and/or allodynia. It could be attributed to either diminished descending pain inhibition or exaggerated ascending pain facilitation. Objective measurement of pain is crucial for diagnosis and management. Nociceptive flexion reflex is a reliable and objective tool for measurement of a subject's pain experience. Medical Yoga Therapy (MYT) has proven to relieve chronic pain, but objective evidence-based assessment of its effects is still lacking. We objectively assessed effect of MYT on pain and quality of life in CLBP patients. We recorded VAS (Visual analogue scale), McGill Pain questionnaire and WHOQOL BREF questionnaire scores, NFR response and Diffuse noxious inhibitory control tests. Medical yoga therapy consisted of an 8-week program (4 weeks supervised and 4 weeks at home practice). CLBP patients (42.5 ± 12.6 years) were randomly allocated to MYT (n = 58) and SCT groups (n = 50), and comparisons between the groups and within the groups were done at baseline and at end of 4 and 8 weeks of both interventions. (VAS) scores for patients in both the groups were comparable at baseline, subjective pain rating decreased significantly more after MYT compared to SCT (p = < 0.0001*, p = 0.005*). McGill Pain questionnaire scores revealed significant reduction in pain experience in MYT group compared to SCT. Nociceptive Flexion Reflex threshold increased significantly in MYT group at end of 4 weeks and 8 weeks, p < 0.0001#, p = < 0.0001∞ respectively) whereas for SCT we did not find any significant change in NFR thresholds. DNIC assessed by CPT also showed significant improvement in descending pain modulation after MYT compared to SCT both at end of 4 and 8 weeks. Quality of life also improved significantly more after MYT. Thus, we conclude with objective evidence that Medical Yoga Therapy relieves chronic low back pain, stress and improves quality of life better than standard care.
Collapse
Affiliation(s)
- Suvercha Arya
- Pain Research and Transcranial Magnetic Stimulation, Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Raj Kumar Yadav
- Integral Health Clinic, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Srikumar Venkataraman
- Department of Physical Medicine and Rehabilitation, All India Institute of Medical Sciences, New Delhi, India
| | - Kishore Kumar Deepak
- Autonomic and Vascular Function Testing Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Renu Bhatia
- Pain Research and Transcranial Magnetic Stimulation, Laboratory, Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Tmem160 contributes to the establishment of discrete nerve injury-induced pain behaviors in male mice. Cell Rep 2021; 37:110152. [PMID: 34936870 DOI: 10.1016/j.celrep.2021.110152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/01/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
Chronic pain is a prevalent medical problem, and its molecular basis remains poorly understood. Here, we demonstrate the significance of the transmembrane protein (Tmem) 160 for nerve injury-induced neuropathic pain. An extensive behavioral assessment suggests a pain modality- and entity-specific phenotype in male Tmem160 global knockout (KO) mice: delayed establishment of tactile hypersensitivity and alterations in self-grooming after nerve injury. In contrast, Tmem160 seems to be dispensable for other nerve injury-induced pain modalities, such as non-evoked and movement-evoked pain, and for other pain entities. Mechanistically, we show that global KO males exhibit dampened neuroimmune signaling and diminished TRPA1-mediated activity in cultured dorsal root ganglia. Neither these changes nor altered pain-related behaviors are observed in global KO female and male peripheral sensory neuron-specific KO mice. Our findings reveal Tmem160 as a sexually dimorphic factor contributing to the establishment, but not maintenance, of discrete nerve injury-induced pain behaviors in male mice.
Collapse
|
19
|
Sapio MR, Kim JJ, Loydpierson AJ, Maric D, Goto T, Vazquez FA, Dougherty MK, Narasimhan R, Muhly WT, Iadarola MJ, Mannes AJ. The Persistent Pain Transcriptome: Identification of Cells and Molecules Activated by Hyperalgesia. THE JOURNAL OF PAIN 2021; 22:1146-1179. [PMID: 33892151 PMCID: PMC9441406 DOI: 10.1016/j.jpain.2021.03.155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
During persistent pain, the dorsal spinal cord responds to painful inputs from the site of injury, but the molecular modulatory processes have not been comprehensively examined. Using transcriptomics and multiplex in situ hybridization, we identified the most highly regulated receptors and signaling molecules in rat dorsal spinal cord in peripheral inflammatory and post-surgical incisional pain models. We examined a time course of the response including acute (2 hours) and longer term (2 day) time points after peripheral injury representing the early onset and instantiation of hyperalgesic processes. From this analysis, we identify a key population of superficial dorsal spinal cord neurons marked by somatotopic upregulation of the opioid neuropeptide precursor prodynorphin, and 2 receptors: the neurokinin 1 receptor, and anaplastic lymphoma kinase. These alterations occur specifically in the glutamatergic subpopulation of superficial dynorphinergic neurons. In addition to specific neuronal gene regulation, both models showed induction of broad transcriptional signatures for tissue remodeling, synaptic rearrangement, and immune signaling defined by complement and interferon induction. These signatures were predominantly induced ipsilateral to tissue injury, implying linkage to primary afferent drive. We present a comprehensive set of gene regulatory events across 2 models that can be targeted for the development of non-opioid analgesics. PERSPECTIVE: The deadly impact of the opioid crisis and the need to replace morphine and other opioids in clinical practice is well recognized. Embedded within this research is an overarching goal of obtaining foundational knowledge from transcriptomics to search for non-opioid analgesic targets. Developing such analgesics would address unmet clinical needs.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Jenny J Kim
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Amelia J Loydpierson
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Dragan Maric
- National Institute of Neurological Disorders and Stroke, Flow and Imaging Cytometry Core Facility, NIH, Bethesda, Maryland
| | - Taichi Goto
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland; National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Japan Society for the Promotion of Science Overseas Research Fellowship, Tokyo, Japan
| | - Fernando A Vazquez
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Mary K Dougherty
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Radhika Narasimhan
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| | - Wallis T Muhly
- National Institute of Nursing Research, Symptom Management Branch, NIH, Bethesda, Maryland; Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael J Iadarola
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland.
| | - Andrew J Mannes
- Department of Perioperative Medicine, National Institutes of Health Clinical Center, NIH, Bethesda, Maryland
| |
Collapse
|
20
|
Pogatzki-Zahn EM, Gomez-Varela D, Erdmann G, Kaschube K, Segelcke D, Schmidt M. A proteome signature for acute incisional pain in dorsal root ganglia of mice. Pain 2021; 162:2070-2086. [PMID: 33492035 PMCID: PMC8208099 DOI: 10.1097/j.pain.0000000000002207] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 01/04/2023]
Abstract
ABSTRACT After surgery, acute pain is still managed insufficiently and may lead to short-term and long-term complications including chronic postsurgical pain and an increased prescription of opioids. Thus, identifying new targets specifically implicated in postoperative pain is of utmost importance to develop effective and nonaddictive analgesics. Here, we used an integrated and multimethod workflow to reveal unprecedented insights into proteome dynamics in dorsal root ganglia (DRG) of mice after plantar incision (INC). Based on a detailed characterization of INC-associated pain-related behavior profiles, including a novel paradigm for nonevoked pain, we performed quantitative mass-spectrometry-based proteomics in DRG 1 day after INC. Our data revealed a hitherto unknown INC-regulated protein signature in DRG with changes in distinct proteins and cellular signaling pathways. In particular, we show the differential regulation of 44 protein candidates, many of which are annotated with pathways related to immune and inflammatory responses such as MAPK/extracellular signal-regulated kinases signaling. Subsequent orthogonal assays comprised multiplex Western blotting, bioinformatic protein network analysis, and immunolabeling in independent mouse cohorts to validate (1) the INC-induced regulation of immune/inflammatory pathways and (2) the high priority candidate Annexin A1. Taken together, our results propose novel potential targets in the context of incision and, therefore, represent a highly valuable resource for further mechanistic and translational studies of postoperative pain.
Collapse
Affiliation(s)
- Esther M. Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - David Gomez-Varela
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | | | - Katharina Kaschube
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Daniel Segelcke
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| |
Collapse
|
21
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
22
|
Yousuf MS, Shiers SI, Sahn JJ, Price TJ. Pharmacological Manipulation of Translation as a Therapeutic Target for Chronic Pain. Pharmacol Rev 2021; 73:59-88. [PMID: 33203717 PMCID: PMC7736833 DOI: 10.1124/pharmrev.120.000030] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dysfunction in regulation of mRNA translation is an increasingly recognized characteristic of many diseases and disorders, including cancer, diabetes, autoimmunity, neurodegeneration, and chronic pain. Approximately 50 million adults in the United States experience chronic pain. This economic burden is greater than annual costs associated with heart disease, cancer, and diabetes combined. Treatment options for chronic pain are inadequately efficacious and riddled with adverse side effects. There is thus an urgent unmet need for novel approaches to treating chronic pain. Sensitization of neurons along the nociceptive pathway causes chronic pain states driving symptoms that include spontaneous pain and mechanical and thermal hypersensitivity. More than a decade of preclinical research demonstrates that translational mechanisms regulate the changes in gene expression that are required for ongoing sensitization of nociceptive sensory neurons. This review will describe how key translation regulation signaling pathways, including the integrated stress response, mammalian target of rapamycin, AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase-interacting kinases, impact the translation of different subsets of mRNAs. We then place these mechanisms of translation regulation in the context of chronic pain states, evaluate currently available therapies, and examine the potential for developing novel drugs. Considering the large body of evidence now published in this area, we propose that pharmacologically manipulating specific aspects of the translational machinery may reverse key neuronal phenotypic changes causing different chronic pain conditions. Therapeutics targeting these pathways could eventually be first-line drugs used to treat chronic pain disorders. SIGNIFICANCE STATEMENT: Translational mechanisms regulating protein synthesis underlie phenotypic changes in the sensory nervous system that drive chronic pain states. This review highlights regulatory mechanisms that control translation initiation and how to exploit them in treating persistent pain conditions. We explore the role of mammalian/mechanistic target of rapamycin and mitogen-activated protein kinase-interacting kinase inhibitors and AMPK activators in alleviating pain hypersensitivity. Modulation of eukaryotic initiation factor 2α phosphorylation is also discussed as a potential therapy. Targeting specific translation regulation mechanisms may reverse changes in neuronal hyperexcitability associated with painful conditions.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Stephanie I Shiers
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - James J Sahn
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| | - Theodore J Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas (M.S.Y., S.I.S., T.J.P.) and 4E Therapeutics Inc, Austin, Texas (J.J.S.)
| |
Collapse
|
23
|
Abstract
The management of pain, particularly chronic pain, is still an area of medical need. In this context, opioids remain a gold standard for the treatment of pain. However, significant side effects, mainly of central origin, limit their clinical use. Here, we review recent progress to improve the therapeutic and safety profiles of opioids for pain management. Characterization of peripheral opioid-mediated pain mechanisms have been a key component of this process. Several studies identified peripheral µ, δ, and κ opioid receptors (MOR, DOR, and KOR, respectively) and nociceptin/orphanin FQ (NOP) receptors as significant players of opioid-mediated antinociception, able to achieve clinically significant effects independently of any central action. Following this, particularly from a medicinal chemistry point of view, main efforts have been directed towards the peripheralization of opioid receptor agonists with the objective of optimizing receptor activity and minimizing central exposure and the associated undesired effects. These activities have allowed the characterization of a great variety of compounds and investigational drugs that show low central nervous system (CNS) penetration (and therefore a reduced side effect profile) yet maintaining the desired opioid-related peripheral antinociceptive activity. These include highly hydrophilic/amphiphilic and massive molecules unable to easily cross lipid membranes, substrates of glycoprotein P (a extrusion pump that avoids CNS penetration), nanocarriers that release the analgesic agent at the site of inflammation and pain, and pH-sensitive opioid agonists that selectively activate at those sites (and represent a new pharmacodynamic paradigm). Hopefully, patients with pain will benefit soon from the incorporation of these new entities.
Collapse
|
24
|
Bonezzi C, Costantini A, Cruccu G, Fornasari DMM, Guardamagna V, Palmieri V, Polati E, Zini P, Dickenson AH. Capsaicin 8% dermal patch in clinical practice: an expert opinion. Expert Opin Pharmacother 2020; 21:1377-1387. [PMID: 32511032 DOI: 10.1080/14656566.2020.1759550] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Neuropathic pain (NP) is caused by a lesion or disease of the somatosensory system, which can severely impact patients' quality of life. The current-approved treatments for NP comprise of both centrally acting agents and topical drugs, including capsaicin 8% dermal patches, which is approved for the treatment of peripheral NP. AREAS COVERED The authors summarize literature data regarding capsaicin use in patients who suffer from NP and discuss the clinical applications of this topical approach. EXPERT OPINION Overall, the capsaicin 8% dermal patch is as effective in reducing pain intensity as other centrally active agents (i.e. pregabalin). Some studies have also reported fewer systemic side effects, a faster onset of action and superior treatment satisfaction compared with systemic agents. In our opinion, capsaicin 8% dermal patches also present additional advantages, such as a good systemic tolerability, the scarcity of adverse events, the possibility to combine it with other agents, and a good cost-effective profile. It is important to note that, as the mechanism of action of capsaicin 8% is the 'defunctionalization' of small afferent fibers through interaction with TRPV1 receptors, the peripheral expression of this receptor on nociceptor fibers, is crucial to predict patient's response to treatment.
Collapse
Affiliation(s)
- Cesare Bonezzi
- Pain Therapy Unit, Istituti Clinici Scientifici Maugeri , Pavia, Italy
| | | | - Giorgio Cruccu
- Department of Human Neurosciences, "Sapienza" University of Rome , Rome, Italy
| | - Diego M M Fornasari
- Department of Medical Biotechnology and Translational Medicine, University of Milan , Milan, Italy
| | - Vittorio Guardamagna
- Palliative Care and Pain Therapy Division, IRCCS European Institute of Oncology (IEO) , Milan, Italy
| | - Vincenzo Palmieri
- Pain Therapy and Palliative Care Unit, Gaetano Rummo Hospital , Benevento, Italy
| | - Enrico Polati
- Anestesia E Rianimazione, Terapia del Dolore. Azienda Ospedaliera Universitaria Integrata di Verona , Verona, Italy
| | | | | |
Collapse
|
25
|
D’Amico R, Impellizzeri D, Cuzzocrea S, Di Paola R. ALIAmides Update: Palmitoylethanolamide and Its Formulations on Management of Peripheral Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21155330. [PMID: 32727084 PMCID: PMC7432736 DOI: 10.3390/ijms21155330] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain results from lesions or diseases of the somatosensory nervous system and it remains largely difficult to treat. Peripheral neuropathic pain originates from injury to the peripheral nervous system (PNS) and manifests as a series of symptoms and complications, including allodynia and hyperalgesia. The aim of this review is to discuss a novel approach on neuropathic pain management, which is based on the knowledge of processes that underlie the development of peripheral neuropathic pain; in particular highlights the role of glia and mast cells in pain and neuroinflammation. ALIAmides (autacoid local injury antagonist amides) represent a group of endogenous bioactive lipids, including palmitoylethanolamide (PEA), which play a central role in numerous biological processes, including pain, inflammation, and lipid metabolism. These compounds are emerging thanks to their anti-inflammatory and anti-hyperalgesic effects, due to the down-regulation of activation of mast cells. Collectively, preclinical and clinical studies support the idea that ALIAmides merit further consideration as therapeutic approach for controlling inflammatory responses, pain, and related peripheral neuropathic pain.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-90-6765208
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| |
Collapse
|
26
|
Mody PH, Dos Santos NL, Barron LR, Price TJ, Burton MD. eIF4E phosphorylation modulates pain and neuroinflammation in the aged. GeroScience 2020; 42:1663-1674. [PMID: 32613493 DOI: 10.1007/s11357-020-00220-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
The aged population has a higher probability of developing chronic pain from acute insults because of age-associated low-grade inflammation. Several emerging studies have shown a crucial role of cap-dependent translation in the development of chronic pain in young adult animals; however, its role in the aged has never been reported. Acute and chronic inflammatory responses, including pain, are altered over age, and understanding how cap-dependent translation can represent an important and druggable pathway is imperative for understanding its therapeutic potential. Here we have tested how an inflammatory stimulus, complete Freund's adjuvant (CFA), affects spontaneous and evoked pain, as well as inflammation in young versus aged mice that lack functional cap-dependent translation machinery (eukaryotic translation initiation factor 4E (eIF4E)) compared with age-matched wild-type (WT) mice. Interestingly, we found that CFA-induced acute pain and inflammation are modulated by eIF4E phosphorylation in aged but not young animals. Aged transgenic animals showed attenuated paw temperature and inflammation, as well as a mitigation in the onset and quicker resolution in mechanical and thermal hypersensitivity. We found that levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α are elevated in dorsal root ganglia in aged WT and eIF4E transgenic groups, despite faster resolution of acute inflammation and pain in the aged eIF4E transgenic animals. We propose that these cytokines are important in mediating the observed behavioral responses in the young and represent an alternate pathway in the development of age-associated inflammation and behavioral consequences. These findings demonstrate that eIF4E phosphorylation can be a key target for treating inflammatory pain in the aged.
Collapse
Affiliation(s)
- Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Natalia L Dos Santos
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Luz R Barron
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Theodore J Price
- Pain Neurobiology Research Group, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
27
|
Wangzhou A, McIlvried LA, Paige C, Barragan-Iglesias P, Shiers S, Ahmad A, Guzman CA, Dussor G, Ray PR, Gereau RW, Price TJ. Pharmacological target-focused transcriptomic analysis of native vs cultured human and mouse dorsal root ganglia. Pain 2020; 161:1497-1517. [PMID: 32197039 PMCID: PMC7305999 DOI: 10.1097/j.pain.0000000000001866] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Dorsal root ganglion (DRG) neurons detect sensory inputs and are crucial for pain processing. They are often studied in vitro as dissociated cell cultures with the assumption that this reasonably represents in vivo conditions. However, to the best of our knowledge, no study has directly compared genome-wide transcriptomes of DRG tissue in vivo versus in vitro or between laboratories and culturing protocols. Comparing RNA sequencing-based transcriptomes of native to cultured (4 days in vitro) human or mouse DRG, we found that the overall expression levels of many ion channels and G-protein-coupled receptors specifically expressed in neurons are markedly lower although still expressed in culture. This suggests that most pharmacological targets expressed in vivo are present under the condition of dissociated cell culture, but with changes in expression levels. The reduced relative expression for neuronal genes in human DRG cultures is likely accounted for by increased expression of genes in fibroblast-like and other proliferating cells, consistent with their mitotic status in these cultures. We found that the expression of a subset of genes typically expressed in neurons increased in human and mouse DRG cultures relative to the intact ganglion, including genes associated with nerve injury or inflammation in preclinical models such as BDNF, MMP9, GAL, and ATF3. We also found a striking upregulation of a number of inflammation-associated genes in DRG cultures, although many were different between mouse and human. Our findings suggest an injury-like phenotype in DRG cultures that has important implications for the use of this model system for pain drug discovery.
Collapse
Affiliation(s)
- Andi Wangzhou
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Lisa A. McIlvried
- Washington University Pain Center and Department of
Anesthesiology, Washington University School of Medicine
| | - Candler Paige
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Paulino Barragan-Iglesias
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Stephanie Shiers
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Ayesha Ahmad
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Carolyn A. Guzman
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Gregory Dussor
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Pradipta R. Ray
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| | - Robert W. Gereau
- Washington University Pain Center and Department of
Anesthesiology, Washington University School of Medicine
| | - Theodore J. Price
- The University of Texas at Dallas, School of Behavioral and
Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson,
TX, 75080, USA
| |
Collapse
|
28
|
Abstract
Abstract
Purpose of Review
Centralized pain syndromes (CPS), including chronic pelvic pain (CPP) syndrome, are significant public health problems with prevalence more than diabetes, cancer, or cardiovascular disease. A variety of pathologies are linked with CPP syndrome; however, pain often continues without the presence of pathology, or when an underlying pelvic disease is found, the extent and severity of pain are disproportionate. Although this is not a systematic review, we performed a detailed literature search to identify relevant papers and to provide the available evidence for central changes in association with CPP syndrome.
Recent Findings
Recent advances in brain imaging techniques have provided more accurate data on gray matter volume, functional connectivity, and metabolite levels in the pain-relevant areas of the brain. The present evidence shows that like other chronic pain conditions, the CPP syndrome is associated with central nervous system (CNS) alterations. In particular, these include changes in brain structure, in the activity of both the hypothalamic–pituitary–adrenal (HPA) axis and the autonomic nervous system, and in the behavioral and central response to noxious stimulation.
Summary
A growing body of evidence, mostly from neuroimaging, suggests that for many patients with CPP, the pain may be associated to changes in both structure and function of the CNS. The treatment of pain symptoms, even without the presence of identifiable pathology, may prevent the development or at least minimize the progression of long-term central changes. These findings support the use of new therapeutic strategies targeting the CNS for controlling of pain in CPP conditions.
Collapse
|
29
|
Mihail SM, Wangzhou A, Kunjilwar KK, Moy JK, Dussor G, Walters ET, Price TJ. MNK-eIF4E signalling is a highly conserved mechanism for sensory neuron axonal plasticity: evidence from Aplysia californica. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190289. [PMID: 31544610 DOI: 10.1098/rstb.2019.0289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Injury to sensory neurons causes an increase in the excitability of these cells leading to enhanced action potential generation and a lowering of spike threshold. This type of sensory neuron plasticity occurs across vertebrate and invertebrate species and has been linked to the development of both acute and persistent pain. Injury-induced plasticity in sensory neurons relies on localized changes in gene expression that occur at the level of mRNA translation. Many different translation regulation signalling events have been defined and these signalling events are thought to selectively target subsets of mRNAs. Recent evidence from mice suggests that the key signalling event for nociceptor plasticity is mitogen-activated protein kinase-interacting kinase (MNK) -mediated phosphorylation of eukaryotic translation initiation factor (eIF) 4E. To test the degree to which this is conserved in other species, we used a previously described sensory neuron plasticity model in Aplysia californica. We find, using a variety of pharmacological tools, that MNK signalling is crucial for axonal hyperexcitability in sensory neurons from Aplysia. We propose that MNK-eIF4E signalling is a core, evolutionarily conserved, signalling module that controls nociceptor plasticity. This finding has important implications for the therapeutic potential of this target, and it provides interesting clues about the evolutionary origins of mechanisms important for pain-related plasticity. This article is part of the Theo Murphy meeting issue 'Evolution of mechanisms and behaviour important for pain'.
Collapse
Affiliation(s)
- Sandra M Mihail
- Program in Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Andi Wangzhou
- Program in Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Kumud K Kunjilwar
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX 77030, USA
| | - Jamie K Moy
- Program in Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Gregory Dussor
- Program in Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UTHealth, 6431 Fannin Street, Houston, TX 77030, USA
| | - Theodore J Price
- Program in Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| |
Collapse
|
30
|
Saleem M, Deal B, Nehl E, Janjic JM, Pollock JA. Nanomedicine-driven neuropathic pain relief in a rat model is associated with macrophage polarity and mast cell activation. Acta Neuropathol Commun 2019; 7:108. [PMID: 31277709 PMCID: PMC6612172 DOI: 10.1186/s40478-019-0762-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/26/2019] [Indexed: 12/13/2022] Open
Abstract
We explored the immune neuropathology underlying multi-day relief from neuropathic pain in a rat model initiated at the sciatic nerve, by using a nanoemulsion-based nanomedicine as a biological probe. The nanomedicine is theranostic: both therapeutic (containing celecoxib drug) and diagnostic (containing near-infrared fluorescent (NIRF) dye) and is small enough to be phagocytosed by circulating monocytes. We show that pain-like behavior reaches a plateau of maximum hypersensitivity 8 days post-surgery, and is the rationale for intravenous delivery at this time-point. Pain relief is evident within 24 h, lasting approximately 6 days. The ipsilateral sciatic nerve and associated L4 and L5 dorsal root ganglia (DRG) tissue of both nanomedicine and control (nanoemulsion without drug) treated animals was investigated by immunofluorescence and confocal microscopy at the peak of pain relief (day-12 post-surgery), and when pain-like hypersensitivity returns (day-18 post-surgery). At day-12, a significant reduction of infiltrating macrophages, mast cells and mast cell degranulation was observed at the sciatic nerve following treatment. In the DRG, there was no effect of treatment at both day-12 and day-18. Conversely, at the DRG, there is a significant increase in macrophage infiltration and mast cell degranulation at day-18. The treatment effect on immune pathology in the sciatic nerve was investigated further by assessing the expression of macrophage cyclooxygenase-2 (COX-2)-the drug target-and extracellular prostaglandin E2 (PGE2), as well as the proportion of M1 (pro-inflammatory) and M2 (anti-inflammatory) macrophages. At day-12, there is a significant reduction of COX-2 positive macrophages, extracellular PGE2, and a striking reversal of macrophage polarity. At day-18, these measures revert to levels observed in control-treated animals. Here we present a new paradigm of immune neuropathology research, by employing a nanomedicine to target a mechanism of neuropathic pain-resulting in long-lasting pain relief--whilst revealing novel immune pathology at the injured nerve and associated DRG.
Collapse
Affiliation(s)
- Muzamil Saleem
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - Brooke Deal
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - Emily Nehl
- Jacobs School of Medicine and Biomedical Sciences, University of Buffalo, Buffalo, NY USA
| | - Jelena M. Janjic
- Graduate School of Pharmacy, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| | - John A. Pollock
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA USA
- Chronic Pain Research Consortium, Duquesne University, Pittsburgh, PA USA
| |
Collapse
|
31
|
Discussion: Therapeutic Role of Fat Injection in the Treatment of Recalcitrant Migraine Headaches. Plast Reconstr Surg 2019; 143:886-887. [PMID: 30817664 DOI: 10.1097/prs.0000000000005356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Ho IH, Liu X, Zou Y, Liu T, Hu W, Chan H, Tian Y, Zhang Y, Li Q, Kou S, Chan CS, Gin T, Cheng CH, Wong SH, Yu J, Zhang L, Wu WK, Chan MT. A Novel Peptide Interfering with proBDNF-Sortilin Interaction Alleviates Chronic Inflammatory Pain. Theranostics 2019; 9:1651-1665. [PMID: 31037129 PMCID: PMC6485195 DOI: 10.7150/thno.29703] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/27/2019] [Indexed: 12/26/2022] Open
Abstract
Rationale: Brain-derived neurotrophic factor (BDNF) is a key mediator in the development of chronic pain. Sortilin is known to interact with proBDNF and regulate its activity-dependent secretion in cortical neurons. In a rat model of inflammatory pain with intraplantar injection of complete Freund's adjuvant (CFA), we examined the functional role of proBDNF-sortilin interaction in dorsal root ganglia (DRG). Methods: Expression and co-localization of BDNF and sortilin were determined by immunofluorescence. ProBDNF-sortilin interaction interface was mapped using co-immunoprecipitation and bimolecular fluorescence complementation assay. The analgesic effect of intrathecal injection of a synthetic peptide interfering with proBDNF-sortilin interaction was measured in the CFA model. Results: BDNF and sortilin were co-localized and their expression was significantly increased in ipsilateral L4/5 DRG upon hind paw CFA injection. In vivo adeno-associated virus-mediated knockdown of sortilin-1 in L5 DRG alleviated pain-like responses. Mapping by serial deletions in the BDNF prodomain indicated that amino acid residues 71-100 supported the proBDNF-sortilin interaction. A synthetic peptide identical to amino acid residues 89-98 of proBDNF, as compared with scrambled peptide, was found to interfere with proBDNF-sortilin interaction, inhibit activity-dependent release of BDNF in vitro and reduce CFA-induced mechanical allodynia and heat hyperalgesia in vivo. The synthetic peptide also interfered with capsaicin-induced phosphorylation of extracellular signal-regulated kinases in ipsilateral spinal cord of CFA-injected rats. Conclusions: Sortilin-mediated secretion of BDNF from DRG neurons contributes to CFA-induced inflammatory pain. Interfering with proBDNF-sortilin interaction reduced activity-dependent release of BDNF and might serve as a therapeutic approach for chronic inflammatory pain.
Collapse
|
33
|
Megat S, Ray PR, Moy JK, Lou TF, Barragán-Iglesias P, Li Y, Pradhan G, Wanghzou A, Ahmad A, Burton MD, North RY, Dougherty PM, Khoutorsky A, Sonenberg N, Webster KR, Dussor G, Campbell ZT, Price TJ. Nociceptor Translational Profiling Reveals the Ragulator-Rag GTPase Complex as a Critical Generator of Neuropathic Pain. J Neurosci 2019; 39:393-411. [PMID: 30459229 PMCID: PMC6335757 DOI: 10.1523/jneurosci.2661-18.2018] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 12/11/2022] Open
Abstract
Nociceptors, sensory neurons in the DRG that detect damaging or potentially damaging stimuli, are key drivers of neuropathic pain. Injury to these neurons causes activation of translation regulation signaling, including the mechanistic target of rapamycin complex 1 (mTORC1) and mitogen-activated protein kinase interacting kinase (MNK) eukaryotic initiation factor (eIF) 4E pathways. This is a mechanism driving changes in excitability of nociceptors that is critical for the generation of chronic pain states; however, the mRNAs that are translated to lead to this plasticity have not been elucidated. To address this gap in knowledge, we used translating ribosome affinity purification in male and female mice to comprehensively characterize mRNA translation in Scn10a-positive nociceptors in chemotherapy-induced neuropathic pain (CIPN) caused by paclitaxel treatment. This unbiased method creates a new resource for the field, confirms many findings in the CIPN literature and also find extensive evidence for new target mechanisms that may cause CIPN. We provide evidence that an underlying mechanism of CIPN is sustained mTORC1 activation driven by MNK1-eIF4E signaling. RagA, a GTPase controlling mTORC1 activity, is identified as a novel target of MNK1-eIF4E signaling. This demonstrates a novel translation regulation signaling circuit wherein MNK1-eIF4E activity drives mTORC1 via control of RagA translation. CIPN and RagA translation are strongly attenuated by genetic ablation of eIF4E phosphorylation, MNK1 elimination or treatment with the MNK inhibitor eFT508. We identify a novel translational circuit for the genesis of neuropathic pain caused by chemotherapy with important implications for therapeutics.SIGNIFICANCE STATEMENT Neuropathic pain affects up to 10% of the population, but its underlying mechanisms are incompletely understood, leading to poor treatment outcomes. We used translating ribosome affinity purification technology to create a comprehensive translational profile of DRG nociceptors in naive mice and at the peak of neuropathic pain induced by paclitaxel treatment. We reveal new insight into how mechanistic target of rapamycin complex 1 is activated in neuropathic pain pointing to a key role of MNK1-eIF4E-mediated translation of a complex of mRNAs that control mechanistic target of rapamycin complex 1 signaling at the surface of the lysosome. We validate this finding using genetic and pharmacological techniques. Our work strongly suggests that MNK1-eIF4E signaling drives CIPN and that a drug in human clinical trials, eFT508, may be a new therapeutic for neuropathic pain.
Collapse
Affiliation(s)
- Salim Megat
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Pradipta R Ray
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Jamie K Moy
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Tzu-Fang Lou
- University of Texas at Dallas, Department of Biological Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Paulino Barragán-Iglesias
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Yan Li
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Grishma Pradhan
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Andi Wanghzou
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Ayesha Ahmad
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Michael D Burton
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Robert Y North
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Patrick M Dougherty
- University of Texas M.D. Anderson Cancer Center, Department of Anesthesia and Pain Medicine, 1400 Holcombe Boulevard, Houston, TX 77030
| | - Arkady Khoutorsky
- McGill University, Department of Anesthesia, 001 Boulevard Décarie C05.2000, Montréal, QC H4A 3J1, Canada
| | - Nahum Sonenberg
- McGill University, Goodman Cancer Research Center, Department of Biochemistry, 1160 Pine Ave W, Montreal, QC H3A 1A3, Canada, and
| | - Kevin R Webster
- eFFECTOR Therapeutics, 11180 Roselle St, San Diego, CA 92121
| | - Gregory Dussor
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| | - Zachary T Campbell
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080,
- University of Texas at Dallas, Department of Biological Sciences, 800 Campbell Rd, Richardson, Texas, 75080
| | - Theodore J Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 Campbell Rd, Richardson, Texas, 75080,
- University of Texas at Dallas, Center for Advanced Pain Studies, 800 Campbell Rd, Richardson, Texas, 75080
| |
Collapse
|
34
|
Kober KM, Olshen A, Conley YP, Schumacher M, Topp K, Smoot B, Mazor M, Chesney M, Hammer M, Paul SM, Levine JD, Miaskowski C. Expression of mitochondrial dysfunction-related genes and pathways in paclitaxel-induced peripheral neuropathy in breast cancer survivors. Mol Pain 2018; 14:1744806918816462. [PMID: 30426838 PMCID: PMC6293373 DOI: 10.1177/1744806918816462] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Paclitaxel is one of the most commonly used drugs to treat breast cancer. Its
major dose-limiting toxicity is paclitaxel-induced peripheral neuropathy
(PIPN). PIPN persists into survivorship and has a negative impact on
patient’s mood, functional status, and quality of life. No interventions are
available to treat PIPN. A critical barrier to the development of
efficacious interventions is the lack of understanding of the mechanisms
that underlie PIPN. Mitochondrial dysfunction has been evaluated in
preclinical studies as a hypothesized mechanism for PIPN, but clinical data
to support this hypothesis are limited. The purpose of this pilot study was
to evaluate for differential gene expression and perturbed pathways between
breast cancer survivors with and without PIPN. Methods Gene expression in peripheral blood was assayed using RNA-seq. Differentially
expressed genes (DEG) and pathways associated with mitochondrial dysfunction
were identified between survivors who received paclitaxel and did (n = 25)
and did not (n = 25) develop PIPN. Results Breast cancer survivors with PIPN were significantly older; more likely to be
unemployed; reported lower alcohol use; had a higher body mass index and
poorer functional status; and had a higher number of lower extremity sites
with loss of light touch, cold, and pain sensations and higher vibration
thresholds. No between-group differences were found in the cumulative dose
of paclitaxel received or in the percentage of patients who had a dose
reduction or delay due to PIPN. Five DEGs and nine perturbed pathways were
associated with mitochondrial dysfunction related to oxidative stress, iron
homeostasis, mitochondrial fission, apoptosis, and autophagy. Conclusions This study is the first to provide molecular evidence that a number of
mitochondrial dysfunction mechanisms identified in preclinical models of
various types of neuropathic pain including chemotherapy-induced peripheral
neuropathy are found in breast cancer survivors with persistent PIPN and
suggest genes for validation and as potential therapeutic targets.
Collapse
Affiliation(s)
- Kord M Kober
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Adam Olshen
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yvettte P Conley
- 3 School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark Schumacher
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Kimberly Topp
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Betty Smoot
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Mazor
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Margaret Chesney
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Marilyn Hammer
- 4 Department of Nursing, Mount Sinai Medical Center, New York, NY, USA
| | - Steven M Paul
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- 2 School of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Christine Miaskowski
- 1 School of Nursing, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
35
|
JUNG K, KIM DH, RYU JY. Relationship between concealment of emotions at work and musculoskeletal symptoms: results from the third Korean working conditions survey. INDUSTRIAL HEALTH 2018; 56:367-372. [PMID: 29760301 PMCID: PMC6172181 DOI: 10.2486/indhealth.2017-0224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, we explored the relationship between concealing emotions at work and musculoskeletal symptoms in Korean workers using data from a national, population-based survey. Data were obtained from the third Korean Working Conditions Survey in 2011. We investigated the prevalence of three musculoskeletal symptoms ("back pain", "pain in the upper extremities", and "pain in the lower extremities"). Multiple logistic regression analysis was also performed to determine odds ratios (ORs) for musculoskeletal symptoms according to concealing emotions at work, adjusting for socioeconomic factors. In both sexes, the emotion-concealing group showed a significantly higher prevalence of "pain in the upper extremities" and "pain in the lower extremities" than the non-emotion-concealing group. For back pain, male-but not female-workers who concealed their emotions showed a higher prevalence than their non-emotion-concealing counterparts; the difference was statistically significant. Adjusted ORs for musculoskeletal symptoms (excluding "back pain" for female workers) in the emotion-concealing group were significantly higher. Our study suggests that concealment of emotions is closely associated with musculoskeletal symptoms, and the work environment should operate in consideration not only of the physical health work condition of workers but also of their emotional efforts including concealing emotion at work.
Collapse
Affiliation(s)
- Kyungyong JUNG
- Department of Occupational and Environmental Medicine, Inje
University Haeundae Paik Hospital, Republic of Korea
| | - Dae Hwan KIM
- Department of Occupational and Environmental Medicine, Inje
University Haeundae Paik Hospital, Republic of Korea
| | - Ji Young RYU
- Department of Occupational and Environmental Medicine, Inje
University Haeundae Paik Hospital, Republic of Korea
| |
Collapse
|
36
|
Barry AM, Sondermann JR, Sondermann JH, Gomez-Varela D, Schmidt M. Region-Resolved Quantitative Proteome Profiling Reveals Molecular Dynamics Associated With Chronic Pain in the PNS and Spinal Cord. Front Mol Neurosci 2018; 11:259. [PMID: 30154697 PMCID: PMC6103001 DOI: 10.3389/fnmol.2018.00259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/10/2018] [Indexed: 12/27/2022] Open
Abstract
To obtain a thorough understanding of chronic pain, large-scale molecular mapping of the pain axis at the protein level is necessary, but has not yet been achieved. We applied quantitative proteome profiling to build a comprehensive protein compendium of three regions of the pain neuraxis in mice: the sciatic nerve (SN), the dorsal root ganglia (DRG), and the spinal cord (SC). Furthermore, extensive bioinformatics analysis enabled us to reveal unique protein subsets which are specifically enriched in the peripheral nervous system (PNS) and SC. The immense value of these datasets for the scientific community is highlighted by validation experiments, where we monitored protein network dynamics during neuropathic pain. Here, we resolved profound region-specific differences and distinct changes of PNS-enriched proteins under pathological conditions. Overall, we provide a unique and validated systems biology proteome resource (summarized in our online database painproteome.em.mpg.de), which facilitates mechanistic insights into somatosensory biology and chronic pain—a prerequisite for the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Allison M Barry
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Julia R Sondermann
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Jan-Hendrik Sondermann
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - David Gomez-Varela
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| | - Manuela Schmidt
- Max-Planck Institute of Experimental Medicine, Somatosensory Signaling and Systems Biology Group, Goettingen, Germany
| |
Collapse
|
37
|
Maiarù M, Leese C, Certo M, Echeverria-Altuna I, Mangione AS, Arsenault J, Davletov B, Hunt SP. Selective neuronal silencing using synthetic botulinum molecules alleviates chronic pain in mice. Sci Transl Med 2018; 10:10/450/eaar7384. [DOI: 10.1126/scitranslmed.aar7384] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/20/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
|
38
|
Moy JK, Kuhn JL, Szabo-Pardi TA, Pradhan G, Price TJ. eIF4E phosphorylation regulates ongoing pain, independently of inflammation, and hyperalgesic priming in the mouse CFA model. NEUROBIOLOGY OF PAIN 2018; 4:45-50. [PMID: 30211343 PMCID: PMC6130839 DOI: 10.1016/j.ynpai.2018.03.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CFA-induced inflammation resolves more rapidly in mice lacking MNK-eIF4E signaling. Ongoing pain responses are reduced in mice lacking MNK-eIF4E signaling while inflammatory responses are unchanged. Hyperalgesic priming in CFA is absent in mice lacking MNK-eIF4E signaling.
Mitogen activated protein kinase-interacting kinase (MNK)-mediated phosphorylation of the mRNA cap binding protein eIF4E controls the translation of a subset of mRNAs that are involved in neuronal and immune plasticity. MNK-eIF4E signaling plays a crucial role in the response of nociceptors to injury and/or inflammatory mediators. This signaling pathway controls changes in excitability that drive acute pain sensitization as well as the translation of mRNAs, such as brain-derived neurotrophic factor (BDNF), that enhance plasticity between dorsal root ganglion (DRG) nociceptors and second order neurons in the spinal dorsal horn. However, since MNK-eIF4E signaling also regulates immune responses, we sought to assess whether decreased pain responses are coupled to decreased inflammatory responses in mice lacking MNK-eIF4E signaling. Our results show that while inflammation resolves more quickly in mice lacking MNK-eIF4E signaling, peak inflammatory responses measured with infrared imaging are not altered in the absence of this signaling pathway even though pain responses are significantly decreased. We also find that inflammation fails to produce hyperalgesic priming, a model for the transition to a chronic pain state, in mice lacking MNK-eIF4E signaling. We conclude that MNK-eIF4E signaling is a critical signaling pathway for the generation of nociceptive plasticity leading to acute pain responses to inflammation and the development of hyperalgesic priming.
Collapse
Affiliation(s)
- Jamie K Moy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Jasper L Kuhn
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Thomas A Szabo-Pardi
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Grishma Pradhan
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
39
|
Megat S, Price TJ. Therapeutic opportunities for pain medicines via targeting of specific translation signaling mechanisms. NEUROBIOLOGY OF PAIN 2018; 4:8-19. [PMID: 30211342 PMCID: PMC6130820 DOI: 10.1016/j.ynpai.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A common underlying cause of chronic pain is a phenotypic change in nociceptors in the peripheral nervous system. Translation regulation signaling pathways control gene expression changes that drive chronic pain. We focus on developments in pharmacology around translation regulation signaling that may yield new pain therapeutics.
As the population of the world ages and as more and more people survive diseases that used to be primary causes of mortality, the incidence of severe chronic pain in most of the world has risen dramatically. This type of pain is very difficult to treat and the opioid overdose epidemic that has become a leading cause of death in the United States and other parts of the world highlights the urgent need to develop new pain therapeutics. A common underlying cause of severe chronic pain is a phenotypic change in pain-sensing neurons in the peripheral nervous system called nociceptors. These neurons play a vital role in detecting potentially injurious stimuli, but when these neurons start to detect very low levels of inflammatory meditators or become spontaneously active, they send spurious pain signals to the brain that are significant drivers of chronic pain. An important question is what drives this phenotypic shift in nociceptors from quiescence under most conditions to sensitization to a broad variety of stimuli and spontaneous activity. The goal of this review is to discuss the critical role that specific translation regulation signaling pathways play in controlling gene expression changes that drive nociceptor sensitization and may underlie the development of spontaneous activity. The focus will be on advances in technologies that allow for identification of such targets and on developments in pharmacology around translation regulation signaling that may yield new pain therapeutics. A key advantage of pharmacological manipulation of these signaling events is that they may reverse phenotypic shifts in nociceptors that drive chronic pain thereby creating the first generation of disease modifying drugs for chronic pain.
Collapse
Affiliation(s)
- Salim Megat
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, USA
| |
Collapse
|
40
|
Eller-Smith OC, Nicol AL, Christianson JA. Potential Mechanisms Underlying Centralized Pain and Emerging Therapeutic Interventions. Front Cell Neurosci 2018; 12:35. [PMID: 29487504 PMCID: PMC5816755 DOI: 10.3389/fncel.2018.00035] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/30/2018] [Indexed: 12/11/2022] Open
Abstract
Centralized pain syndromes are associated with changes within the central nervous system that amplify peripheral input and/or generate the perception of pain in the absence of a noxious stimulus. Examples of idiopathic functional disorders that are often categorized as centralized pain syndromes include fibromyalgia, chronic pelvic pain syndromes, migraine, and temporomandibular disorder. Patients often suffer from widespread pain, associated with more than one specific syndrome, and report fatigue, mood and sleep disturbances, and poor quality of life. The high degree of symptom comorbidity and a lack of definitive underlying etiology make these syndromes notoriously difficult to treat. The main purpose of this review article is to discuss potential mechanisms of centrally-driven pain amplification and how they may contribute to increased comorbidity, poorer pain outcomes, and decreased quality of life in patients diagnosed with centralized pain syndromes, as well as discuss emerging non-pharmacological therapies that improve symptomology associated with these syndromes. Abnormal regulation and output of the hypothalamic-pituitary-adrenal (HPA) axis is commonly associated with centralized pain disorders. The HPA axis is the primary stress response system and its activation results in downstream production of cortisol and a dampening of the immune response. Patients with centralized pain syndromes often present with hyper- or hypocortisolism and evidence of altered downstream signaling from the HPA axis including increased Mast cell (MC) infiltration and activation, which can lead to sensitization of nearby nociceptive afferents. Increased peripheral input via nociceptor activation can lead to “hyperalgesic priming” and/or “wind-up” and eventually to central sensitization through long term potentiation in the central nervous system. Other evidence of central modifications has been observed through brain imaging studies of functional connectivity and magnetic resonance spectroscopy and are shown to contribute to the widespreadness of pain and poor mood in patients with fibromyalgia and chronic urological pain. Non-pharmacological therapeutics, including exercise and cognitive behavioral therapy (CBT), have shown great promise in treating symptoms of centralized pain.
Collapse
Affiliation(s)
- Olivia C Eller-Smith
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Andrea L Nicol
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Julie A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
41
|
Moy JK, Khoutorsky A, Asiedu MN, Dussor G, Price TJ. eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons. Front Cell Neurosci 2018; 12:29. [PMID: 29467623 PMCID: PMC5808250 DOI: 10.3389/fncel.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/23/2018] [Indexed: 01/19/2023] Open
Abstract
Plasticity in dorsal root ganglion (DRG) neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5′ cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF) signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A) and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.
Collapse
Affiliation(s)
- Jamie K Moy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montréal, QC, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Marina N Asiedu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|