1
|
Shao M, Botvinov J, Banerjee D, Girirajan S, Lüscher B. Transcriptome signatures of the medial prefrontal cortex underlying GABAergic control of resilience to chronic stress exposure. Mol Psychiatry 2025; 30:2197-2209. [PMID: 39550415 PMCID: PMC12014471 DOI: 10.1038/s41380-024-02832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
Analyses of postmortem human brains and preclinical studies of rodents have identified somatostatin (SST)-positive, dendrite-targeting GABAergic interneurons as key elements that regulate the vulnerability to stress-related psychiatric disorders. Conversely, genetically induced disinhibition of SST neurons (induced by Cre-mediated deletion of the γ2 GABAA receptor subunit gene selectively from SST neurons, SSTCre:γ2f/f mice) results in stress resilience. Similarly, chronic chemogenetic activation of SST neurons in the medial prefrontal cortex (mPFC) results in stress resilience but only in male and not in female mice. Here, we used RNA sequencing of the mPFC of SSTCre:γ2f/f mice to characterize the transcriptome changes underlying GABAergic control of stress resilience. We found that stress resilience of male but not female SSTCre:γ2f/f mice is characterized by resilience to chronic stress-induced transcriptome changes in the mPFC. Interestingly, the transcriptome of non-stressed SSTCre:γ2f/f (stress-resilient) male mice resembled that of chronic stress-exposed SSTCre (stress-vulnerable) mice. However, the behavior and the serum corticosterone levels of non-stressed SSTCre:γ2f/f mice showed no signs of physiological stress. Most strikingly, chronic stress exposure of SSTCre:γ2f/f mice was associated with an almost complete reversal of their chronic stress-like transcriptome signature, along with pathway changes suggesting stress-induced enhancement of mRNA translation. Behaviorally, the SSTCre:γ2f/f mice were not only resilient to chronic stress-induced anhedonia - they also showed an inversed, anxiolytic-like behavioral response to chronic stress exposure that mirrored the chronic stress-induced reversal of the chronic stress-like transcriptome signature. We conclude that GABAergic dendritic inhibition by SST neurons exerts bidirectional control over behavioral vulnerability and resilience to chronic stress exposure that is mirrored in bidirectional changes in the expression of putative stress resilience genes, through a sex-specific brain substrate.
Collapse
Affiliation(s)
- Meiyu Shao
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Julia Botvinov
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Deepro Banerjee
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Santhosh Girirajan
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Bernhard Lüscher
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
2
|
Zhang L, Lv Y, Ma M, Lv J, Chen J, Lei S, Man Y, Xing G, Wang Y. The identification and validation of histone acetylation-related biomarkers in depression disorder based on bioinformatics and machine learning approaches. Front Neurosci 2025; 19:1479616. [PMID: 40370665 PMCID: PMC12076168 DOI: 10.3389/fnins.2025.1479616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 04/07/2025] [Indexed: 05/16/2025] Open
Abstract
Background Some studies indicated that histone modification may be involved in depression disorder (DD). The maintenance of the histone acetylation state is the work of histone acetyltransferase (HAT) and histone deacetylase (HDAC), which is thought to be a potential diagnostic biomarker of depression. However, it is still unknown how histone acetylation-related genes (HAC-RGs) contribute to the onset and progression of DD. Methods GSE76826 and GSE98793were obtained from the Gene Expression Omnibus (GEO) database, HAC-RGs were acquired from the GeneCards database. Initially, the differentially expressed genes (DEGs) in GSE76826 were investigated. We used weighted gene co-expression network analysis (WGCNA) to screen key module genes. Candidate genes were selected by intersecting DEGs, key module genes, and HAC-RGs, followed by functional analysis. Two machine learning algorithms were used to identify hub genes, which were used for drug prediction, immunological infiltration studies, nomogram construction, and regulatory network building. The expression levels were verified using the GSE76826 and GSE98793 datasets. Hub gene expression levels in the clinical samples were verified using reverse transcription quantitative PCR (RT-qPCR). Results The 23 candidate genes were obtained by intersecting 2,316 DEGs, 1,010 HAC-RGs and 2,617 key module genes. Three hub genes (JDP2, ALOX5, and KPNB1) were gained by two machine learning algorithms. The nomogram constructed based on these three hub genes showed high predictive accuracy. Additionally, the three hub genes were enriched in the kegg_ribosome. The 9 different immune cells were identified in GSE76826, which were associated with three hub genes. A hub gene-drug network (98 nodes, 106 edges) and an lncRNA-miRNA-mRNA network (56 nodes, 87 edges), were built using the database. The expression level verification indicated that, with the exception of the KPNB1 gene, the DD group had higher levels of JDP2 and ALOX5 and that the expression patterns in GSE76826 and GSE98793 were consistent, with RT-qPCR confirming higher ALOX5 and JDP2 expression in DD samples. Conclusion This study identified three hub genes (JDP2, ALOX5, and KPNB1) associated with histone acetylation, offering new insight into the diagnosis and treatment of DD.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Neurology, Anhui No. 2 Provincial People’s Hospital, Hefei, China
| | - YuJing Lv
- Graduate School, Bengbu Medical University, Bengbu, China
| | - Mengqing Ma
- Graduate School, Bengbu Medical University, Bengbu, China
| | - Jile Lv
- Graduate School, Bengbu Medical University, Bengbu, China
| | - Jie Chen
- Department of Psychiatry, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China
| | - Shang Lei
- Graduate School, Bengbu Medical University, Bengbu, China
| | - Yi Man
- Department of Oncology, Anhui Jimin Cancer Hospital, Hefei, China
| | - Guimei Xing
- Department of Education, Anhui No. 2 Provincial People’s Hospital, Hefei, China
| | - Yu Wang
- Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Kukla-Bartoszek M, Piechota M, Suski M, Hajto J, Borczyk M, Basta-Kaim A, Głombik K. Integrated Profiling Identifies Long-Term Molecular Consequences of Prenatal Dexamethasone Treatment in the Rat Brain-Potential Triggers of Depressive Phenotype and Cognitive Impairment. Mol Neurobiol 2025; 62:5183-5201. [PMID: 39528842 PMCID: PMC11880045 DOI: 10.1007/s12035-024-04586-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Prenatal excess of glucocorticoids (GCs) is considered to be one of the highly impacting factors contributing to depression development. Although GCs are crucial for normal fetal development and their administration (mainly dexamethasone, DEX) is a life-saving procedure for those at risk of preterm delivery, exposure to excess levels of GCs during pregnancy can yield detrimental consequences. Therefore, we aimed to systematically investigate the brain molecular alterations triggered by prenatal DEX administration. We used a rat model of depression based on prenatal exposure to DEX and performed integrative multi-level methylomic, transcriptomic, and proteomic analyses of adult rats' brains (i.e., frontal cortex (FCx) and hippocampus (Hp)) to identify the outcomes of DEX action. Each of the investigated levels was significantly affected by DEX in the long-term manner. Particularly, we found 200 CpG islands to be differentially methylated in the FCx and 200 in the Hp of prenatally DEX-treated rats. Global transcriptomic analysis uncovered differential expression of transcripts mostly in FCx (271) and 1 in Hp, while proteomic study identified 146 differentially expressed proteins in FCx and 123 in Hp. Among the identified enriched molecular networks, we found altered pathways involved in synaptic plasticity (i.e., cAMP, calcium, and Wnt signaling pathways or tight junctions and adhesion molecules), which may contribute to cognitive impairment, observed in DEX-treated animals. Moreover, in the FCx, DEX administration in the prenatal period downregulates the expression of ribosome protein genes associated both with large and small ribosomal subunit assembly which can lead to a global decrease in translation and protein synthesis processes and, indirectly, alterations in the neurotransmission process.
Collapse
Affiliation(s)
- Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Marcin Piechota
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Maciej Suski
- Department of Pharmacology, Jagiellonian University Medical College, Faculty of Medicine, Grzegórzecka 16, 31-531, Kraków, Poland
- Centre for the Development of Therapies for Civilization and Age-Related Diseases CDT-CARD, Jagiellonian University Medical College, Skawińska 8, 31-066, Kraków, Poland
| | - Jacek Hajto
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland.
| |
Collapse
|
4
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
5
|
Sharma V, Swaminathan K, Shukla R. The Ribosome Hypothesis: Decoding Mood Disorder Complexity. Int J Mol Sci 2024; 25:2815. [PMID: 38474062 PMCID: PMC10931790 DOI: 10.3390/ijms25052815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Several types of mood disorders lie along a continuum, with nebulous boundaries between them. Understanding the mechanisms that contribute to mood disorder complexity is critical for effective treatment. However, present treatments are largely centered around neurotransmission and receptor-based hypotheses, which, given the high instance of treatment resistance, fail to adequately explain the complexities of mood disorders. In this opinion piece, based on our recent results, we propose a ribosome hypothesis of mood disorders. We suggest that any hypothesis seeking to explain the diverse nature of mood disorders must incorporate infrastructure diversity that results in a wide range of effects. Ribosomes, with their mobility across neurites and complex composition, have the potential to become specialized during stress; thus, ribosome diversity and dysregulation are well suited to explaining mood disorder complexity. Here, we first establish a framework connecting ribosomes to the current state of knowledge associated with mood disorders. Then, we describe the potential mechanisms through which ribosomes could homeostatically regulate systems to manifest diverse mood disorder phenotypes and discuss approaches for substantiating the ribosome hypothesis. Investigating these mechanisms as therapeutic targets holds promise for transdiagnostic avenues targeting mood disorders.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA;
- Department of Neurosciences, University of Wyoming, Laramie, WY 82071, USA
| | - Karthik Swaminathan
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA;
- Department of Neurosciences, University of Wyoming, Laramie, WY 82071, USA
| | - Rammohan Shukla
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA;
- Department of Neurosciences, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|