1
|
Sabbah DA, Hajjo R, Sweidan K. Review on Epidermal Growth Factor Receptor (EGFR) Structure, Signaling Pathways, Interactions, and Recent Updates of EGFR Inhibitors. Curr Top Med Chem 2021; 20:815-834. [PMID: 32124699 DOI: 10.2174/1568026620666200303123102] [Citation(s) in RCA: 295] [Impact Index Per Article: 73.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
The epidermal growth factor receptor (EGFR) belongs to the ERBB family of tyrosine kinase receptors. EGFR signaling cascade is a key regulator in cell proliferation, differentiation, division, survival, and cancer development. In this review, the EGFR structure and its mutations, signaling pathway, ligand binding and EGFR dimerization, EGF/EGFR interaction, and the progress in the development of EGFR inhibitors have been explored.
Collapse
Affiliation(s)
- Dima A Sabbah
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Rima Hajjo
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman 11733, Jordan
| | - Kamal Sweidan
- Department of Chemistry, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Lockey C, Edwards RJ, Roper DI, Dixon AM. The Extracellular Domain of Two-component System Sensor Kinase VanS from Streptomyces coelicolor Binds Vancomycin at a Newly Identified Binding Site. Sci Rep 2020; 10:5727. [PMID: 32235931 PMCID: PMC7109055 DOI: 10.1038/s41598-020-62557-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/11/2020] [Indexed: 11/24/2022] Open
Abstract
The glycopeptide antibiotic vancomycin has been widely used to treat infections of Gram-positive bacteria including Clostridium difficile and methicillin-resistant Staphylococcus aureus. However, since its introduction, high level vancomycin resistance has emerged. The genes responsible require the action of the two-component regulatory system VanSR to induce expression of resistance genes. The mechanism of detection of vancomycin by this two-component system has yet to be elucidated. Diverging evidence in the literature supports activation models in which the VanS protein binds either vancomycin, or Lipid II, to induce resistance. Here we investigated the interaction between vancomycin and VanS from Streptomyces coelicolor (VanSSC), a model Actinomycete. We demonstrate a direct interaction between vancomycin and purified VanSSC, and traced these interactions to the extracellular region of the protein, which we reveal adopts a predominantly α-helical conformation. The VanSSC-binding epitope within vancomycin was mapped to the N-terminus of the peptide chain, distinct from the binding site for Lipid II. In targeting a separate site on vancomycin, the effective VanS ligand concentration includes both free and lipid-bound molecules, facilitating VanS activation. This is the first molecular description of the VanS binding site within vancomycin, and could direct engineering of future therapeutics.
Collapse
Affiliation(s)
- Christine Lockey
- MOAC Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard J Edwards
- Medical Research Council Doctoral Training Centre, University of Warwick, Coventry, CV4 7AL, UK
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
3
|
Farina B, Di Sorbo G, Chambery A, Caporale A, Leoni G, Russo R, Mascanzoni F, Raimondo D, Fattorusso R, Ruvo M, Doti N. Structural and biochemical insights of CypA and AIF interaction. Sci Rep 2017; 7:1138. [PMID: 28442737 PMCID: PMC5430804 DOI: 10.1038/s41598-017-01337-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/28/2017] [Indexed: 01/08/2023] Open
Abstract
The Cyclophilin A (CypA)/Apoptosis Inducing Factor (AIF) complex is implicated in the DNA degradation in response to various cellular stress conditions, such as oxidative stress, cerebral hypoxia-ischemia and traumatic brain injury. The pro-apoptotic form of AIF (AIF(Δ1-121)) mainly interacts with CypA through the amino acid region 370–394. The AIF(370-394) synthetic peptide inhibits complex formation in vitro by binding to CypA and exerts neuroprotection in a model of glutamate-mediated oxidative stress. Here, the binding site of AIF(Δ1-121) and AIF(370-394) on CypA has been mapped by NMR spectroscopy and biochemical studies, and a molecular model of the complex has been proposed. We show that AIF(370-394) interacts with CypA on the same surface recognized by AIF(Δ1-121) protein and that the region is very close to the CypA catalytic pocket. Such region partially overlaps with the binding site of cyclosporin A (CsA), the strongest catalytic inhibitor of CypA. Our data point toward distinct CypA structural determinants governing the inhibitor selectivity and the differential biological effects of AIF and CsA, and provide new structural insights for designing CypA/AIF selective inhibitors with therapeutic relevance in neurodegenerative diseases.
Collapse
Affiliation(s)
- Biancamaria Farina
- Istituto di Biostrutture e Bioimmagini, C.N.R. and CIRPEB, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Gianluigi Di Sorbo
- Istituto di Biostrutture e Bioimmagini, C.N.R. and CIRPEB, Via Mezzocannone 16, 80134, Napoli, Italy.,Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 46, 81100, Caserta, Italy
| | - Angela Chambery
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 46, 81100, Caserta, Italy
| | - Andrea Caporale
- Istituto di Biostrutture e Bioimmagini, C.N.R. and CIRPEB, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Guido Leoni
- Nouscom s.r.l. via di Castel Romano 100, 00128, Roma, Italy
| | - Rosita Russo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 46, 81100, Caserta, Italy
| | - Fabiola Mascanzoni
- Istituto di Biostrutture e Bioimmagini, C.N.R. and CIRPEB, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Domenico Raimondo
- Sapienza, Università di Roma- Viale Regina Elena 324, 00161, Roma, Italy
| | - Roberto Fattorusso
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania Luigi Vanvitelli, via Vivaldi 46, 81100, Caserta, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, C.N.R. and CIRPEB, Via Mezzocannone 16, 80134, Napoli, Italy
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini, C.N.R. and CIRPEB, Via Mezzocannone 16, 80134, Napoli, Italy.
| |
Collapse
|
4
|
Cho CC, Chou RH, Yu C. Amlexanox Blocks the Interaction between S100A4 and Epidermal Growth Factor and Inhibits Cell Proliferation. PLoS One 2016; 11:e0161663. [PMID: 27559743 PMCID: PMC4999211 DOI: 10.1371/journal.pone.0161663] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/09/2016] [Indexed: 01/08/2023] Open
Abstract
The human S100A4 protein binds calcium, resulting in a change in its conformation to promote the interaction with its target protein. Human epidermal growth factor (EGF) is the target protein of S100A4 and a critical ligand of the receptor EGFR. The EGF/EGFR system promotes cell survival, differentiation, and growth by activating several signaling pathways. Amlexanox is an anti-inflammatory and anti-allergic drug that is used to treat recurrent aphthous ulcers. In the present study, we determined that amlexanox interacts with S100A4 using heteronuclear single quantum correlation titration. We elucidated the interactions of S100A4 with EGF and amlexanox using fluorescence and nuclear magnetic resonance spectroscopy. We generated two binary models (for the S100A4-EGF and S100A4-amlexanox complexes) and observed that amlexanox and EGF share a similar binding region in mS100A4. We also used a WST-1 assay to investigate the bioactivity of S100A4, EGF, and amlexanox, and found that amlexanox blocks the binding between S100A4 and EGF, and is therefore useful for the development of new anti-proliferation drugs.
Collapse
Affiliation(s)
- Ching Chang Cho
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan.,Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Wu ZS, Liu CF, Fu B, Chou RH, Yu C. Suramin blocks interaction between human FGF1 and FGFR2 D2 domain and reduces downstream signaling activity. Biochem Biophys Res Commun 2016; 477:861-867. [PMID: 27387234 DOI: 10.1016/j.bbrc.2016.06.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 01/07/2023]
Abstract
The extracellular portion of the human fibroblast growth factor receptor2 D2 domain (FGFR2 D2) interacts with human fibroblast growth factor 1 (hFGF1) to activate a downstream signaling cascade that ultimately affects mitosis and differentiation. Suramin is an antiparasiticdrug and a potent inhibitor of FGF-induced angiogenesis. Suramin has been shown to bind to hFGF1, and might block the interaction between hFGF1 and FGFR2 D2. Here, we titrated hFGF1 with FGFR2 D2 and suramin to elucidate their interactions using the detection of NMR. The docking results of both hFGF1-FGFR2 D2 domain and hFGF1-suramin complex were superimposed. The results indicate that suramin blocks the interaction between hFGF1 and FGFR2 D2. We used the PyMOL software to show the hydrophobic interaction of hFGF1-suramin. In addition, we used a Water-soluble Tetrazolium salts assay (WST1) to assess hFGF1 bioactivity. The results will be useful for the development of new antimitogenic activity drugs.
Collapse
Affiliation(s)
- Zong-Sian Wu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Che Fu Liu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| | - Brian Fu
- Northwood High School, Irvine, CA, USA.
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Biotechnology, Asia University, Taiwan.
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan.
| |
Collapse
|
6
|
Pentamidine blocks the interaction between mutant S100A5 and RAGE V domain and inhibits the RAGE signaling pathway. Biochem Biophys Res Commun 2016; 477:188-94. [PMID: 27297108 DOI: 10.1016/j.bbrc.2016.06.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/09/2016] [Indexed: 12/21/2022]
Abstract
The human S100 protein family contains small, dimeric and acidic proteins that contain two EF-hand motifs and bind calcium. When S100A5 binds calcium, its conformation changes and promotes interaction with the target protein. The extracellular domain of RAGE (Receptor of Advanced Glycation End products) contain three domains: C1, C2 and V. The RAGE V domain is the target protein of S100A5 that promotes cell survival, growth and differentiation by activating several signaling pathways. Pentamidine is an apoptotic and antiparasitic drug that is used to treat or prevent pneumonia. Here, we found that pentamidine interacts with S100A5 using HSQC titration. We elucidated the interactions of S100A5 with RAGE V domain and pentamidine using fluorescence and NMR spectroscopy. We generated two binary models-the S100A5-RAGE V domain and S100A5-Pentamidine complex-and then observed that the pentamidine and RAGE V domain share a similar binding region in mS100A5. We also used the WST-1 assay to investigate the bioactivity of S100A5, RAGE V domain and pentamidine. These results indicated that pentamidine blocks the binding between S100A5 and RAGE V domain. This finding is useful for the development of new anti-proliferation drugs.
Collapse
|
7
|
Penumutchu SR, Chou RH, Yu C. Structural insights into calcium-bound S100P and the V domain of the RAGE complex. PLoS One 2014; 9:e103947. [PMID: 25084534 PMCID: PMC4118983 DOI: 10.1371/journal.pone.0103947] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/07/2014] [Indexed: 01/11/2023] Open
Abstract
The S100P protein is a member of the S100 family of calcium-binding proteins and possesses both intracellular and extracellular functions. Extracellular S100P binds to the cell surface receptor for advanced glycation end products (RAGE) and activates its downstream signaling cascade to meditate tumor growth, drug resistance and metastasis. Preventing the formation of this S100P-RAGE complex is an effective strategy to treat various disease conditions. Despite its importance, the detailed structural characterization of the S100P-RAGE complex has not yet been reported. In this study, we report that S100P preferentially binds to the V domain of RAGE. Furthermore, we characterized the interactions between the RAGE V domain and Ca2+-bound S100P using various biophysical techniques, including isothermal titration calorimetry (ITC), fluorescence spectroscopy, multidimensional NMR spectroscopy, functional assays and site-directed mutagenesis. The entropy-driven binding between the V domain of RAGE and Ca+2-bound S100P was found to lie in the micromolar range (Kd of ∼6 µM). NMR data-driven HADDOCK modeling revealed the putative sites that interact to yield a proposed heterotetrameric model of the S100P-RAGE V domain complex. Our study on the spatial structural information of the proposed protein-protein complex has pharmaceutical relevance and will significantly contribute toward drug development for the prevention of RAGE-related multifarious diseases.
Collapse
Affiliation(s)
| | - Ruey-Hwang Chou
- Graduate Institute of Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Chin Yu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
- * E-mail:
| |
Collapse
|
8
|
Williamson MP. Using chemical shift perturbation to characterise ligand binding. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 73:1-16. [PMID: 23962882 DOI: 10.1016/j.pnmrs.2013.02.001] [Citation(s) in RCA: 1038] [Impact Index Per Article: 86.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/12/2013] [Accepted: 02/18/2013] [Indexed: 05/05/2023]
Abstract
Chemical shift perturbation (CSP, chemical shift mapping or complexation-induced changes in chemical shift, CIS) follows changes in the chemical shifts of a protein when a ligand is added, and uses these to determine the location of the binding site, the affinity of the ligand, and/or possibly the structure of the complex. A key factor in determining the appearance of spectra during a titration is the exchange rate between free and bound, or more specifically the off-rate koff. When koff is greater than the chemical shift difference between free and bound, which typically equates to an affinity Kd weaker than about 3μM, then exchange is fast on the chemical shift timescale. Under these circumstances, the observed shift is the population-weighted average of free and bound, which allows Kd to be determined from measurement of peak positions, provided the measurements are made appropriately. (1)H shifts are influenced to a large extent by through-space interactions, whereas (13)Cα and (13)Cβ shifts are influenced more by through-bond effects. (15)N and (13)C' shifts are influenced both by through-bond and by through-space (hydrogen bonding) interactions. For determining the location of a bound ligand on the basis of shift change, the most appropriate method is therefore usually to measure (15)N HSQC spectra, calculate the geometrical distance moved by the peak, weighting (15)N shifts by a factor of about 0.14 compared to (1)H shifts, and select those residues for which the weighted shift change is larger than the standard deviation of the shift for all residues. Other methods are discussed, in particular the measurement of (13)CH3 signals. Slow to intermediate exchange rates lead to line broadening, and make Kd values very difficult to obtain. There is no good way to distinguish changes in chemical shift due to direct binding of the ligand from changes in chemical shift due to allosteric change. Ligand binding at multiple sites can often be characterised, by simultaneous fitting of many measured shift changes, or more simply by adding substoichiometric amounts of ligand. The chemical shift changes can be used as restraints for docking ligand onto protein. By use of quantitative calculations of ligand-induced chemical shift changes, it is becoming possible to determine not just the position but also the orientation of ligands.
Collapse
Affiliation(s)
- Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
9
|
He Y, Estephan R, Yang X, Vela A, Wang H, Bernard C, Stark RE. A nuclear magnetic resonance-based structural rationale for contrasting stoichiometry and ligand binding site(s) in fatty acid-binding proteins. Biochemistry 2011; 50:1283-95. [PMID: 21226535 PMCID: PMC3072248 DOI: 10.1021/bi101307h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Liver fatty acid-binding protein (LFABP) is a 14 kDa cytosolic polypeptide, differing from other family members in the number of ligand binding sites, the diversity of bound ligands, and the transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional (1)H-(15)N nuclear magnetic resonance (NMR) signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without determining the protein-ligand complex structures, to yield the stoichiometries for the bound ligands, their locations within the protein binding cavity, the sequence of ligand occupation, and the corresponding protein structural accommodations. Chemical shifts were monitored for wild-type LFABP and an R122L/S124A mutant in which electrostatic interactions viewed as being essential to fatty acid binding were removed. For wild-type LFABP, the results compared favorably with the data for previous tertiary structures of oleate-bound wild-type LFABP in crystals and in solution: there are two oleates, one U-shaped ligand that positions the long hydrophobic chain deep within the cavity and another extended structure with the hydrophobic chain facing the cavity and the carboxylate group lying close to the protein surface. The NMR titration validated a prior hypothesis that the first oleate to enter the cavity occupies the internal protein site. In contrast, (1)H and (15)N chemical shift changes supported only one liganded oleate for R122L/S124A LFABP, at an intermediate location within the protein cavity. A rationale based on protein sequence and electrostatics was developed to explain the stoichiometry and binding site trends for LFABPs and to put these findings into context within the larger protein family.
Collapse
Affiliation(s)
- Yan He
- Departments of Chemistry, College of Staten Island
- City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, New York, NY 10031, USA
| | | | - Xiaomin Yang
- Departments of Chemistry, College of Staten Island
| | - Adriana Vela
- Departments of Chemistry, College of Staten Island
| | - Hsin Wang
- Departments of Chemistry, College of Staten Island
- City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, New York, NY 10031, USA
| | - Cédric Bernard
- City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, New York, NY 10031, USA
| | - Ruth E. Stark
- Departments of Chemistry, College of Staten Island
- City College of New York, City University of New York Graduate Center and Institute for Macromolecular Assemblies, New York, NY 10031, USA
| |
Collapse
|
10
|
Xie J, Reverdatto S, Frolov A, Hoffmann R, Burz DS, Shekhtman A. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 2008; 283:27255-69. [PMID: 18667420 DOI: 10.1074/jbc.m801622200] [Citation(s) in RCA: 192] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The receptor for advanced glycated end products (RAGE) is a multiligand receptor that is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. The ability of RAGE to recognize advanced glycated end products (AGEs) formed by nonenzymatic glycoxidation of cellular proteins places RAGE in the category of pattern recognition receptors. The structural mechanism of AGE recognition was an enigma due to the diversity of chemical structures found in AGE-modified proteins. Here, using NMR spectroscopy we showed that the immunoglobulin V-type domain of RAGE is responsible for recognizing various classes of AGEs. Three distinct surfaces of the V domain were identified to mediate AGE-V domain interactions. They are located in the positively charged areas of the V domain. The first interaction surface consists of strand C and loop CC ', the second interaction surface consists of strand C ', strand F, and loop FG, and the third interaction surface consists of strand A ' and loop EF. The secondary structure elements of the interaction surfaces exhibit significant flexibility on the ms-micros time scale. Despite highly specific AGE-V domain interactions, the binding affinity of AGEs for an isolated V domain is low, approximately 10 microm. Using in-cell fluorescence resonance energy transfer we show that RAGE is a constitutive oligomer on the plasma membrane. We propose that constitutive oligomerization of RAGE is responsible for recognizing patterns of AGE-modified proteins with affinities less than 100 nm.
Collapse
Affiliation(s)
- Jingjing Xie
- Department of Chemistry State University of New York, Albany, New York 12222, USA
| | | | | | | | | | | |
Collapse
|
11
|
Sitjà-Arnau M, Molina MA, Blanco-Aparicio C, Ferrer-Soler L, Lorenzo J, Avilés FX, Querol E, de Llorens R. Mechanism of action of potato carboxypeptidase inhibitor (PCI) as an EGF blocker. Cancer Lett 2005; 226:169-84. [PMID: 16039955 DOI: 10.1016/j.canlet.2005.01.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2004] [Revised: 11/29/2004] [Accepted: 01/07/2005] [Indexed: 11/21/2022]
Abstract
The epidermal growth factor receptor (EGFR) signal transduction pathway plays a prominent role in the development of carcinomas, and is an interesting target for antitumoral therapy. We have previously described how potato carboxypeptidase inhibitor (PCI), a 39-amino acid protease inhibitor with a T-Knot motif, binds to EGFR receptor and inhibits the activation of receptor protein tyrosine kinase. In this paper it is shown that PCI interferes with EGFR activation through inhibition of receptor dimerization and receptor transphosphorylation induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha). Moreover, PCI blocks the formation and activation of ErbB1/ErbB-2 heterodimers that have a prominent role in carcinoma development. As a result of these effects, PCI interferes in the EGFR signal transduction pathway by reversing the effects of EGF on the growth of two tumoral cell lines, A431 and MDA-MB-453, and promotes EGFR down-regulation. These results show that PCI acts as an EGF/TGF-alpha antagonist, which suggests its therapeutic potential in the treatment of carcinomas.
Collapse
Affiliation(s)
- Marta Sitjà-Arnau
- Unitat de Bioquímica, Departament de Biologia, Facultat de Ciències, Universitat de Girona, Campus de Montilivi, 17071 Girona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Alewood D, Nielsen K, Alewood PF, Craik DJ, Andrews P, Nerrie M, White S, Domagala T, Walker F, Rothacker J, Burgess AW, Nice EC. The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF). Growth Factors 2005; 23:97-110. [PMID: 16019431 DOI: 10.1080/08977190500096061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A systematic study using solid phase peptide synthesis has been undertaken to examine the role of the disulfide bonds in the structure and function of mEGF. A combination of one, two and three native disulfide pair analogues of an active truncated (4-48) form of mEGF have been synthesised by replacing specific cysteine residues with isosteric a-amino-n-butyric acid (Abu). Oxidation of the peptides was performed using either conventional aerobic oxidation at basic pH, in DMSO under acidic conditions or via selective disulfide formation using orthogonal protection of the cysteine pairs. The contribution of individual, or pairs of, disulfide bonds to EGF structure was evaluated by CD and (1)H-NMR spectroscopy. The mitogenic activity of each analogue was determined using Balb/c 3T3 mouse fibroblastsAs we have reported previously (Barnham et al. 1998), the disulfide bond between residues 6 and 20 can be removed with significant retention of biological activity (EC50 20-50 nM). The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. We now show that removal of any other disulfide bond, either singly or in pairs, results in a major disruption of the tertiary structure, and a large loss of activity (EC50>900 nM). Remarkably, the linear analogue appears to have greater activity (EC50 580 nM) than most one and two disulfide bond analogues although it does not have a definable tertiary structure.
Collapse
Affiliation(s)
- Dianne Alewood
- The Institute for Molecular Bioscience, The University of Queensland, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Veselovsky AV, Ivanov YD, Ivanov AS, Archakov AI, Lewi P, Janssen P. Protein-protein interactions: mechanisms and modification by drugs. J Mol Recognit 2002; 15:405-22. [PMID: 12501160 DOI: 10.1002/jmr.597] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Protein-protein interactions form the proteinaceous network, which plays a central role in numerous processes in the cell. This review highlights the main structures, properties of contact surfaces, and forces involved in protein-protein interactions. The properties of protein contact surfaces depend on their functions. The characteristics of contact surfaces of short-lived protein complexes share some similarities with the active sites of enzymes. The contact surfaces of permanent complexes resemble domain contacts or the protein core. It is reasonable to consider protein-protein complex formation as a continuation of protein folding. The contact surfaces of the protein complexes have unique structure and properties, so they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations have been undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or on the other hand, induce protein dimerization.
Collapse
|
14
|
Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim JH, Saito K, Sakamoto A, Inoue M, Shirouzu M, Yokoyama S. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 2002; 110:775-87. [PMID: 12297050 DOI: 10.1016/s0092-8674(02)00963-7] [Citation(s) in RCA: 868] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epidermal growth factor (EGF) regulates cell proliferation and differentiation by binding to the EGF receptor (EGFR) extracellular region, comprising domains I-IV, with the resultant dimerization of the receptor tyrosine kinase. In this study, the crystal structure of a 2:2 complex of human EGF and the EGFR extracellular region has been determined at 3.3 A resolution. EGFR domains I-III are arranged in a C shape, and EGF is docked between domains I and III. The 1:1 EGF*EGFR complex dimerizes through a direct receptor*receptor interaction, in which a protruding beta-hairpin arm of each domain II holds the body of the other. The unique "receptor-mediated dimerization" was verified by EGFR mutagenesis.
Collapse
Affiliation(s)
- Hideo Ogiso
- RIKEN Genomic Sciences Center, 1-7-22 Suehiro-cho, Tsurumi, 230-0045, Yokohama, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Jorissen RN, Treutlein HR, Epa VC, Burgess AW. Modeling the epidermal growth factor -- epidermal growth factor receptor l2 domain interaction: implications for the ligand binding process. J Biomol Struct Dyn 2002; 19:961-72. [PMID: 12023799 DOI: 10.1080/07391102.2002.10506800] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Signaling from the epidermal growth factor (EGF) receptor is triggered by the binding of ligands such as EGF or transforming growth factor alpha (TGF-alpha) and subsequent receptor dimerization. An understanding of these processes has been hindered by the lack of structural information about the ligand-bound, dimerized EGF receptor. Using an NMR-derived structure of EGF and a homology model of the major ligand binding domain of the EGF receptor and experimental data, we modeled the binding of EGF to this EGF receptor fragment. In this low resolution model of the complex, EGF sits across the second face of the EGF receptor L2 domain and EGF residues 10-16, 36-37, 40-47 bind to this face. The structural model is largely consistent with previously published NMR data describing the residues of TGF-alpha which interact strongly with the EGF receptor. Other EGF residues implicated in receptor binding are accounted by our proposal that the ligand binding is a two-step process with the EGF binding to at least one other site of the receptor. This three-dimensional model is expected to be useful in the design of ligand-based antagonists of the receptor.
Collapse
Affiliation(s)
- Robert N Jorissen
- The Ludwig Institute for Cancer Research, Post Office Box 2008, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia.
| | | | | | | |
Collapse
|
16
|
Aizawa T, Hayakawa Y, Ohnishi A, Fujitani N, Clark KD, Strand MR, Miura K, Koganesawa N, Kumaki Y, Demura M, Nitta K, Kawano K. Structure and activity of the insect cytokine growth-blocking peptide. Essential regions for mitogenic and hemocyte-stimulating activities are separate. J Biol Chem 2001; 276:31813-8. [PMID: 11429413 DOI: 10.1074/jbc.m105251200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Growth-blocking peptide (GBP) is a 25-amino acid insect cytokine found in Lepidopteran insects that possesses diverse biological activities such as larval growth regulation, cell proliferation, and stimulation of immune cells (plasmatocytes). The tertiary structure of GBP consists of a structured core that contains a disulfide bridge and a short antiparallel beta-sheet (Tyr(11)-Arg(13) and Cys(19)-Pro(21)) and flexible N and C termini (Glu(1)-Gly(6) and Phe(23)-Gln(25)). In this study, deletion and point mutation analogs of GBP were synthesized to investigate the relationship between the structure of GBP and its mitogenic and plasmatocyte spreading activity. The results indicated that deletion of the N-terminal residue, Glu(1), eliminated all plasmatocyte spreading activity but did not reduce mitogenic activity. In contrast, deletion of Phe(23) along with the remainder of the C terminus destroyed all mitogenic activity but only slightly reduced plasmatocyte spreading activity. Therefore, the minimal structure of GBP containing mitogenic activity is 2-23 GBP, whereas that with plasmatocyte spreading activity is 1-22 GBP. NMR analysis indicated that these N- and C-terminal deletion mutants retained a similar core structure to wild-type GBP. Replacement of Asp(16) with either a Glu, Leu, or Asn residue similarly did not alter the core structure of GBP. However, these mutants had no mitogenic activity, although they retained about 50% of their plasmatocyte spreading activity. We conclude that specific residues in the unstructured and structured domains of GBP differentially affect the biological activities of GBP, which suggests the possibility that multifunctional properties of this peptide may be mediated by different forms of a GBP receptor.
Collapse
Affiliation(s)
- T Aizawa
- Bio-oriented Technology Research Advancement Institution, Saitama 331-8537, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|