1
|
Stevens LM, Zhang Y, Volnov Y, Chen G, Stein DS. Isolation of secreted proteins from Drosophila ovaries and embryos through in vivo BirA-mediated biotinylation. PLoS One 2019; 14:e0219878. [PMID: 31658274 PMCID: PMC6816556 DOI: 10.1371/journal.pone.0219878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
The extraordinarily strong non-covalent interaction between biotin and avidin (kD = 10-14-10-16) has permitted this interaction to be used in a wide variety of experimental contexts. The Biotin Acceptor Peptide (BAP), a 15 amino acid motif that can be biotinylated by the E. coli BirA protein, has been fused to proteins-of-interest, making them substrates for in vivo biotinylation. Here we report on the construction and characterization of a modified BirA bearing signals for secretion and endoplasmic reticulum (ER) retention, for use in experimental contexts requiring biotinylation of secreted proteins. When expressed in the Drosophila female germline or ovarian follicle cells under Gal4-mediated transcriptional control, the modified BirA protein could be detected and shown to be enzymatically active in ovaries and progeny embryos. Surprisingly, however, it was not efficiently retained in the ER, and instead appeared to be secreted. To determine whether this secreted protein, now designated secBirA, could biotinylate secreted proteins, we generated BAP-tagged versions of two secreted Drosophila proteins, Torsolike (Tsl) and Gastrulation Defective (GD), which are normally expressed maternally and participate in embryonic pattern formation. Both Tsl-BAP and GD-BAP were shown to exhibit normal patterning activity. Co-expression of Tsl-BAP together with secBirA in ovarian follicle cells resulted in its biotinylation, which permitted its isolation from both ovaries and progeny embryos using Avidin-coupled affinity matrix. In contrast, co-expression with secBirA in the female germline did not result in detectable biotinylation of GD-BAP, possibly because the C-terminal location of the BAP tag made it inaccessible to BirA in vivo. Our results indicate that secBirA directs biotinylation of proteins bound for secretion in vivo, providing access to powerful experimental approaches for secreted proteins-of-interest. However, efficient biotinylation of target proteins may vary depending upon the location of the BAP tag or other structural features of the protein.
Collapse
Affiliation(s)
- Leslie M. Stevens
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yuan Zhang
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Yuri Volnov
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Geng Chen
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - David S. Stein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Paraskevopoulou V, Falcone FH. Polyionic Tags as Enhancers of Protein Solubility in Recombinant Protein Expression. Microorganisms 2018; 6:microorganisms6020047. [PMID: 29882886 PMCID: PMC6027335 DOI: 10.3390/microorganisms6020047] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/30/2022] Open
Abstract
Since the introduction of recombinant protein expression in the second half of the 1970s, the growth of the biopharmaceutical field has been rapid and protein therapeutics has come to the foreground. Biophysical and structural characterisation of recombinant proteins is the essential prerequisite for their successful development and commercialisation as therapeutics. Despite the challenges, including low protein solubility and inclusion body formation, prokaryotic host systems and particularly Escherichia coli, remain the system of choice for the initial attempt of production of previously unexpressed proteins. Several different approaches have been adopted, including optimisation of growth conditions, expression in the periplasmic space of the bacterial host or co-expression of molecular chaperones, to assist correct protein folding. A very commonly employed approach is also the use of protein fusion tags that enhance protein solubility. Here, a range of experimentally tested peptide tags, which present specific advantages compared to protein fusion tags and the concluding remarks of these experiments are reviewed. Finally, a concept to design solubility-enhancing peptide tags based on a protein’s pI is suggested.
Collapse
Affiliation(s)
- Vasiliki Paraskevopoulou
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Franco H Falcone
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
3
|
Poenick S, Jahnke HG, Eichler M, Frost S, Lilie H, Robitzki AA. Comparative label-free monitoring of immunotoxin efficacy in 2D and 3D mamma carcinoma in vitro models by impedance spectroscopy. Biosens Bioelectron 2014; 53:370-6. [DOI: 10.1016/j.bios.2013.09.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 01/18/2023]
|
4
|
Kerrigan JJ, Xie Q, Ames RS, Lu Q. Production of protein complexes via co-expression. Protein Expr Purif 2010; 75:1-14. [PMID: 20692346 DOI: 10.1016/j.pep.2010.07.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/22/2010] [Accepted: 07/31/2010] [Indexed: 12/21/2022]
Abstract
Multi-protein complexes are involved in essentially all cellular processes. A protein's function is defined by a combination of its own properties, its interacting partners, and the stoichiometry of each. Depending on binding partners, a transcription factor can function as an activator in one instance and a repressor in another. The study of protein function or malfunction is best performed in the relevant context. While many protein complexes can be reconstituted from individual component proteins after being produced individually, many others require co-expression of their native partners in the host cells for proper folding, stability, and activity. Protein co-expression has led to the production of a variety of biological active complexes in sufficient quantities for biochemical, biophysical, structural studies, and high throughput screens. This article summarizes examples of such cases and discusses critical considerations in selecting co-expression partners, and strategies to achieve successful production of protein complexes.
Collapse
Affiliation(s)
- John J Kerrigan
- Biological Reagents & Assay Development, Platform Technology & Science, GlaxoSmithKline R&D, 1250 South Collegeville Road, Collegeville, PA 19426, USA
| | | | | | | |
Collapse
|
5
|
Abstract
Granzyme B (GzmB) is used by cytotoxic lymphocytes as a molecular weapon for the defense against virus-infected and malignantly transformed host cells. It belongs to a family of small serine proteases that are stored in secretory vesicles of killer cells. After secretion of these cytolytic granules during killer cell attack, GzmB is translocated into the cytosol of target cells with the help of the pore-forming protein perforin. GzmB has adopted similar protease specificity as caspase-8, and once delivered, it activates major executioner apoptosis pathways. Since GzmB is very effective in killing human tumor cell lines that are otherwise resistant against many cytotoxic drugs and since GzmB of human origin can be recombinantly expressed, its use as part of a 'magic bullet' in tumor therapy is a very tempting idea. In this review, we emphasize the peculiar characteristics of GzmB that make it suited for use as an effector domain in potential immunoconjugates. We discuss what is known about its uptake into target cells and the trials performed with GzmB-armed immunoconjugates, and we assess the prospects of its potential therapeutic value.
Collapse
Affiliation(s)
- Florian C Kurschus
- Institute of Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | |
Collapse
|
6
|
Bergelt S, Frost S, Lilie H. Listeriolysin O as cytotoxic component of an immunotoxin. Protein Sci 2009; 18:1210-20. [PMID: 19472336 DOI: 10.1002/pro.130] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monoclonal antibodies (mAbs) have been developed over the past years as promising anticancer therapeutics. The conjugation of tumor specific mAbs with cytotoxic molecules has been shown to improve their efficacy dramatically. These bifunctional immunotoxins, consisting of covalently linked antibodies and protein toxins, possess considerable potential in cancer therapy. Many of them are under investigation in clinical trials. As a result of general interest in new toxic components, we describe here the suitability of the bacterial protein Listeriolysin O (LLO) as cytotoxic component of an immunotoxin. Unique characteristics of LLO, such as its acidic pH optimum and the possibility to regulate the cytolytic activity by cysteine-oxidation, make LLO an interesting toxophore. Oxidized LLO shows a substantially decreased cytolytic activity when compared with the reduced protein as analyzed by hemolysis. Both oxidized and reduced LLO exhibit a cell-type-unspecific toxicity in cell culture with a significantly higher toxicity of reduced LLO. For cell-type-specific targeting of LLO to tumor cells, LLO was coupled to the dsFv fragment of the monoclonal antibody B3, which recognizes the tumor-antigen Lewis Y. The coupling of LLO to dsFv-B3 was performed via cysteine-containing polyionic fusion peptides that act as a specific heterodimerization motif. The novel immunotoxin B3-LLO could be shown to specifically eliminate antigen positive MCF7 cells with an EC(50) value of 2.3 nM, whereas antigen negative cell lines were 80- to 250-fold less sensitive towards B3-LLO.
Collapse
Affiliation(s)
- Sabine Bergelt
- Institute of Biotechnology, Martin-Luther-University, Halle-Wittenberg, Kurt-Mothes Strasse 3, Halle, Saale, Germany
| | | | | |
Collapse
|
7
|
Frey S, Haslbeck M, Hainzl O, Buchner J. Synthesis and characterization of a functional intact IgG in a prokaryotic cell-free expression system. Biol Chem 2008; 389:37-45. [PMID: 18095868 DOI: 10.1515/bc.2008.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Antibodies are an important component of the immune system of higher eukaryotes. Furthermore, they are effective tools in basic research, medical diagnostics and therapy. Recombinant expression of these heterotetrameric, disulfide-bridged proteins is usually performed in mammalian cells. Here, we describe the cell-free expression of a mouse monoclonal antibody, MAK33, in a coupled transcription/translation system, based on an Escherichia coli lysate. Both the heavy and the light chain can be produced efficiently in this setup. However, they fail to form functional antibodies. With a view to overcome folding and oxidation defects, we supplemented the system with the oxidoreductases PDI (protein disulfide isomerase) and DsbC and the ER-specific chaperones Grp94 and BiP; furthermore, we optimized the redox conditions. We found that functional antibodies can only be obtained in the presence of an oxidoreductase. In contrast, the addition of Grp94 and/or BiP had no influence on the productive folding reaction. The comparison of the antibody expressed in vitro with MAK33 expressed in cell culture showed that the in vitro expressed antibody is correctly assembled, disulfide-bridged and shows identical antigen affinity. The stability of the in vitro expressed non-glycosylated IgG is comparable to that of the authentic antibody.
Collapse
Affiliation(s)
- Stephan Frey
- Center for Integrated Protein Science Munich and Department of Chemistry, Technical University of Munich, D-85747 Garching, Germany
| | | | | | | |
Collapse
|
8
|
Kleinschmidt M, Rudolph R, Lilie H. Design of a modular immunotoxin connected by polyionic adapter peptides. J Mol Biol 2003; 327:445-52. [PMID: 12628249 DOI: 10.1016/s0022-2836(03)00141-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Immunotoxins are genetically engineered fusion proteins of an antibody Fv fragment and a toxin from bacteria or plants, which function as anti-cancer therapeutics. Here, we describe a new generation of immunotoxins in which both proteins do not form a single fusion protein but are coupled specifically via cysteine-containing polyionic fusion peptides. The engineered Pseudomonas exotoxin PE38 was N-terminally fused to the peptide E(8)C. In combination with the disulfide-stabilized Fv fragment of the tumor-specific antibody B3, which was extended by the peptide R(8)CP, the fusion peptides ensured a specific and covalent coupling of the Fv fragment and the toxin. The resulting immunotoxin was as active and as specific as an immunotoxin consisting of a fusion protein of the same antibody fragment connected to the toxin.
Collapse
Affiliation(s)
- Martin Kleinschmidt
- Institut für Biotechnologie, Martin-Luther-Universitat, Universität Halle, Kurt-Mothes Strasse 3, Germany
| | | | | |
Collapse
|
9
|
May T, Gleiter S, Lilie H. Assessment of cell type specific gene transfer of polyoma virus like particles presenting a tumor specific antibody Fv fragment. J Virol Methods 2002; 105:147-57. [PMID: 12176152 DOI: 10.1016/s0166-0934(02)00099-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Application of delivery systems in cancer therapy is restricted as a result of the lack of cell specificity of the respective vectors. Recently, a vector system based on virus-like particles (VLPs) of modified polyoma-VP1 was described which were able to bind specifically a tumor-specific antibody fragment, thus directing the vector system towards tumor cells. The functional gene transfer using the VP1 variant VP1-E8C, coupled with the antibody fragment of the tumor-specific antibody B3 is described in this paper. The specific targeting of the antigen expressing cells was highly efficient as determined by fluorescence microscopy. However, only a low percentage of these cells showed a functional gene transfer. This discrepancy could be accounted for by a rather low capacity of the virus like particles to transport DNA and the mechanism of their internalization by the target cells, which led to a lysosomal degradation of the particles. These limitations could be surmounted partially in cell culture experiments, and the principles suitable for applying this vector system in vivo are discussed.
Collapse
Affiliation(s)
- Tobias May
- Institut für Biotechnologie, Universität Halle, Kurt Mothes Strasse 3, D-06120, Halle, Germany
| | | | | |
Collapse
|