1
|
Wang M, Ma A, Wang H, Lou X. Atomic molecular dynamics simulation advances of de novo-designed proteins. Q Rev Biophys 2024; 57:e14. [PMID: 39635823 DOI: 10.1017/s0033583524000131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Proteins are vital biological macromolecules that execute biological functions and form the core of synthetic biological systems. The history of de novo protein has evolved from initial successes in subordinate structural design to more intricate protein creation, challenging the complexities of natural proteins. Recent strides in protein design have leveraged computational methods to craft proteins for functions beyond their natural capabilities. Molecular dynamics (MD) simulations have emerged as a crucial tool for comprehending the structural and dynamic properties of de novo-designed proteins. In this study, we examined the pivotal role of MD simulations in elucidating the sampling methods, force field, water models, stability, and dynamics of de novo-designed proteins, highlighting their potential applications in diverse fields. The synergy between computational modeling and experimental validation continued to play a crucial role in the creation of novel proteins tailored for specific functions and applications.
Collapse
Affiliation(s)
- Moye Wang
- Research Department, PLA Strategic Support Force Medical Center, Beijing, China
| | - Anqi Ma
- Research Department, PLA Strategic Support Force Medical Center, Beijing, China
| | - Hongjiang Wang
- Research Department, PLA Strategic Support Force Medical Center, Beijing, China
| | - Xiaotong Lou
- Research Department, PLA Strategic Support Force Medical Center, Beijing, China
| |
Collapse
|
2
|
Oliveira RJD. Coordinate-Dependent Drift-Diffusion Reveals the Kinetic Intermediate Traps of Top7-Based Proteins. J Phys Chem B 2022; 126:10854-10869. [PMID: 36519977 DOI: 10.1021/acs.jpcb.2c07031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The computer-designed Top7 served as a scaffold to produce immunoreactive proteins by grafting of the 2F5 HIV-1 antibody epitope (Top7-2F5) followed by biotinylation (Top7-2F5-biotin). The resulting nonimmunoglobulin affinity proteins were effective in inducing and detecting the HIV-1 antibody. However, the grafted Top7-2F5 design led to protein aggregation, as opposed to the soluble biotinylated Top7-2F5-biotin. The structure-based model predicted that the thermodynamic cooperativity of Top7 increases after grafting and biotin-labeling, reducing their intermediate state populations. In this work, the folding kinetic traps that might contribute to the aggregation propensity are investigated by the diffusion theory. Since the engineered proteins have similar sequence and structural homology, they served as protein models to study the kinetic intermediate traps that were uncovered by characterizing the position-dependent drift-velocity (v(Q)) and the diffusion (D(Q)) coefficients. These coordinate-dependent coefficients were taken into account to obtain the folding and transition path times over the free energy transition states containing the intermediate kinetic traps. This analysis may be useful to predict the aggregated kinetic traps of scaffold-epitope proteins that might compose novel diagnostic and therapeutic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG38064-200, Brazil
| |
Collapse
|
3
|
Oliveira RJD. Biotinylation Eliminates the Intermediate State of Top7 Designed with an HIV-1 Epitope. J Phys Chem B 2022; 126:7331-7342. [PMID: 36121918 DOI: 10.1021/acs.jpcb.2c04969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Broadly neutralizing antibodies against HIV-1 are rare with the 2F5 antibody being one of the most protective. Insertion of an antibody epitope into a stable and small protein scaffold overcomes many of the obstacles found to produce antibodies. However, the design leads to grafting of epitopes that may cause protein aggregation. Here, I investigated the 2F5 epitope grafted into the Top7 as the scaffold in which the resulting immunoreactive protein precipitates along the storage time, as opposed to its completely soluble biotinylated version. Molecular dynamics showed that biotinylation eliminates the intermediate state of the scaffold-epitope Top7-2F5 by switching a noncooperative to a cooperative folding. The aggregation propensity of the Top7-designed proteins is examined in light of thermodynamic cooperativity and kinetic traps along the decreasing depth of the intermediate ensemble in the free energy landscape. This protocol may predict stable and soluble scaffold-epitopes with the purpose of composing novel therapeutic and diagnostic platforms.
Collapse
Affiliation(s)
- Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| |
Collapse
|
4
|
Surface Engineering of Top7 to Facilitate Structure Determination. Int J Mol Sci 2022; 23:ijms23020701. [PMID: 35054886 PMCID: PMC8776091 DOI: 10.3390/ijms23020701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
Top7 is a de novo designed protein whose amino acid sequence has no evolutional trace. Such a property makes Top7 a suitable scaffold for studying the pure nature of protein and protein engineering applications. To use Top7 as an engineering scaffold, we initially attempted structure determination and found that crystals of our construct, which lacked the terminal hexahistidine tag, showed weak diffraction in X-ray structure determination. Thus, we decided to introduce surface residue mutations to facilitate crystal structure determination. The resulting surface mutants, Top7sm1 and Top7sm2, crystallized easily and diffracted to the resolution around 1.7 Å. Despite the improved data, we could not finalize the structures due to high R values. Although we could not identify the origin of the high R values of the surface mutants, we found that all the structures shared common packing architecture with consecutive intermolecular β-sheet formation aligned in one direction. Thus, we mutated the intermolecular interface to disrupt the intermolecular β-sheet formation, expecting to form a new crystal packing. The resulting mutant, Top7sm2-I68R, formed new crystal packing interactions as intended and diffracted to the resolution of 1.4 Å. The surface mutations contributed to crystal packing and high resolution. We finalized the structure model with the R/Rfree values of 0.20/0.24. Top7sm2-I68R can be a useful model protein due to its convenient structure determination.
Collapse
|
5
|
Coêlho DF, Ferraz MVF, Marques ETA, Lins RD, Viana IFT. The influence of biotinylation on the ability of a computer designed protein to detect B-cells producing anti-HIV-1 2F5 antibodies. J Mol Graph Model 2019; 93:107442. [PMID: 31479948 DOI: 10.1016/j.jmgm.2019.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 12/14/2022]
Abstract
Antibodies against the HIV-1 2F5 epitope are known as one of the most powerful and broadly protective anti-HIV antibodies. Therefore, vaccine strategies that include the 2F5 epitope in their formulation require a robust method to detect specific anti-2F5 antibody production by B cells. Towards this goal, we have biotinylated a previously reported computer-designed protein carrying the HIV-1 2F5 epitope aiming the further development of a platform to detect human B-cells expressing anti-2F5 antibodies through flow cytometry. Biophysical and immunological properties of our devised protein were characterized by computer simulation and experimental methods. Biotinylation did not affect folding and improved protein stability and solubility. The biotinylated protein exhibited similar binding affinity trends compared to its unbiotinylated counterpart and was recognized by anti-HIV-1 2F5 antibodies expressed on the surface of patient-derived peripheral blood mononuclear cells. Moreover, we present a high affinity marker for the identification of epitope-specific B cells that can be used to measure the efficacy of vaccine strategies based on the HIV-1 envelope protein.
Collapse
Affiliation(s)
- Danilo F Coêlho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil; Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-540, Brazil
| | - Matheus V F Ferraz
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil; Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-540, Brazil
| | - Ernesto T A Marques
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil; Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Roberto D Lins
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil; Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-540, Brazil.
| | - Isabelle F T Viana
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE, 50670-465, Brazil.
| |
Collapse
|
6
|
Rosetta FunFolDes - A general framework for the computational design of functional proteins. PLoS Comput Biol 2018; 14:e1006623. [PMID: 30452434 PMCID: PMC6277116 DOI: 10.1371/journal.pcbi.1006623] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/03/2018] [Accepted: 11/06/2018] [Indexed: 01/11/2023] Open
Abstract
The robust computational design of functional proteins has the potential to deeply impact translational research and broaden our understanding of the determinants of protein function and stability. The low success rates of computational design protocols and the extensive in vitro optimization often required, highlight the challenge of designing proteins that perform essential biochemical functions, such as binding or catalysis. One of the most simplistic approaches for the design of function is to adopt functional motifs in naturally occurring proteins and transplant them to computationally designed proteins. The structural complexity of the functional motif largely determines how readily one can find host protein structures that are "designable", meaning that are likely to present the functional motif in the desired conformation. One promising route to enhance the "designability" of protein structures is to allow backbone flexibility. Here, we present a computational approach that couples conformational folding with sequence design to embed functional motifs into heterologous proteins-Rosetta Functional Folding and Design (FunFolDes). We performed extensive computational benchmarks, where we observed that the enforcement of functional requirements resulted in designs distant from the global energetic minimum of the protein. An observation consistent with several experimental studies that have revealed function-stability tradeoffs. To test the design capabilities of FunFolDes we transplanted two viral epitopes into distant structural templates including one de novo "functionless" fold, which represent two typical challenges where the designability problem arises. The designed proteins were experimentally characterized showing high binding affinities to monoclonal antibodies, making them valuable candidates for vaccine design endeavors. Overall, we present an accessible strategy to repurpose old protein folds for new functions. This may lead to important improvements on the computational design of proteins, with structurally complex functional sites, that can perform elaborate biochemical functions related to binding and catalysis.
Collapse
|
7
|
Watanabe K, Chiu H, Pfeiffer BD, Wong AM, Hoopfer ED, Rubin GM, Anderson DJ. A Circuit Node that Integrates Convergent Input from Neuromodulatory and Social Behavior-Promoting Neurons to Control Aggression in Drosophila. Neuron 2017; 95:1112-1128.e7. [PMID: 28858617 PMCID: PMC5588916 DOI: 10.1016/j.neuron.2017.08.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/06/2017] [Accepted: 08/09/2017] [Indexed: 01/08/2023]
Abstract
Diffuse neuromodulatory systems such as norepinephrine (NE) control brain-wide states such as arousal, but whether they control complex social behaviors more specifically is not clear. Octopamine (OA), the insect homolog of NE, is known to promote both arousal and aggression. We have performed a systematic, unbiased screen to identify OA receptor-expressing neurons (OARNs) that control aggression in Drosophila. Our results uncover a tiny population of male-specific aSP2 neurons that mediate a specific influence of OA on aggression, independent of any effect on arousal. Unexpectedly, these neurons receive convergent input from OA neurons and P1 neurons, a population of FruM+ neurons that promotes male courtship behavior. Behavioral epistasis experiments suggest that aSP2 neurons may constitute an integration node at which OAergic neuromodulation can bias the output of P1 neurons to favor aggression over inter-male courtship. These results have potential implications for thinking about the role of related neuromodulatory systems in mammals.
Collapse
Affiliation(s)
- Kiichi Watanabe
- Division of Biology and Biological Engineering 156-29 and the Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute
| | - Hui Chiu
- Division of Biology and Biological Engineering 156-29 and the Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute
| | - Barret D Pfeiffer
- Howard Hughes Medical Institute; Janelia Research Campus, HHMI, Ashburn VA, USA
| | - Allan M Wong
- Howard Hughes Medical Institute; Janelia Research Campus, HHMI, Ashburn VA, USA
| | - Eric D Hoopfer
- Division of Biology and Biological Engineering 156-29 and the Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA
| | | | - David J Anderson
- Division of Biology and Biological Engineering 156-29 and the Tianqiao and Chrissy Chen Institute for Neuroscience, California Institute of Technology, Pasadena, CA, USA; Howard Hughes Medical Institute.
| |
Collapse
|
8
|
Cunha KC, Rusu VH, Viana IFT, Marques ETA, Dhalia R, Lins RD. Assessing protein conformational sampling and structural stability via de novo design and molecular dynamics simulations. Biopolymers 2016; 103:351-61. [PMID: 25677872 DOI: 10.1002/bip.22626] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/31/2015] [Accepted: 02/03/2015] [Indexed: 11/10/2022]
Abstract
Molecular dynamics and de novo techniques, associated to quality parameter sets, have excelled at determining the structure of small proteins with high accuracy. To achieve a detailed description of protein conformations, these methods must critically assess the thermodynamic features of the molecular ensembles. Here, a comparison of the conformational ensemble generated by molecular dynamics and de novo techniques were carried out for six Top7-based proteins carrying gp41 HIV-1 epitopes. The native Top7, a highly stable computationally designed protein, was used as benchmark. Structural stability, flexibility, and secondary structure content were assessed. The consistency of the latter was compared to experimental circular dichroism spectra for all proteins. While both methods are capable to identify the stable from unstable chimeric proteins, the sampled conformational space and flexibility differ significantly in both methods. Molecular dynamics simulations seem to better describe secondary structure content and identify regions responsible for conformational instability. The de novo method, as implemented in Rosetta-a prime tool for protein design, overestimates secondary structure content. On the other hand, its empirical energy function is capable to predict the threshold for protein stability.
Collapse
Affiliation(s)
- Keila C Cunha
- Department of Fundamental Chemistry, Federal University of Pernambuco, Recife, PE, 50740-560, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Lomonosova AV, Ovchinnikova EV, Kazakov AS, Denesyuk AI, Sofin AD, Mikhailov RV, Ulitin AB, Mirzabekov TA, Permyakov EA, Permyakov SE. Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold. PLoS One 2015; 10:e0134906. [PMID: 26247602 PMCID: PMC4527664 DOI: 10.1371/journal.pone.0134906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023] Open
Abstract
Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C) and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M). Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X) was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M) and is more prone to oligomerization. This investigation of an extremophile protein’s scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds.
Collapse
Affiliation(s)
- Anna V. Lomonosova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Elena V. Ovchinnikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexei S. Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexander I. Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Department of Biosciences, Åbo Akademi University, Turku, 20520, Finland
| | - Alexander D. Sofin
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Roman V. Mikhailov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Andrei B. Ulitin
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Tajib A. Mirzabekov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Biomirex Inc., 304 Pleasant Street, Watertown, Massachusetts, 02472, United States of America
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- * E-mail:
| |
Collapse
|
10
|
Beech BM, Xiong Y, Boschek CB, Baird CL, Bigelow DJ, McAteer K, Squier TC. Controlled Activation of Protein Rotational Dynamics Using Smart Hydrogel Tethering. J Am Chem Soc 2014; 136:13134-7. [DOI: 10.1021/ja506717v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Brenda M. Beech
- School
of Biological Sciences, Washington State University Tri-Cities, Pullman, Washington 99164, United States
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yijia Xiong
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Curt B. Boschek
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Cheryl L. Baird
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Diana J. Bigelow
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Kathleen McAteer
- School
of Biological Sciences, Washington State University Tri-Cities, Pullman, Washington 99164, United States
| | - Thomas C. Squier
- Biological
Sciences Division, Fundamental Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
11
|
Yadahalli S, Gosavi S. Designing cooperativity into the designed protein Top7. Proteins 2013; 82:364-74. [PMID: 23966061 DOI: 10.1002/prot.24393] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/24/2013] [Accepted: 07/26/2013] [Indexed: 01/21/2023]
Abstract
The topology of the designed protein Top7 is not found in natural proteins. Top7 shows signatures of non-cooperative folding in both experimental studies and computer simulations. In particular, molecular dynamics of coarse-grained structure-based models of Top7 show a well-populated C-terminal folding-intermediate. Since most similarly sized globular proteins are cooperative folders, the non-natural topology of Top7 has been suggested as a reason for its non-cooperative folding. Here, we computationally examine the folding of Top7 with the intent of making it cooperative. We find that its folding cooperativity can be increased in two ways: (a) Optimization of packing interactions in the N-terminal half of the protein enables further folding of the C-terminal intermediate. (b) Reduction in the packing density of the C-terminal region destabilizes the intermediate. In practice, these strategies are implemented in our Top7 model through modifications to the contact-map. These modifications do not alter the topology of Top7 but result in cooperative folding. Amino-acid mutations that mimic these modifications also lead to a significant increase in folding cooperativity. Finally, we devise a method to randomize the sizes of amino-acids within the same topology, and confirm that the structure of Top7 makes its folding sensitive to packing interactions. In contrast, the ribosomal protein S6, which has secondary structure similar to Top7, has folding which is much less sensitive to packing perturbations. Thus, it should be possible to make a sequence fold cooperatively to the structure of Top7, but to do so its side-chain packing needs to be carefully designed.
Collapse
Affiliation(s)
- Shilpa Yadahalli
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, India; Manipal University, Madhav Nagar, Manipal, 576104, India
| | | |
Collapse
|
12
|
Mohanty S, Meinke JH, Zimmermann O. Folding of Top7 in unbiased all-atom Monte Carlo simulations. Proteins 2013; 81:1446-56. [DOI: 10.1002/prot.24295] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 03/05/2013] [Accepted: 03/17/2013] [Indexed: 02/04/2023]
Affiliation(s)
- Sandipan Mohanty
- Jülich Supercomputing Centre; Institute for Advanced Simulation; Forschungszentrum Jülich; D-52425; Jülich; Germany
| | - Jan H. Meinke
- Jülich Supercomputing Centre; Institute for Advanced Simulation; Forschungszentrum Jülich; D-52425; Jülich; Germany
| | - Olav Zimmermann
- Jülich Supercomputing Centre; Institute for Advanced Simulation; Forschungszentrum Jülich; D-52425; Jülich; Germany
| |
Collapse
|
13
|
Influence of Scaffold Stability and Electrostatics on Top7-Based Engineered Helical HIV-1 Epitopes. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/978-3-319-02624-4_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
14
|
Viana IFT, Soares TA, Lima LFO, Marques ETA, Krieger MA, Dhalia R, Lins RD. De novo design of immunoreactive conformation-specific HIV-1 epitopes based on Top7 scaffold. RSC Adv 2013. [DOI: 10.1039/c3ra41562g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
15
|
Wang T, Duan Y. Probing the stability-limiting regions of an antibody single-chain variable fragment: a molecular dynamics simulation study. Protein Eng Des Sel 2011; 24:649-57. [PMID: 21729946 DOI: 10.1093/protein/gzr029] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Antibody single-chain variable fragments (scFvs) offer particular advantages over the full-size antibodies, including easy expression, efficient local concentration and fast body clearance. However, scFvs typically show low thermal stability that limits their biomedical and biotechnological applications. In this study, we examined the thermal stability of the human and murine vascular endothelial growth factor antibody scFv fragment by molecular dynamics simulations. A consistent observation was the dissociation of the light-chain (VL) and heavy-chain (VH) domains and loss of the native structures of both domains in the simulations at the elevated temperatures. The stability-limiting structural elements in the protein were revealed from the detailed analyses on the native contacts. We found that dissociation of the VL-VH domains was the first event leading to the unfolding of the native structure of the protein and the disruption of the VL-VH interface was largely due to the break of the interfacial hydrophobic and aromatic interactions while the hydrogen-bonding interaction between Gln38 in VL and Gln39 in VH remained. Within the β-barrel structure of the VL and VH domains, β-strands β6, β2 and β11 appeared to be the least stable. In addition, we found that the VH domain was more thermally resistant than the VL domain. Based on these findings, we discussed potential strategies to improve the stability of this therapeutically important scFv fragment.
Collapse
Affiliation(s)
- Ting Wang
- Department of Applied Science, University of California, Davis, CA 95616-8816, USA
| | | |
Collapse
|
16
|
Franca EF, Freitas LCG, Lins RD. Chitosan molecular structure as a function of N-acetylation. Biopolymers 2011; 95:448-60. [PMID: 21328576 DOI: 10.1002/bip.21602] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/14/2011] [Accepted: 01/17/2011] [Indexed: 11/10/2022]
Abstract
Molecular dynamics simulations have been carried out to characterize the structure and solubility of chitosan nanoparticle-like structures as a function of the deacetylation level (0, 40, 60, and 100%) and the spatial distribution of the N-acetyl groups in the particles. The polysaccharide chains of highly N-deacetylated particles where the N-acetyl groups are uniformly distributed present a high flexibility and preference for the relaxed two-fold helix and five-fold helix motifs. When these groups are confined to a given region of the particle, the chains adopt preferentially a two-fold helix with ϕ and ψ values close to crystalline chitin. Nanoparticles with up to 40% acetylation are moderately soluble, forming stable aggregates when the N-acetyl groups are unevenly distributed. Systems with 60% or higher N-acetylation levels are insoluble and present similar degrees of swelling regardless the distribution of their N-acetyl groups. Overall particle solvation is highly affected by electrostatic forces resulting from the degree of acetylation. The water mobility and orientation around the polysaccharide chains affects the stability of the intramolecular O3-HO3((n)) ···O5((n +) (1)) hydrogen bond, which in turn controls particle aggregation.
Collapse
Affiliation(s)
- Eduardo F Franca
- Instituto de Química, Universidade Federal de Uberlândia, Uberlândia, MG 38400-902, Brazil
| | | | | |
Collapse
|
17
|
Hecht AH, Sommer GJ, Durland RH, Yang X, Singh AK, Hatch AV. Aptamers as affinity reagents in an integrated electrophoretic lab-on-a-chip platform. Anal Chem 2010; 82:8813-20. [PMID: 20945866 DOI: 10.1021/ac101106m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nucleic acid based affinity reagents (e.g., aptamers) offer several possible advantages over antibodies as specific recognition elements in biochemical assays. Besides offering improved cost and stability, aptamers are ideal for rapid electrophoretic analysis due to their low molecular weight and high negative charge. While aptamers have proven well-suited for affinity-shift electrophoretic analysis, demonstrating a fully integrated aptamer-based assay platform represents an important achievement toward low-cost point-of-care analysis, particularly for remote or resource poor settings where cost and ambient stability of reagents is a key consideration. Here we perform and evaluate the suitability of aptamer-based affinity assays for two clinically relevant target analytes (IgE using a known aptamer and NF-κB using a thio-modified aptamer) in an integrated electrophoretic gel-shift platform. Key steps of (i) mixing sample with aptamer, (ii) buffer exchange, and (iii) preconcentration of sample were successfully integrated on-chip upstream of a fluorescence-based gel-shift analysis step. This approach, utilizing a size-exclusion membrane optimized here for aptamer retention and preconcentration with sample, enables automated sample-to-answer for trace analytes in 10 min or less. We addressed notable nonspecific interference from serum proteins by adding similar nucleic acid competitors to suppress such interactions with the aptamer. Nanomolar sensitivities were demonstrated and integrated preconcentration of sample provides an important means of further improving detection sensitivities. Aptamers proved superior in many respects to antibody reagents, particularly with regard to speed and resolution of gel-shifts associated with specific binding to target.
Collapse
Affiliation(s)
- Ariel H Hecht
- Sandia National Laboratories, Livermore, California 94551, United States, University of Michigan, Ann Arbor, Michigan 48109, United States, and AM Biotechnologies, LLC, Houston, Texas 77034, United States
| | | | | | | | | | | |
Collapse
|
18
|
Barakat NH, Barakat NH, Love JJ. Combined use of experimental and computational screens to characterize protein stability. Protein Eng Des Sel 2010; 23:799-807. [PMID: 20805093 DOI: 10.1093/protein/gzq052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the primary goals of protein design is to engineer proteins with improved stability. Protein stability is a key issue for chemical, biotechnology and pharmaceutical industries. The development of robust proteins/enzymes with the ability to withstand the potentially harsh conditions of industrial operations is of high importance. A number of strategies are currently being employed to achieve this goal. Two particular approaches, (i) directed evolution and (ii) computational protein design, are quite powerful yet have only recently been combined or applied and analyzed in parallel. In directed evolution, libraries of variants are searched experimentally for clones possessing the desired properties. With computational methods, protein design algorithms are utilized to perform in silico screening for stable protein sequences. Here, we used gene libraries of an unstable variant of streptococcal protein G (Gbeta1) and an in vivo screening method to identify stabilized variants. Many variants with notably increased thermal stabilities were isolated and characterized. Concomitantly, computational techniques and protein design algorithms were used to perform in silico screening of the same destabilized variant of Gbeta1. The combined use, and critical analysis, of these methods promises to advance the field of protein design.
Collapse
Affiliation(s)
- Nora H Barakat
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182-1030, USA
| | | | | |
Collapse
|
19
|
Molecular basis of the structural stability of a Top7-based scaffold at extreme pH and temperature conditions. J Mol Graph Model 2010; 28:755-65. [DOI: 10.1016/j.jmgm.2010.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 12/29/2009] [Accepted: 01/31/2010] [Indexed: 11/22/2022]
|
20
|
Protein-protein interactions and selection: generation of molecule-binding proteins on the basis of tertiary structural information. FEBS J 2010; 277:2006-14. [PMID: 20412054 DOI: 10.1111/j.1742-4658.2010.07627.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Antibodies and their fragments are attractive binding proteins because their high binding strength is generated by several hypervariable loop regions, and because high-quality libraries can be prepared from the vast gene clusters expressed by mammalian lymphocytes. Recent explorations of new genome sequences and protein structures have revealed various small, nonantibody scaffold proteins. Accurate structural descriptions of protein-protein interactions based on X-ray and NMR analyses allow us to generate binding proteins by using grafting and library techniques. Here, we review approaches for generating binding proteins from small scaffold proteins on the basis of tertiary structural information. Identification of binding sites from visualized tertiary structures supports the transfer of function by peptide grafting. The local library approach is advantageous as a go-between technique for grafted foreign peptide sequences and small scaffold proteins. The identification of binding sites also supports the construction of efficient libraries with a low probability of denatured variants, and, in combination with the design for library diversity, opens the way to increasing library density and randomized sequence lengths without decreasing density. Detailed tertiary structural analyses of protein-protein complexes allow accurate description of epitope locations to enable the design of and screening for multispecific, high-affinity proteins recognizing multiple epitopes in target molecules.
Collapse
|