1
|
Abstract
Pulmonary hypertension (PH) because of chronic lung disease is categorized as Group 3 PH in the most recent classification system. Prevalence of these diseases is increasing over time, creating a growing need for effective therapeutic options. Recent approval of the first pulmonary arterial hypertension therapy for the treatment of Group 3 PH related to interstitial lung disease represents an encouraging advancement. This review focuses on molecular mechanisms contributing to pulmonary vasculopathy in chronic hypoxia, the pathology and epidemiology of Group 3 PH, the right ventricular dysfunction observed in this population and clinical trial data that inform the use of pulmonary vasodilators in Group 3 PH.
Collapse
Affiliation(s)
- Navneet Singh
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI
| | - Peter Dorfmüller
- Department of Pathology, Universities of Giessen and Marburg Lung Center (UGMLC), Justus-Liebig University, Germany (P.D.).,German Center for Lung Research (DZL), Giessen, Germany (P.D.)
| | - Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Fairfax Hospital, Falls Church, VA (O.A.S.)
| | - Corey E Ventetuolo
- Division of Pulmonary, Critical Care and Sleep Medicine (N.S., C.E.V.), Brown University, Providence, RI.,Department of Health Services, Policy and Practice (C.E.V.), Brown University, Providence, RI
| |
Collapse
|
2
|
Xu W, Erzurum SC. Endothelial cell energy metabolism, proliferation, and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:357-72. [PMID: 23737177 DOI: 10.1002/cphy.c090005] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a fatal disease characterized by impaired regulation of pulmonary hemodynamics and excessive growth and dysfunction of the endothelial cells that line the arteries in PAH lungs. Establishment of methods for culture of pulmonary artery endothelial cells from PAH lungs has provided the groundwork for mechanistic translational studies that confirm and extend findings from model systems and spontaneous pulmonary hypertension in animals. Endothelial cell hyperproliferation, survival, and alterations of biochemical-metabolic pathways are the unifying endothelial pathobiology of the disease. The hyperproliferative and apoptosis-resistant phenotype of PAH endothelial cells is dependent upon the activation of signal transducer and activator of transcription (STAT) 3, a fundamental regulator of cell survival and angiogenesis. Animal models of PAH, patients with PAH, and human PAH endothelial cells produce low nitric oxide (NO). In association with the low level of NO, endothelial cells have reduced mitochondrial numbers and cellular respiration, which is associated with more than a threefold increase in glycolysis for energy production. The shift to glycolysis is related to low levels of NO and likely to the pathologic expression of the prosurvival and proangiogenic signal transducer, hypoxia-inducible factor (HIF)-1, and the reduced mitochondrial antioxidant manganese superoxide dismutase (MnSOD). In this article, we review the phenotypic changes of the endothelium in PAH and the biochemical mechanisms accounting for the proliferative, glycolytic, and strongly proangiogenic phenotype of these dysfunctional cells, which consequently foster the panvascular progressive pulmonary remodeling in PAH.
Collapse
Affiliation(s)
- Weiling Xu
- Departments of Pathobiology, Lerner Research Institute, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
| | | |
Collapse
|
3
|
Effects of Coenzyme Q10 on Growth Performance and Heart Mitochondrial Function of Broilers Under High Altitude Induced Hypoxia. J Poult Sci 2011. [DOI: 10.2141/jpsa.010084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
4
|
Fijalkowska I, Xu W, Comhair SAA, Janocha AJ, Mavrakis LA, Krishnamachary B, Zhen L, Mao T, Richter A, Erzurum SC, Tuder RM. Hypoxia inducible-factor1alpha regulates the metabolic shift of pulmonary hypertensive endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1130-8. [PMID: 20110409 DOI: 10.2353/ajpath.2010.090832] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Severe pulmonary hypertension is irreversible and often fatal. Abnormal proliferation and resistance to apoptosis of endothelial cells (ECs) and hypertrophy of smooth muscle cells in this disease are linked to decreased mitochondria and preferential energy generation by glycolysis. We hypothesized this metabolic shift of pulmonary hypertensive ECs is due to greater hypoxia inducible-factor1alpha (HIF-1alpha) expression caused by low levels of nitric oxide combined with low superoxide dismutase activity. We show that cultured ECs from patients with idiopathic pulmonary arterial hypertension (IPAH-ECs) have greater HIF-1alpha expression and transcriptional activity than controls under normoxia or hypoxia, and pulmonary arteries from affected patients have increased expression of HIF-1alpha and its target carbonic anhydrase IX. Decreased expression of manganese superoxide dismutase (MnSOD) in IPAH-ECs paralleled increased HIF-1alpha levels and small interfering (SI) RNA knockdown of MnSOD, but not of the copper-zinc SOD, increased HIF-1 protein expression and hypoxia response element (HRE)-driven luciferase activity in normoxic ECs. MnSOD siRNA also reduced nitric oxide production in supernatants of IPAH-ECs. Conversely, low levels of a nitric oxide donor reduced HIF-1alpha expression in normoxic IPAH-ECs. Finally, mitochondria numbers increased in IPAH-ECs with knockdown of HIF-1alpha. These findings indicate that alterations of nitric oxide and MnSOD contribute to pathological HIF-1alpha expression and account for lower numbers of mitochondria in IPAH-ECs.
Collapse
Affiliation(s)
- Iwona Fijalkowska
- Department of Pathology, Johns Hopkins Univesity School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Bottje W, Brand M, Ojano-Dirain C, Lassiter K, Toyomizu M, Wing T. Mitochondrial proton leak kinetics and relationship with feed efficiency within a single genetic line of male broilers. Poult Sci 2009; 88:1683-93. [DOI: 10.3382/ps.2009-00100] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A 2007; 104:1342-7. [PMID: 17227868 PMCID: PMC1783136 DOI: 10.1073/pnas.0605080104] [Citation(s) in RCA: 290] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is pathogenetically related to low levels of the vasodilator nitric oxide (NO). Because NO regulates cellular respiration and mitochondrial biogenesis, we hypothesized that abnormalities of bioenergetics may be present in IPAH. Evaluation of pulmonary artery endothelial cells from IPAH and control lungs in vitro revealed that oxygen consumption of IPAH cells was decreased, especially in state 3 respiration with substrates glutamate-malate or succinate, and this decrease paralleled reduction in Complex IV activity and IPAH cellular NO synthesis. IPAH pulmonary artery endothelial cells had decreased mitochondrial dehydrogenase activity and lowered mitochondrial numbers per cell and mitochondrial DNA content, all of which increased after exposure to NO donors. Although IPAH/pulmonary artery endothelial cells' ATP content was similar to control under normoxia, cellular ATP did not change significantly in IPAH cells under hypoxia, whereas ATP decreased 35% in control cells, identifying a greater dependence on cellular respiration for energy in control cells. Evidence that glucose metabolism was subserving the primary role for energy requirements of IPAH cells was provided by the approximately 3-fold greater glycolytic rate of IPAH cells. Positron emission tomography scan with [18F]fluoro-deoxy-D-glucose performed on IPAH patients and healthy controls revealed significantly higher uptake in IPAH lungs as compared with controls, confirming that the glycolytic rate was increased in vivo. Thus, there are substantial changes in bioenergetics of IPAH endothelial cells, which may have consequences for pulmonary hypertensive responses and potentially in development of novel imaging modalities for diagnosis and evaluation of treatment.
Collapse
Affiliation(s)
| | | | | | - Donald Neumann
- Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195; and
| | | | | | | | | | | | | | - Raed A. Dweik
- Departments of *Pathobiology
- Pulmonary and Critical Care Medicine, and
| | - Rubin M. Tuder
- Division of Cardiopulmonary Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Serpil C. Erzurum
- Departments of *Pathobiology
- Pulmonary and Critical Care Medicine, and
- To whom correspondence should be addressed at:
Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue/NC22, Cleveland, OH 44195. E-mail:
| |
Collapse
|
7
|
de Cavanagh EMV, Toblli JE, Ferder L, Piotrkowski B, Stella I, Inserra F. Renal mitochondrial dysfunction in spontaneously hypertensive rats is attenuated by losartan but not by amlodipine. Am J Physiol Regul Integr Comp Physiol 2006; 290:R1616-25. [PMID: 16410402 DOI: 10.1152/ajpregu.00615.2005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial dysfunction is associated with cardiovascular damage; however, data on a possible association with kidney damage are scarce. Here, we aimed at investigating whether 1) kidney impairment is related to mitochondrial dysfunction; and 2) ANG II blockade, compared with Ca2+ channel blockade, can reverse potential mitochondrial changes in hypertension. Eight-week-old male spontaneously hypertensive rats (SHR) received water containing losartan (40 mg·kg−1·day−1, SHR+Los), amlodipine (3 mg·kg−1·day−1, SHR+Amlo), or no additions (SHR) for 6 mo. Wistar-Kyoto rats (WKY) were normotensive controls. Glomerular and tubulointerstitial damage, systolic blood pressure, and proteinuria were higher, and creatinine clearance was lower in SHR vs. SHR+Los and WKY. In SHR+Amlo, blood pressure was similar to WKY, kidney function was similar to SHR, and renal lesions were lower than in SHR, but higher than in SHR+Los. In kidney mitochondria from SHR and SHR+Amlo, membrane potential, nitric oxide synthase, manganese-superoxide dismutase and cytochrome oxidase activities, and uncoupling protein-2 content were lower than in SHR+Los and WKY. In SHR and SHR+Amlo, mitochondrial H2O2 production was higher than in SHR+Los and WKY. Renal glutathione content was lower in SHR+Amlo relative to SHR, SHR+Los, and WKY. In SHR and SHR+Amlo, glutathione was relatively more oxidized than in SHR+Los and WKY. Tubulointerstitial α-smooth muscle actin labeling was inversely related to manganese-superoxide dismutase activity and uncoupling protein-2 content. These findings suggest that oxidant stress is associated with renal mitochondrial dysfunction in SHR. The mitochondrial-antioxidant actions of losartan may be an additional or alternative way to explain some of the beneficial effects of AT1-receptor antagonists.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Physical-Chemistry Department, School of Pharmacy and Biochemistry, University of Buenos Aires, Helguera 2365, Buenos Aires 1417, Argentina
| | | | | | | | | | | |
Collapse
|