1
|
Molinero E, Pena RN, Estany J, Ros‐Freixedes R. Association between mitochondrial DNA copy number and production traits in pigs. J Anim Breed Genet 2025; 142:170-183. [PMID: 39189093 PMCID: PMC11812088 DOI: 10.1111/jbg.12894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/29/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
Mitochondria are essential organelles in the regulation of cellular energetic metabolism. Mitochondrial DNA copy number (mtDNA_CN) can be used as a proxy for mitochondria number, size, and activity. The aims of our study are to evaluate the effect of mtDNA_CN and mitochondrial haploblocks on production traits in pigs, and to identify the genetic background of this cellular phenotype. We collected performance data of 234 pigs and extracted DNA from skeletal muscle. Whole-genome sequencing data was used to determine mtDNA_CN. We found positive correlations of muscle mtDNA_CN with backfat thickness at 207 d (+0.14; p-value = 0.07) and negative correlations with carcase loin thickness (-0.14; p-value = 0.03). Pigs with mtDNA_CN values below the lower quartile had greater loin thickness (+4.1 mm; p-value = 0.01) and lower backfat thickness (-1.1 mm; p-value = 0.08), which resulted in greater carcase lean percentage (+2.4%; p-value = 0.04), than pigs with mtDNA_CN values above the upper quartile. These results support the hypothesis that a reduction of mitochondrial activity is associated with greater feed efficiency. Higher mtDNA_CN was also positively correlated with higher meat ultimate pH (+0.19; p-value <0.01) but we did not observe significant difference for meat ultimate pH between the two groups with extreme mtDNA_CN. We found no association of the most frequent mitochondrial haploblocks with mtDNA_CN or the production traits, but several genomic regions that harbour potential candidate genes with functions related to mitochondrial biogenesis and homeostasis were associated with mtDNA_CN. These regions provide new insights into the genetic background of this cellular phenotype but it is still uncertain if such associations translate into noticeable effects on the production traits.
Collapse
Affiliation(s)
- Eduard Molinero
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Ramona N. Pena
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Joan Estany
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| | - Roger Ros‐Freixedes
- Departament de Ciència AnimalUniversitat de LleidaLleidaSpain
- Agrotecnio‐CERCA CenterLleidaSpain
| |
Collapse
|
2
|
Li S, Wang Z, Yao JW, Jiao HC, Wang XJ, Lin H, Zhao JP. Reduced PGC-1β protein expression may underlie corticosterone inhibition of mitochondrial biogenesis and oxidative phosphorylation in chicken muscles. Front Physiol 2022; 13:989547. [PMID: 36311241 PMCID: PMC9605778 DOI: 10.3389/fphys.2022.989547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
To uncover the molecular mechanism underlying glucocorticoid-induced loss of mitochondrial integrity in skeletal muscles, studies were performed to investigate whether the peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1)-mediated pathway was involved in this process. In an in vivo trial, 3 groups of 30-d-old Arbor Acres male broilers were randomly subjected to one of the following treatments for 7 days: corticosterone (CORT, 30 mg/kg diet), control (blank), and pair-feeding (restricted to the same feed intake as for the CORT treatment), each with 6 replicates of 15 birds. Mitochondrial abundance, morphology, and function were determined in the pectoralis major and biceps femoris muscles. In an in vitro trial, a primary culture of embryonic chick myotubes was incubated with a serum-free medium for 24 h in the presence or absence of CORT (0, 200, and 1,000 nM). Results showed that CORT destroyed mitochondrial ultrastructure (p < 0.01), and decreased the enzymatic activity and protein expression of respiratory chain complexes (p < 0.05), leading to an inferior coupling efficiency (p < 0.05). As reflected by a decline in mitochondrial density (p < 0.01) and mitochondrial DNA copy number (p < 0.05), CORT reduced mitochondrial contents. Among all three PGC-1 family members, only PGC-1β was down-regulated by CORT at the protein level (p < 0.05). Some aspects of these responses were tissue-specific and seemed to result from the depressed feed intake. Overall, CORT may impair mitochondrial biogenesis and oxidative phosphorylation in a PGC-1β-dependent manner in chicken muscles.
Collapse
Affiliation(s)
- Sheng Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Zhi Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Jing Wen Yao
- Pharmacy Department, Taian City Central Hospital, Taian, Shandong, China
| | - Hong Chao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Xiao Juan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
| | - Jing Peng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong, China
- *Correspondence: Jing Peng Zhao,
| |
Collapse
|
3
|
Pezeshkian Z, Mirhoseini SZ, Ghovvati S, Ebrahimie E. Transcriptome Analysis of Breast Muscle Reveals Pathways Related to Protein Deposition in High Feed Efficiency of Native Turkeys. Animals (Basel) 2022; 12:1240. [PMID: 35625086 PMCID: PMC9138110 DOI: 10.3390/ani12101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
Feed efficiency is important due to the high cost of food, which accounts for about 70% of the total cost of a turkey breeding system. Native poultry are an important genetic resource in poultry breeding programs. This study aimed to conduct a global transcriptome analysis of native male turkeys which have been phenotyped for high and low feed efficiency. Feed efficiency traits were recorded during the experimental period. After slaughter, the three most efficient and three least efficient male turkeys were selected for RNA-Seq analysis. A total of 365 genes with different expressions in muscle tissue were identified between turkeys with a high feed efficiency compared to turkeys with a low feed efficiency. In the pathway analysis of up-regulated genes, major pathways included the "metabolism of glycine, serine, and threonine"; the "adipocytokine signaling pathway" and the "biosynthesis of amino acids". In the pathway analysis of down-regulated genes, the major pathways included "dorso-ventral axis formation" and "actin cytoskeleton regulation". In addition, gene set enrichment analyses were performed, which showed that high feed efficiency birds exhibit an increased expression of genes related to the biosynthesis of amino acids and low feed efficiency birds an increased expression of genes related to the immune response. Furthermore, functional analysis and protein network interaction analysis revealed that genes including GATM, PSAT1, PSPH, PHGDH, VCAM1, CD44, KRAS, SRC, CAV3, NEDD9, and PTPRQ were key genes for feed efficiency. These key genes may be good potential candidates for biomarkers of feed efficiency in genetic selection in turkeys.
Collapse
Affiliation(s)
- Zahra Pezeshkian
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht 41635-1314, Guilan, Iran; (Z.P.); (S.G.)
| | - Seyed Ziaeddin Mirhoseini
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht 41635-1314, Guilan, Iran; (Z.P.); (S.G.)
| | - Shahrokh Ghovvati
- Department of Animal Sciences, Faculty of Agriculture, University of Guilan, Rasht 41635-1314, Guilan, Iran; (Z.P.); (S.G.)
| | - Esmaeil Ebrahimie
- Genomics Research Platform, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne, VIC 3086, Australia
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, SA 5371, Australia
- School of BioSciences, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
4
|
Dorji J, MacLeod IM, Chamberlain AJ, Vander Jagt CJ, Ho PN, Khansefid M, Mason BA, Prowse-Wilkins CP, Marett LC, Wales WJ, Cocks BG, Pryce JE, Daetwyler HD. Mitochondrial protein gene expression and the oxidative phosphorylation pathway associated with feed efficiency and energy balance in dairy cattle. J Dairy Sci 2020; 104:575-587. [PMID: 33162069 DOI: 10.3168/jds.2020-18503] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Feed efficiency and energy balance are important traits underpinning profitability and environmental sustainability in animal production. They are complex traits, and our understanding of their underlying biology is currently limited. One measure of feed efficiency is residual feed intake (RFI), which is the difference between actual and predicted intake. Variation in RFI among individuals is attributable to the metabolic efficiency of energy utilization. High RFI (H_RFI) animals require more energy per unit of weight gain or milk produced compared with low RFI (L_RFI) animals. Energy balance (EB) is a closely related trait calculated very similarly to RFI. Cellular energy metabolism in mitochondria involves mitochondrial protein (MiP) encoded by both nuclear (NuMiP) and mitochondrial (MtMiP) genomes. We hypothesized that MiP genes are differentially expressed (DE) between H_RFI and L_RFI animal groups and similarly between negative and positive EB groups. Our study aimed to characterize MiP gene expression in white blood cells of H_RFI and L_RFI cows using RNA sequencing to identify genes and biological pathways associated with feed efficiency in dairy cattle. We used the top and bottom 14 cows ranked for RFI and EB out of 109 animals as H_RFI and L_RFI, and positive and negative EB groups, respectively. The gene expression counts across all nuclear and mitochondrial genes for animals in each group were used for differential gene expression analyses, weighted gene correlation network analysis, functional enrichment, and identification of hub genes. Out of 244 DE genes between RFI groups, 38 were MiP genes. The DE genes were enriched for the oxidative phosphorylation (OXPHOS) and ribosome pathways. The DE MiP genes were underexpressed in L_RFI (and negative EB) compared with the H_RFI (and positive EB) groups, suggestive of reduced mitochondrial activity in the L_RFI group. None of the MtMiP genes were among the DE MiP genes between the groups, which suggests a non-rate limiting role of MtMiP genes in feed efficiency and warrants further investigation. The role of MiP, particularly the NuMiP and OXPHOS pathways in RFI, was also supported by our gene correlation network analysis and the hub gene identification. We validated the findings in an independent data set. Overall, our study suggested that differences in feed efficiency in dairy cows may be linked to differences in cellular energy demand. This study broadens our knowledge of the biology of feed efficiency in dairy cattle.
Collapse
Affiliation(s)
- Jigme Dorji
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083.
| | - Iona M MacLeod
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Amanda J Chamberlain
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Christy J Vander Jagt
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Phuong N Ho
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Majid Khansefid
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Brett A Mason
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Claire P Prowse-Wilkins
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010
| | - Leah C Marett
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010; Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, Victoria, Australia, 3821
| | - William J Wales
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia, 3010; Agriculture Victoria, Ellinbank Dairy Centre, Ellinbank, Victoria, Australia, 3821
| | - Benjamin G Cocks
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Jennie E Pryce
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| | - Hans D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia, 3083; Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria, Australia, 3083
| |
Collapse
|
5
|
Zampiga M, Flees J, Meluzzi A, Dridi S, Sirri F. Application of omics technologies for a deeper insight into quali-quantitative production traits in broiler chickens: A review. J Anim Sci Biotechnol 2018; 9:61. [PMID: 30214720 PMCID: PMC6130060 DOI: 10.1186/s40104-018-0278-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The poultry industry is continuously facing substantial and different challenges such as the increasing cost of feed ingredients, the European Union's ban of antibiotic as growth promoters, the antimicrobial resistance and the high incidence of muscle myopathies and breast meat abnormalities. In the last decade, there has been an extraordinary development of many genomic techniques able to describe global variation of genes, proteins and metabolites expression level. Proper application of these cutting-edge omics technologies (mainly transcriptomics, proteomics and metabolomics) paves the possibility to understand much useful information about the biological processes and pathways behind different complex traits of chickens. The current review aimed to highlight some important knowledge achieved through the application of omics technologies and proteo-genomics data in the field of feed efficiency, nutrition, meat quality and disease resistance in broiler chickens.
Collapse
Affiliation(s)
- Marco Zampiga
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| | - Joshua Flees
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| | - Sami Dridi
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701 USA
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Via del Florio, 2, 40064 Ozzano dell’Emilia, Italy
| |
Collapse
|
6
|
Davis MP, Brooks MA, Kerley MS. Relationship between residual feed intake and lymphocyte mitochondrial complex protein concentration and ratio in crossbred steers. J Anim Sci 2017; 94:1587-91. [PMID: 27136017 DOI: 10.2527/jas.2015-9843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rate of oxygen uptake by muscle mitochondria and respiratory chain protein concentrations differed between high- and low-residual feed intake (RFI) animals. The hypothesis of this research was that complex I (CI), II (CII), and III (CIII) mitochondria protein concentrations in lymphocyte (blood) mitochondria were related to the RFI phenotype of beef steers. Daily feed intake (ADFI) was individually recorded for 92 Hereford-crossbreed steers over 63 d using GrowSafe individual feed intake system. Predicted ADFI was calculated as the regression of ADFI on ADG and midtest BW. Difference between ADFI and predicted ADFI was RFI. Lymphocytes were isolated from low-RFI (-1.32 ± 0.11 kg/d; = 10) and high-RFI (1.34 ± 0.18 kg/d; = 8) steers. Immunocapture of CI, CII, and CIII proteins from the lymphocyte was done using MitoProfile CI, CII, and CIII immunocapture kits (MitoSciences Inc., Eugene, OR). Protein concentrations of CI, CII, and CIII and total protein were quantified using bicinchoninic acid colorimetric procedures. Low-RFI steers consumed 30% less ( = 0.0004) feed and had a 40% improvement ( < 0.0001) in feed efficiency compared with high-RFI steers with similar growth ( = 0.78) and weight measurements ( > 0.65). High- and low-RFI steers did not differ in CI ( = 0.22), CII ( = 0.69), and CIII ( = 0.59) protein concentrations. The protein concentration ratios for CI to CII ( = 0.03) were 20% higher and the ratios of CI to CIII ( = 0.01) were 30% higher, but the ratios of CII to CIII ( = 0.89) did not differ when comparing low-RFI steers with high-RFI steers. The similar magnitude difference in feed intake, feed efficiency measurements, and CI-to-CIII ratio between RFI phenotypes provides a plausible explanation for differences between the phenotypes. We also concluded that mitochondria isolated from lymphocytes could be used to study respiratory chain differences among differing RFI phenotypes. Further research is needed to determine if lymphocyte mitochondrial complex proteins can be used for identification of RFI phenotype.
Collapse
|
7
|
Bottje W, Kong BW, Reverter A, Waardenberg AJ, Lassiter K, Hudson NJ. Progesterone signalling in broiler skeletal muscle is associated with divergent feed efficiency. BMC SYSTEMS BIOLOGY 2017; 11:29. [PMID: 28235404 PMCID: PMC5324283 DOI: 10.1186/s12918-017-0396-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 01/16/2017] [Indexed: 01/08/2023]
Abstract
Background We contrast the pectoralis muscle transcriptomes of broilers selected from within a single genetic line expressing divergent feed efficiency (FE) in an effort to improve our understanding of the mechanistic basis of FE. Results Application of a virtual muscle model to gene expression data pointed to a coordinated reduction in slow twitch muscle isoforms of the contractile apparatus (MYH15, TPM3, MYOZ2, TNNI1, MYL2, MYOM3, CSRP3, TNNT2), consistent with diminishment in associated slow machinery (myoglobin and phospholamban) in the high FE animals. These data are in line with the repeated transition from red slow to white fast muscle fibres observed in agricultural species selected on mass and FE. Surprisingly, we found that the expression of 699 genes encoding the broiler mitoproteome is modestly–but significantly–biased towards the high FE group, suggesting a slightly elevated mitochondrial content. This is contrary to expectation based on the slow muscle isoform data and theoretical physiological capacity arguments. Reassuringly, the extreme 40 most DE genes can successfully cluster the 12 individuals into the appropriate FE treatment group. Functional groups contained in this DE gene list include metabolic proteins (including opposing patterns of CA3 and CA4), mitochondrial proteins (CKMT1A), oxidative status (SEPP1, HIG2A) and cholesterol homeostasis (APOA1, INSIG1). We applied a differential network method (Regulatory Impact Factors) whose aim is to use patterns of differential co-expression to detect regulatory molecules transcriptionally rewired between the groups. This analysis clearly points to alterations in progesterone signalling (via the receptor PGR) as the major driver. We show the progesterone receptor localises to the mitochondria in a quail muscle cell line. Conclusions Progesterone is sometimes used in the cattle industry in exogenous hormone mixes that lead to a ~20% increase in FE. Because the progesterone receptor can localise to avian mitochondria, our data continue to point to muscle mitochondrial metabolism as an important component of the phenotypic expression of variation in broiler FE. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0396-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Walter Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Byung-Whi Kong
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Antonio Reverter
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, 4072, Australia
| | - Ashley J Waardenberg
- Agriculture, Commonwealth Science and Industrial Research Organisation, 306 Carmody Road, Brisbane, QLD, 4072, Australia.,Children's Medical Research Institute, University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kentu Lassiter
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas J Hudson
- School of Agriculture and Food Science, University of Queensland, Gatton, QLD, 4343, Australia.
| |
Collapse
|
8
|
Tavárez MA, Solis de los Santos F. Impact of genetics and breeding on broiler production performance: a look into the past, present, and future of the industry. Anim Front 2016. [DOI: 10.2527/af.2016-0042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Marcos A. Tavárez
- Department of Food Technology, Universidad ISA, Santiago, Dominican Republic
| | | |
Collapse
|
9
|
Thermal stress induces changes in gene expression and blood parameters in high and low feed efficiency meat quail. J Appl Genet 2014; 56:253-60. [PMID: 25190104 DOI: 10.1007/s13353-014-0246-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/22/2014] [Accepted: 08/25/2014] [Indexed: 12/16/2022]
Abstract
In this study, we analysed markers of stress, plasma creatinine and T3 content, and insulin-like growth factor I (IGF-I), growth hormone receptor (GHR), uncoupling protein (UCP), adenine nucleotide translocase (ANT) and cytochrome c oxidase subunit III (COX III) mRNA expression in the liver and muscle of high (0.22 g/g) and low (0.14 g/g) feed efficiency (FE) meat quail at three different air temperatures, comfortable, heat and cold stress, for 24 h. High FE quail presented higher plasma T3 and lower creatinine levels. IGF-I mRNA expression was higher in the livers of high FE quail than in the livers of low FE quail under both comfortable and cold stress conditions. In the muscle, regardless of the environment, high FE birds showed higher IGF-I mRNA expression. High FE birds also showed higher GHR mRNA expression under comfortable conditions. Regarding the environment, higher expression was observed in birds at comfortable conditions, and lower expression in birds under heat stress. UCP mRNA expression in the liver was lower in high FE birds and higher under heat stress compared with the other conditions. Low and high FE birds showed greater ANT mRNA expression in the muscle under cold stress. Greater mRNA COX III expressions were observed in the liver and muscle of quails under comfortable conditions. Our results suggest that temperature affects the expression of genes related to growth and mitochondrial energy production, and quail with different FEs respond differently to environmental stimuli. In comfortable conditions, high FE animals show higher IGF-I mRNA expression and plasma T3 and lower creatinine content.
Collapse
|
10
|
Ramos MH, Kerley MS. Mitochondrial complex I protein differs among residual feed intake phenotype in beef cattle. J Anim Sci 2013; 91:3299-304. [DOI: 10.2527/jas.2012-5589] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- M. H. Ramos
- Research Institute Flávio Guarani, Rehagro–Belo Horizonte, MG, Brazil
| | - M. S. Kerley
- Division of Animal Science, University of Missouri-Columbia 65211-5300
| |
Collapse
|
11
|
Cruzen SM, Harris AJ, Hollinger K, Punt RM, Grubbs JK, Selsby JT, Dekkers JCM, Gabler NK, Lonergan SM, Huff-Lonergan E. Evidence of decreased muscle protein turnover in gilts selected for low residual feed intake. J Anim Sci 2013; 91:4007-16. [PMID: 23739790 DOI: 10.2527/jas.2013-6413] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to evaluate the contribution of muscle protein turnover (synthesis and degradation) to the biological basis for genetic differences in finisher pigs selected for residual feed intake (RFI). Residual feed intake is defined as the difference between expected feed intake (based on the achieved rate of BW gain and backfat depth of individual pigs) and the observed feed intake of the individual pig. We hypothesized that protein turnover would be reduced in pigs selected for low RFI. Twelve gilts from a line selected for 7 generations for low RFI and 12 from a contemporary line selected for 2 generations for high RFI were paired by age and BW and fed a standard corn-soybean diet for 6 wk. Pigs were euthanized, muscle and liver samples were collected, and insulin signaling, protein synthesis, and protein degradation proteins were analyzed for expression and activities. Muscle from low RFI pigs tended to have less μ- and m-calpain activities (P = 0.10 and 0.09, respectively) and had significantly greater calpastatin activity and a decreased μ-calpain:calpastatin activity ratio (P < 0.05). Muscle from low RFI pigs had less 20S proteasome activity compared with their high RFI counterparts (P < 0.05). No differences in insulin signaling intermediates and translation initiation signaling proteins [mammalian target of rapamycin (mTOR) pathway] were observed (P > 0.05). Postmortem proteolysis was determined in the LM from the eighth generation of the low RFI pigs versus their high RFI counterparts (n = 9 per line). Autolysis of μ-calpain was decreased in the low RFI pigs and less troponin-T degradation product was observed at 3 d postmortem (P < 0.05), indicating slowed postmortem proteolysis during aging in the low RFI pigs. These data provide significant evidence that less protein degradation occurs in pigs selected for reduced RFI, and this may account for a significant portion of the increased efficiency observed in these animals.
Collapse
Affiliation(s)
- S M Cruzen
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Del Vesco AP, Gasparino E, Oliveira Neto AR, Rossi RM, Soares MAM, da Silva SCC. Effect of methionine supplementation on mitochondrial genes expression in the breast muscle and liver of broilers. Livest Sci 2013. [DOI: 10.1016/j.livsci.2012.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Bottje W, Kong BW. Cell Biology Symposium: feed efficiency: mitochondrial function to global gene expression. J Anim Sci 2012; 91:1582-93. [PMID: 23148240 DOI: 10.2527/jas.2012-5787] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Understanding the cellular basis of feed efficiency (FE) is instrumental to helping poultry and livestock industries continue to provide high-quality protein for an increasingly crowded world. To understand relationships of FE and gene expression, global RNA transcription was investigated in breast muscle obtained from a male broiler line fed the same diet and individually phenotyped for FE. In these studies, RNA samples obtained from broilers that exhibited either high FE (0.65 ± 0.01) or low FE (0.46 ± 0.01) were analyzed with an Agilent 44K chicken oligoarray. A 1.3-fold cutoff in expression (30% difference between groups) resulted in 782 genes that were differentially expressed (P < 0.05) in muscle between the high- and low-FE phenotypes. Ingenuity Pathway Analysis, an online software program, was used to identify genes, gene networks, and pathways associated with the phenotypic expression of FE. The results indicate that the high-FE phenotype exhibited increased expression of genes associated with 1) signal transduction pathways, 2) anabolic activities, and 3) energy-sensing and energy coordination activities, all of which would likely be favorable to cell growth and development. In contrast, the low-FE broiler phenotype exhibited upregulation of genes 1) associated with actin-myosin filaments, cytoskeletal architecture, and muscle fibers and 2) stress-related or stress-responsive genes. Because the low-FE broiler phenotype exhibits greater oxidative stress, it would appear that the low-FE phenotype is the product of inherent gene expression that is modulated by oxidative stress. The results of these studies begin to provide a comprehensive picture of gene expression in muscle, a major organ of energy demand in an animal, associated with phenotypic expression of FE.
Collapse
Affiliation(s)
- W Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701, USA.
| | | |
Collapse
|
14
|
Tinsley N, Iqbal M, Pumford NR, Lassiter K, Ojano-Dirain C, Wing T, Bottje W. Investigation of mitochondrial protein expression and oxidation in heart muscle in low and high feed efficient male broilers in a single genetic line. Poult Sci 2010; 89:349-52. [PMID: 20075289 DOI: 10.3382/ps.2009-00138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to assess the expression of mitochondrial proteins and oxidized proteins in heart muscle homogenate obtained from male broilers exhibiting either high or low feed efficiency (G:F) phenotypes. Tissue homogenate was prepared from ventricular tissue obtained from broilers with high (0.80+/-0.01, n=8) and low (0.62+/-0.02, n=8) FE. The levels of specific immunoreactive proteins and oxidized proteins (carbonyls) were determined using Western blot analysis. The expression of 6 electron transport chain proteins [complex II, 70S subunit (CII 70S); iron-sulfur-containing protein (ISP), cytochrome b (Cyt b), cytochrome (Cyt c1) (of complex III); and cytochrome oxidase subunit II (COX II) (of complex IV)] and adenine nucleotide translocator 1 (ANT1) were higher in low feed efficiency heart mitochondria, but 1 protein [NAD subunit 6c (NAD6c) (complex I)] was higher in high feed efficiency birds. Protein carbonyl levels, indicative of oxidized proteins, were higher in heart tissue of low compared with high feed efficiency broilers.
Collapse
Affiliation(s)
- N Tinsley
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Connor EE, Kahl S, Elsasser TH, Parker JS, Li RW, Van Tassell CP, Baldwin RL, Barao SM. Enhanced mitochondrial complex gene function and reduced liver size may mediate improved feed efficiency of beef cattle during compensatory growth. Funct Integr Genomics 2009; 10:39-51. [DOI: 10.1007/s10142-009-0138-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/27/2009] [Accepted: 08/22/2009] [Indexed: 01/27/2023]
|
16
|
Romero LF, Zuidhof MJ, Renema RA, Naeima A, Robinson FE. Characterization of energetic efficiency in adult broiler breeder hens. Poult Sci 2009; 88:227-35. [PMID: 19096078 DOI: 10.3382/ps.2008-00141] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This trial characterized residual feed intake (RFI) and residual maintenance requirement (RME(m)) as measures of energetic efficiency in broiler breeder hens. The RFI was defined as the difference between observed and expected ME intake and RME(m) as the difference between observed and expected maintenance requirements. A total of 600 Ross 708 1-d-old pullets were placed in floor pens. At 16 wk, 144 hens were caged and randomly assigned to 1 of 2 feed allocation treatments (72 birds each). The control treatment had feed allocated on a group basis (GRP) following the standard BW target. A second treatment had feed allocated on an individual-bird basis (IND) and followed the same BW target as GRP. Sexual maturity age, egg and chick production, and several feed conversion ratios were correlated to standardized efficiency indices of RFI (SRFI) and RME(m) (SRME(m)) in each treatment. Greater SRFI and SRME(m) values described a greater energetic efficiency. Residual feed intake was more variable in IND than GRP hens (P < 0.001). The variability of RME(m) did not differ between treatments (P = 0.14). The SRFI was positively correlated to egg production in the GRP hens (r = 0.31), but negatively correlated in IND hens (r = -0.40) and was correlated to feed conversion per chick only in the GRP-based feed allocation (r = -0.44). The SRME(m) correlated strongly to egg production (r = 0.64), chick production (r = 0.64), and feed conversion per chick (r = -0.59) in both feed allocation treatments. Feed intake confounded the RFI calculation, which limits the value of RFI as a selection criterion in meat-producing animals. The independence of RME(m) from feed intake is desirable for energetic efficiency assessment in selection programs because consistent values can be obtained across different management schemes. Hens with lower maintenance requirements (greater RME(m) efficiency) partitioned more energy toward reproduction than did high-maintenance hens. The RME(m) methodology provided an unbiased estimate of energetic efficiency by adjusting the maintenance requirement for the effect of dietary thermogenesis.
Collapse
Affiliation(s)
- L F Romero
- University of Alberta, Agricultural, Food and Nutritional Science, Agriculture/Forestry Centre, University of Alberta, Edmonton, Alberta T6G 2P5, Canada
| | | | | | | | | |
Collapse
|
17
|
Bottje WG, Carstens GE. Association of mitochondrial function and feed efficiency in poultry and livestock species. J Anim Sci 2008; 87:E48-63. [PMID: 19028862 DOI: 10.2527/jas.2008-1379] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
As grain prices have increased dramatically in the past year, understanding the fundamental genetic, cellular, and biochemical mechanisms responsible for feed efficiency (FE; g of gain/g of feed) or residual feed intake (RFI; an alternative feed efficiency trait that quantifies interanimal variation in DMI that is unexplained by differences in BW and growth rate) in livestock and poultry is extremely important with respect to maintaining viable meat production practices in the United States. Although breed and diet have long been known to affect mitochondrial function, few studies have investigated differences in mitochondrial function and biochemistry due to interanimal phenotypic differences in FE or RFI (i.e., variation among animals of the same breed and fed the same diet). This paper reviews existing literature on relationships of mitochondrial function and biochemistry with FE and RFI in poultry and livestock. The overall goal of all of this paper is to assist the development of tools (e.g., genetic markers or biomarkers) to aid commercial breeding companies in genetic selection that, in turn, will help maintain viable livestock and poultry industries in the United States and around the world.
Collapse
Affiliation(s)
- W G Bottje
- Department of Poultry Science, Center of Excellence for Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville 72701, USA.
| | | |
Collapse
|
18
|
Ojano-Dirain C, Toyomizu M, Wing T, Cooper M, Bottje WG. Gene Expression in Breast Muscle and Duodenum from Low and High Feed Efficient Broilers. Poult Sci 2007; 86:372-81. [PMID: 17234853 DOI: 10.1093/ps/86.2.372] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study was conducted to evaluate messenger RNA (mRNA) expression of genes that are involved in energy metabolism and mitochondrial biogenesis: avian adenine nucleotide translocator (avANT), cytochrome oxidase III (COX III), inducible nitric oxide synthase (iNOS), peroxisome proliferator-activated receptor-gamma (PPAR-gamma), avian PPAR-gamma coactivator-1alpha (avPGC-1alpha), and avian uncoupling protein in breast muscle and duodenum of broilers with low and high feed efficiency (FE). Total RNA was extracted from snap-frozen tissues from male broilers with low (0.55 +/- 0.01) and high (0.72 +/- 0.01) FE (n = 8 per group). Total RNA was reverse-transcribed using oligo(dT), random primers, or both followed by real-time reverse transcription-PCR. Protein oxidation, measured as protein carbonyls, was also evaluated in duodenal mucosa. Protein carbonyls were higher in low FE mucosa in tissue homogenate and mitochondrial fraction. The mRNA expression of iNOS and PPAR-gamma in the duodenum was lower in the low FE broilers, with no differences in avANT, COX III, and avPGC-1alpha. In contrast, expression of avANT and COX III mRNA in breast muscle was lower in low FE broilers with no differences in iNOS, PPAR-gamma, and avPGC-1alpha. The avian uncoupling protein in breast muscle was higher in low FE birds (P = 0.068). These results indicate that there are differences in the expression of mRNA encoding for mitochondrial transcription factors and proteins in breast muscle and duodenal tissue between low and high FE birds. The differences that were observed may also reflect inherent metabolic and gene regulation differences between tissues.
Collapse
Affiliation(s)
- C Ojano-Dirain
- Department of Poultry Science, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | | | | | |
Collapse
|
19
|
|