1
|
Lou J, Guo Q, Jiang Y, Chen G, Chang G, Bai H. Effects of the Number of Crested Cushions in Runzhou White-Crested Ducks on Serum Biochemical Parameters. Animals (Basel) 2023; 13:ani13030466. [PMID: 36766355 PMCID: PMC9913149 DOI: 10.3390/ani13030466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
We investigated the effects of crest cushions in Runzhou white-crested (RWC) ducks. A total of 322 duck eggs were collected for incubation; 286 eggs were fertilized, and 235 RCW ducks were hatched. All the RWC ducks were weighed after 100 days and counted, and the volume of the crest cushion was measured. The number of crest cushions was positively correlated with the body weight, volume of the crest cushion, and distance from the mouth (p < 0.05). The serum Ca, Mg, Fe, Cu, Zn, and Se contents in the multiple-crest-cushion group were significantly higher (p < 0.05), as were the levels of triglycerides, immunoglobulin A, immunoglobulin G, immunoglobulin M, and immunoglobulin D (p < 0.01). The opposite results were seen for glycosylated low-density lipoprotein (p < 0.01). Propionic acid and acetic acid contents differed significantly between the two groups (p < 0.05), as did butyric acid content (p < 0.01), being higher in the multiple-crest-cushion group. Thus, an increase in the number of crest cushions coincided with a change in various serum biochemical indicators. The number of crest cushions might be involved in regulating various mechanisms of RWC ducks and might have an immunoregulatory effect.
Collapse
Affiliation(s)
- Jiying Lou
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.B.); (G.C.); Tel.: +86-18796608824 (H.B.); +86-13665241883 (G.C.)
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China
- Correspondence: (H.B.); (G.C.); Tel.: +86-18796608824 (H.B.); +86-13665241883 (G.C.)
| |
Collapse
|
2
|
Guo Q, Huang L, Jiang Y, Wang Z, Chen G, Bai H, Chang G. Identification of Genes Associated with Crest Cushion Development in the Chinese Crested Duck. Animals (Basel) 2022; 12:2150. [PMID: 36009740 PMCID: PMC9404885 DOI: 10.3390/ani12162150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/03/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The crest trait is a specific and widely distributed phenotype in birds. However, the shape and function vary in different species of birds. To understand the mechanism of crest formation, the present study used RNA sequencing and weighted gene co-expression network analysis (WGCNA) to identify the crest-cushion-associated genes in the Chinese crested (CC) duck. As a result, 28, 40, 32, 33, and 126 differentially expressed genes (DEGs) were identified between CC and cherry valley (CV) ducks at the embryonic days (E)15, E22, E28, D7 (7 days old), and D42 stages, respectively. In addition, the results of WGCNA show that 3697 (turquoise module), 485 (green-yellow module), 687 (brown module), 205 (red module), and 1070 (yellow module) hub genes were identified in the E15, E22, E28, D7, and D42 stages, respectively. Based on the results of DEGs and WGCNA Venn analysis, three, two, zero, one, and seven genes were found to be associated with crest cushion formation at the E15, E22, E28, D7, and D42 stages, respectively. The expression of all the associated genes and some DEGs was verified by real-time quantitative polymerase chain reaction. In conclusion, this study provided an approach revealing the molecular mechanisms underlying the crested trait development.
Collapse
Affiliation(s)
- Qixin Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lan Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Millar M, Vidana-Mateo B, Woollatt S, Bianco C, Royden A. Head malformations in crested poultry in the UK. Vet Rec 2021; 189:443-444. [PMID: 34860407 DOI: 10.1002/vetr.1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | - Carlo Bianco
- School of Veterinary Medicine and Science, University of Nottingham Campus, Sutton Bonington, LE12 5RD
| | - Alex Royden
- Poultry Health Services, Manor Court Veterinary Centre, Tarvin, Chester, CH3 8EB
| |
Collapse
|
4
|
Deng Y, Hu S, Luo C, Ouyang Q, Li L, Ma J, Lin Z, Chen J, Liu H, Hu J, Chen G, Shu D, Pan Y, Hu B, He H, Qu H, Wang J. Integrative analysis of histomorphology, transcriptome and whole genome resequencing identified DIO2 gene as a crucial gene for the protuberant knob located on forehead in geese. BMC Genomics 2021; 22:487. [PMID: 34193033 PMCID: PMC8244220 DOI: 10.1186/s12864-021-07822-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. RESULTS In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. CONCLUSIONS This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.
Collapse
Affiliation(s)
- Yan Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Chenglong Luo
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiaming Ma
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Zhenping Lin
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Junpeng Chen
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Guohong Chen
- Jiangsu Key Laboratory for Animal Genetic, Breeding and Molecular Design, Yangzhou University, Jiangsu, 225009, Yangzhou, China
| | - Dingming Shu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China
| | - Yuxuan Pan
- The Baisha Livestock and Poultry Original Species Research Institute, Guangdong, 515000, Shantou, China
| | - Bo Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China
| | - Hao Qu
- The Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong, 510640, Guangzhou, China.
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, 611130, Chengdu, China.
| |
Collapse
|
5
|
Mehlhorn J, Caspers S. The Effects of Domestication on the Brain and Behavior of the Chicken in the Light of Evolution. BRAIN, BEHAVIOR AND EVOLUTION 2021; 95:287-301. [PMID: 34044402 DOI: 10.1159/000516787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/16/2021] [Indexed: 11/19/2022]
Abstract
The avian class is characterized by particularly strong variability in their domesticated species. With more than 250 breeds and highly efficient commercial lines, domestic chickens represent the outcome of a really long period of artificial selection. One characteristic of domestication is the alterations in brain size and brain composition. The influence of domestication on brain morphology has been reviewed in the past, but mostly with a focus on mammals. Studies on avian species have seldom been taken into account. In this review, we would like to give an overview about the changes and variations in (brain) morphology and behavior in the domestic chicken, taking into consideration the constraints of evolutionary theory and the sense or nonsense of excessive artificial selection.
Collapse
Affiliation(s)
- Julia Mehlhorn
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| |
Collapse
|
6
|
El-Andari R, Cunha F, Tschirren B, Iwaniuk AN. Selection for Divergent Reproductive Investment Affects Neuron Size and Foliation in the Cerebellum. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:69-77. [PMID: 32784306 DOI: 10.1159/000509068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
The cerebellum has a highly conserved internal circuitry, but varies greatly in size and morphology within and across species. Despite this variation, the underlying volumetric changes among the layers of the cerebellar cortex or their association with Purkinje cell numbers and sizes is poorly understood. Here, we examine intraspecific scaling relationships and variation in the quantitative neuroanatomy of the cerebellum in Japanese quail (Coturnix japonica) selected for high or low reproductive investment. As predicted by the circuitry of the cerebellum, the volumes of the constituent layers of the cerebellar cortex were strongly and positively correlated with one another and with total cerebellar volume. The number of Purkinje cells also significantly and positively co-varied with total cerebellar volume and the molecular layer, but not the granule cell layer or white matter volumes. Purkinje cell size and cerebellar foliation did not significantly covary with any cerebellar measures, but differed significantly between the selection lines. Males and females from the high-investment lines had smaller Purkinje cells than males and females from the low-investment lines and males from the high-investment lines had less folded cerebella than quail from the low-investment lines. These results suggest that within species, the layers of the cerebellum increase in a coordinated fashion, but Purkinje cell size and cerebellar foliation do not increase proportionally with overall cerebellum size. In contrast, selection for differential reproductive investment affects Purkinje cell size and cerebellar foliation, but not other quantitative measures of cerebellar anatomy.
Collapse
Affiliation(s)
- Ryaan El-Andari
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Felipe Cunha
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada,
| |
Collapse
|
7
|
Whole genome re-sequencing of crested traits and expression analysis of key candidate genes in duck. Gene 2019; 729:144282. [PMID: 31838250 DOI: 10.1016/j.gene.2019.144282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/01/2023]
Abstract
The crested duck was a duck breed which features a topknot of feathers on the back of their head. In order to explain the reason of crest, we anatomy the head of some crested ducks. The anatomical structures showed that there was a fat body in the head and a hole in the skull. To determine the reason for the formation of the crest, we used whole genome re-sequencing to detect SNPs and InDels in three crested duck and three normal crested duck (without crest). There were 785,202 unique SNPs and 105,596 unique InDels include in crested duck. There were 14,591 SNPs containing genes and 13,784 InDels continuing genes were mapped on BGI_duck_1.0 by BWA 0.7.16a software. We use KEGG and GO to classification the SNP and InDel containing genes function. The PPI network of SNP containing genes and InDels containing genes was constructed by STRING. The result of PPI and KEGG analysis shown that the formation of crest might include feather development, fatty acid deposition, and skull hypoplasia. To determine the regulated of SNP containing genes and InDels containing genes, which related the different trait, of miRNA we used mirmap to predicted target miRNA of those genes. The miRNA-genes network constructed by Cytoscape. In conclusion, the formation of the crest was a complex process. The fatty acid metabolism block, feather growth and skull hypoplasia might lead crest formation. The tissue expression of four candidate genes showed that they were closely related to the formation of the trait, and could be used as important candidate genes to further elaborate the molecular mechanism of their function.
Collapse
|
8
|
Yuan X, Zheng S, Zhang Y, Guo Q, Wang S, Bi Y, Dai W, Shen X, Gu T, Pan R, Song Q, Wang Z, Zhang Y, Xu Q, Chang G, Chen G. Embryonic morphology observation and HOXC8 gene expression in crest cushions of Chinese Crested duck. Gene 2019; 688:98-106. [DOI: 10.1016/j.gene.2018.11.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/25/2018] [Accepted: 11/28/2018] [Indexed: 12/14/2022]
|
9
|
Unusual brain composition in Crested Ducks (Anas platyrhynchos f.d.)--including its effect on behavior and genetic transmission. Brain Res Bull 2008; 76:324-8. [PMID: 18498950 DOI: 10.1016/j.brainresbull.2008.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 03/04/2008] [Accepted: 03/14/2008] [Indexed: 11/22/2022]
Abstract
Crested Ducks (CR) occasionally show intracranial fat bodies. Additionally, behavioral abnormalities such as motor incoordination can be observed. Here, it is shown that a behavioral test helps to identify CR that have a problematical fat body. The ducks were put on their backs, and the time required for them to stand up was measured. Ten CR exhibited suboptimal motor coordination. The appropriateness of this test has been proved in a special breeding program. To investigate the influence of fat bodies on brain composition, an allometrical comparison of 26 CR brains with those of three uncrested duck breeds was done. The fat bodies of CR varied from 0.3% to 41% of total brain volume, but two CR did not show a fat body. CR with motor incoordination show significantly larger fat bodies and require significantly more time in the test than "normal" CR. Total brain volume was significantly larger in CR, but brain volume minus fat body was significantly smaller compared to reference breeds. Cerebellum, apical hyperpallium, tegmentum and olfactory bulb are significantly reduced in CR. Obviously the behavioral deficits cannot be explained by the existence of a fat body, but they could be explained by functionally suboptimal cerebella and tegmenta. Fat body size seems to be a decisive factor. The relationship between fat body and reduced structures is discussed. By breeding with test-selected ducks the hatching rate increased and the number of ducklings with malformations or motor incoordination decreased.
Collapse
|