1
|
Wang J, Li X, Chen H. Organoid models in lung regeneration and cancer. Cancer Lett 2020; 475:129-135. [PMID: 32032677 DOI: 10.1016/j.canlet.2020.01.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/22/2020] [Accepted: 01/28/2020] [Indexed: 02/05/2023]
Abstract
Improper regeneration is associated with lung diseases including lung cancer. Lung cancer is one of the leading causes of death worldwide, with nearly 2 million new cases diagnosed each year. The diagnosis is often too late for successful therapeutic intervention. Lung cancer shows substantial phenotypic and genetic heterogeneity between individuals, making it difficult to model in animals. Organoids, derived from regional stem/progenitor cells in lung epithelia, have attracted extensive interest in both research studies and the clinic, because of their great potential for use in cancer treatment. Various lung cancer organoids have been established to recapitulate the tissue architecture of primary lung tumors and maintain the genomic alterations of the original tumors during long-term expansion in vitro. In this review, we summarize the current data on lung epithelial regeneration by regional endogenous stem/progenitor cells, describe the development of organoid technology, and present its applications in lung cancer research. Furthermore, recent challenges and future directions to improve organoid technologies for lung cancer treatment are discussed.
Collapse
Affiliation(s)
- Jianhai Wang
- Department of Basic Medicine, Tianjin University Haihe Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| | - Xianglu Li
- Department of Regenerative Medicine, Panguard Cell Biotech. Co. Ltd, Guangdong, China
| | - Huaiyong Chen
- Department of Basic Medicine, Tianjin University Haihe Hospital, Tianjin, China; Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China; Tianjin Institute of Respiratory Diseases, Tianjin, China.
| |
Collapse
|
2
|
Gu Q, Hu C, Chen N, Qu J. A comparison between lung carcinoma and a subcutaneous malignant tumor induced in rats by a 3,4-benzopyrene injection. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:3934-3942. [PMID: 31949781 PMCID: PMC6962791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/21/2018] [Indexed: 06/10/2023]
Abstract
Lung cancer is one of the most common carcinomas worldwide. It is of value to know whether lung is more vulnerable to carcinogens than other tissues. In this study we compared the carcinogenic potential of 3,4-benzopyrene administered by intrapulmonary injection or subcutaneous injection. Ninety rats were randomly divided into three groups (n=30/group). Rats under deep anesthesia were treated with 3,4-benzopyrene by intrapulmonary injection or scapular subcutaneous injection, or with the vehicle by subcutaneous injection. The Rats were sacrificed when they developed advanced somatic sarcomas or severe dyspnea and the rats without severe phenotypes were sacrificed after 1 year. The tumors were isolated and examined with H&E staining. The expression of Bcl-2, CYP1A1, and NF-κB mRNA and protein in somatic sarcoma and lung carcinoma tissues was examined by in situ hybridization, immunohistochemistry, and Western blot. No tumor development was observed in the control rats. Fifteen of the 30 rats receiving an intrapulmonary injection of 3,4-benzopyrene developed lung carcinomas, whereas all 30 rats treated with subcutaneous injection developed a malignant neoplasm under the skin. Positive Bcl-2, CYP1A1, and NF-κB protein staining was observed in lung carcinoma and subcutaneous malignant neoplasm but Bcl-2 protein expression was much stronger in subcutaneous malignant neoplasms than in lung carcinoma. The expression pattern of Bcl-2, CYP1A1, and NF-κB mRNA in lung carcinoma and subcutaneous malignant neoplasms was consistent with its protein expression. Our results indicated that the lung is not more vulnerable to carcinogens than other tissues. The lung may acquire a protective mechanism against lung carcinogenesis through regulation of Bcl-2 expression.
Collapse
Affiliation(s)
- Qihua Gu
- Department of Respiratory Medicine, Xiangya Hospital Affiliated to Central South UniversityChangsha, Hunan Province, P. R. China
- Key Cite of National Clinical Research Center for Respiratory DiseaseChangsha, Hunan Province, P. R. China
| | - Chengping Hu
- Department of Respiratory Medicine, Xiangya Hospital Affiliated to Central South UniversityChangsha, Hunan Province, P. R. China
- Key Cite of National Clinical Research Center for Respiratory DiseaseChangsha, Hunan Province, P. R. China
| | - Ni Chen
- Department of Respiratory Medicine, Xiangya Hospital Affiliated to Central South UniversityChangsha, Hunan Province, P. R. China
- Key Cite of National Clinical Research Center for Respiratory DiseaseChangsha, Hunan Province, P. R. China
| | - Jingjing Qu
- Department of Respiratory Medicine, Xiangya Hospital Affiliated to Central South UniversityChangsha, Hunan Province, P. R. China
- Key Cite of National Clinical Research Center for Respiratory DiseaseChangsha, Hunan Province, P. R. China
| |
Collapse
|
3
|
Klimek L, Koennecke M, Mullol J, Hellings PW, Wang D, Fokkens W, Gevaert P, Wollenberg B. A possible role of stem cells in nasal polyposis. Allergy 2017; 72:1868-1873. [PMID: 28599061 DOI: 10.1111/all.13221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2017] [Indexed: 12/21/2022]
Abstract
Since its discovery, the understanding of stem/progenitor cells raised dramatically in the last decade. Their regenerative potential is important to develop new therapeutic applications, but the identification advanced much faster than our understanding of stem/progenitor cells. In nasal polyposis, little is known about stem cells/progenitor cells and their ability. However, the further characterization of stem cells/progenitor cells may provide new treatment options for combating nasal polyposis. This review highlights the knowledge of the current literature about stem cells/progenitor cells in nasal polyposis and how this may be exploited in the development of novel treatment strategies.
Collapse
Affiliation(s)
- L. Klimek
- Center for Rhinology and Allergology; Wiesbaden Germany
| | - M. Koennecke
- Department of Otorhinolaryngology; University Hospital Schleswig-Holstein; Lübeck Germany
| | - J. Mullol
- Rhinology Unit and Smell Clinic; Department of Otorhinolaryngology; Hospital Clinic; IDIBAPS; Universitat de Barcelona, CIBERES; Barcelona Catalonia Spain
| | - P. W. Hellings
- Department of Otorhinolaryngology; University Hospitals Leuven; Leuven Belgium
- Department of Otorhinolaryngology; Academic Medical Centre; Amsterdam The Netherlands
| | - D.Y. Wang
- Department of Otolaryngology; National University of Singapore; Singapore
| | - W. Fokkens
- Department of Otorhinolaryngology; Academic Medical Centre; Amsterdam The Netherlands
| | - P. Gevaert
- Department of Otorhinolaryngology; Ghent University; Ghent Belgium
| | - B. Wollenberg
- Department of Otorhinolaryngology; University Hospital Schleswig-Holstein; Lübeck Germany
| |
Collapse
|
4
|
Sławek S, Szmyt K, Fularz M, Dziudzia J, Boruczkowski M, Sikora J, Kaczmarek M. Pluripotency transcription factors in lung cancer-a review. Tumour Biol 2015; 37:4241-9. [PMID: 26581906 DOI: 10.1007/s13277-015-4407-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 11/09/2015] [Indexed: 12/28/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Diagnosis of lung cancer in an early stage is still a challenge due to the asymptomatic course of early stages of the disease and the lack of a standard screening program for the population. Nowadays, learning about the mechanisms that lead to cancerogenesis in the lung is crucial for the development of new diagnostic and therapeutic strategies. Recently, many studies have proved that cancer stem cells (CSCs) are responsible for the initiation, progression, metastasis, recurrence, and even resistance of chemo- and radiotherapeutic treatment in patients with lung cancer. The expression of pluripotency transcription factors is responsible for stemness properties. In this review, we summarize the current knowledge on the role of CSCs and pluripotency transcription factors in lung carcinogenesis.
Collapse
Affiliation(s)
- Sylwia Sławek
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Krzysztof Szmyt
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Fularz
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Dziudzia
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej Boruczkowski
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jan Sikora
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Immunology, Chair of Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
5
|
Lynch TJ, Engelhardt JF. Progenitor cells in proximal airway epithelial development and regeneration. J Cell Biochem 2015; 115:1637-45. [PMID: 24818588 DOI: 10.1002/jcb.24834] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 12/15/2022]
Abstract
Multiple distinct epithelial domains are found throughout the airway that are distinguishable by location, structure, function, and cell-type composition. Several progenitor cell populations in the proximal airway have been identified to reside in confined microenvironmental niches including the submucosal glands (SMGs), which are embedded in the tracheal connective tissue between the surface epithelium and cartilage, and basal cells that reside within the surface airway epithelium (SAE). Current research suggests that regulatory pathways that coordinate development of the proximal airway and establishment of progenitor cell niches may overlap with pathways that control progenitor cell responses during airway regeneration following injury. SMGs have been shown to harbor epithelial progenitor cells, and this niche is dysregulated in diseases such as cystic fibrosis. However, mechanisms that regulate progenitor cell proliferation and maintenance within this glandular niche are not completely understood. Here we discuss glandular progenitor cells during development and regeneration of the proximal airway and compare properties of glandular progenitors to those of basal cell progenitors in the SAE. Further investigation into glandular progenitor cell control will provide a direction for interrogating therapeutic interventions to correct aberrant conditions affecting the SMGs in diseases such as cystic fibrosis, chronic bronchitis, and asthma.
Collapse
Affiliation(s)
- Thomas J Lynch
- Department of Anatomy & Cell Biology, University of Iowa Carver College of Medicine, Iowa City, Iowa, 52242
| | | |
Collapse
|
6
|
Li F, He J, Wei J, Cho WC, Liu X. Diversity of epithelial stem cell types in adult lung. Stem Cells Int 2015; 2015:728307. [PMID: 25810726 PMCID: PMC4354973 DOI: 10.1155/2015/728307] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 02/13/2015] [Accepted: 02/13/2015] [Indexed: 01/10/2023] Open
Abstract
Lung is a complex organ lined with epithelial cells. In order to maintain its homeostasis and normal functions following injuries caused by varied extraneous and intraneous insults, such as inhaled environmental pollutants and overwhelming inflammatory responses, the respiratory epithelium normally undergoes regenerations by the proliferation and differentiation of region-specific epithelial stem/progenitor cells that resided in distinct niches along the airway tree. The importance of local epithelial stem cell niches in the specification of lung stem/progenitor cells has been recently identified. Studies using cell differentiating and lineage tracing assays, in vitro and/or ex vivo models, and genetically engineered mice have suggested that these local epithelial stem/progenitor cells within spatially distinct regions along the pulmonary tree contribute to the injury repair of epithelium adjacent to their respective niches. This paper reviews recent findings in the identification and isolation of region-specific epithelial stem/progenitor cells and local niches along the airway tree and the potential link of epithelial stem cells for the development of lung cancer.
Collapse
Affiliation(s)
- Feng Li
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Jinxi He
- Department of Thoracic Surgery of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Jun Wei
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Xiaoming Liu
- Center of Medical Laboratory of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Human Stem Cell Institute of the General Hospital, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
7
|
Abstract
Airway diseases including COPD (chronic obstructive pulmonary disease), cystic fibrosis and lung cancer are leading causes of worldwide morbidity and mortality, with annual healthcare costs of billions of pounds. True regeneration of damaged airways offers the possibility of restoring lung function and protecting against airway transformation. Recently, advances in tissue engineering have allowed the development of cadaveric and biosynthetic airway grafts. Although these have produced encouraging results, the ability to achieve long-term functional airway regeneration remains a major challenge. To promote regeneration, exogenously delivered stem and progenitor cells are being trialled as cellular therapies. Unfortunately, current evidence suggests that only small numbers of exogenously delivered stem cells engraft within lungs, thereby limiting their utility for airway repair. In other organ systems, magnetic targeting has shown promise for improving long-term robust cell engraftment. This technique involves in vitro cell expansion, magnetic actuation and magnetically guided cell engraftment to sites of tissue damage. In the present paper, we discuss the utility of coupling stem cell-mediated cellular therapy with magnetic targeting for improving airway regeneration.
Collapse
|