1
|
Dai X, Nie W, Shen H, Machens HG, Böker K, Taheri S, Lehmann W, Shen Y, Schilling AF. Electrospinning based biomaterials for biomimetic fabrication, bioactive protein delivery and wound regenerative repair. Regen Biomater 2024; 12:rbae139. [PMID: 39803356 PMCID: PMC11723536 DOI: 10.1093/rb/rbae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Electrospinning is a remarkably straightforward and adaptable technique that can be employed to process an array of synthetic and natural materials, resulting in the production of nanoscale fibers. It has emerged as a novel technique for biomedical applications and has gained increasing popularity in the research community in recent times. In the context of tissue repair and tissue engineering, there is a growing tendency toward the integration of biomimetic scaffolds and bioactive macromolecules, particularly proteins and growth factors. The design of 'smart' systems provides not merely physical support, but also microenvironmental cues that can guide regenerative tissue repair. Electrospun nanofibrous matrices are regarded as a highly promising tool in this area, as they can serve as both an extracellular matrix (ECM)-mimicking scaffold and a vehicle for the delivery of bioactive proteins. Their highly porous architecture and high surface-to-volume ratio facilitate the loading of drugs and mass transfer. By employing a judicious selection of materials and processing techniques, there is considerable flexibility in efficiently customizing nanofiber architecture and incorporating bioactive proteins. This article presents a review of the strategies employed for the structural modification and protein delivery of electrospun nanofibrous materials, with a focus on the objective of achieving a tailored tissue response. The article goes on to discuss the challenges currently facing the field and to suggest future research directions.
Collapse
Affiliation(s)
- Xinyi Dai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wei Nie
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston Salem, NC 27103, USA
| | - Hua Shen
- Department of Plastic and Reconstructive Surgery, Shanghai First People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hans-Günther Machens
- Department of Plastic and Hand Surgery, Klinikum Rechts der Isar, Faculty of Medicine, Technical University of Munich, Munich 81675, Germany
| | - Kai Böker
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Shahed Taheri
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| | - Yi Shen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Arndt F Schilling
- Department of Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, University of Göttingen, Göttingen 37075, Germany
| |
Collapse
|
2
|
Spartali C, Psarra AMG, Marras SI, Tsioptsias C, Georgantopoulos A, Kalousi FD, Tsakalof A, Tsivintzelis I. Silybin-Functionalized PCL Electrospun Fibrous Membranes for Potential Pharmaceutical and Biomedical Applications. Polymers (Basel) 2024; 16:2346. [PMID: 39204566 PMCID: PMC11359364 DOI: 10.3390/polym16162346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Silybin is a natural flavonolignan with potential anticancer, antioxidant, and hepatoprotective properties. In the present study, various loadings of silybin (1, 3, and 5 wt%) were encapsulated in poly-ε-caprolactone (PCL) fibers by electrospinning, in order to produce new pharmaceutical composites with improved bioactive and drug delivery properties. The morphological characteristics of the composite fibrous structures were evaluated by scanning electron microscopy (SEM), and the encapsulation efficiency and the release rate of silybin were quantified using a UV-Vis spectrophotometer. The analysis of the membranes' thermal behavior by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed the existence of interaction between PCL and silybin. An investigation of the cytocompatibility of the composite membranes revealed that normal cells displayed an unimpeded proliferation in the respective silybin concentrations; however, tumor cell growth demonstrated a dose-dependent inhibition. Furthermore, an effective antioxidant activity against hydrogen peroxide-induced oxidative stress in HEK-293 cells was observed for the prepared electrospun fibrous mats.
Collapse
Affiliation(s)
- Christina Spartali
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Anna-Maria G. Psarra
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Sotirios I. Marras
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Costas Tsioptsias
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Foteini D. Kalousi
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Andreas Tsakalof
- Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Ioannis Tsivintzelis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Sufiyan M, Kushwaha P, Ahmad M, Mandal P, Vishwakarma KK. Scaffold-Mediated Drug Delivery for Enhanced Wound Healing: A Review. AAPS PharmSciTech 2024; 25:137. [PMID: 38877197 DOI: 10.1208/s12249-024-02855-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Wound healing is a complex physiological process involving coordinated cellular and molecular events aimed at restoring tissue integrity. Acute wounds typically progress through the sequential phases of hemostasis, inflammation, proliferation, and remodeling, while chronic wounds, such as venous leg ulcers and diabetic foot ulcers, often exhibit prolonged inflammation and impaired healing. Traditional wound dressings, while widely used, have limitations such poor moisture retention and biocompatibility. To address these challenges and improve patient outcomes, scaffold-mediated delivery systems have emerged as innovative approaches. They offer advantages in creating a conducive environment for wound healing by facilitating controlled and localized drug delivery. The manuscript explores scaffold-mediated delivery systems for wound healing applications, detailing the use of natural and synthetic polymers in scaffold fabrication. Additionally, various fabrication techniques are discussed for their potential in creating scaffolds with controlled drug release kinetics. Through a synthesis of experimental findings and current literature, this manuscript elucidates the promising potential of scaffold-mediated drug delivery in improving therapeutic outcomes and advancing wound care practices.
Collapse
Affiliation(s)
- Mohd Sufiyan
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Poonam Kushwaha
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India.
| | - Mohammad Ahmad
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | - Purba Mandal
- Faculty of Pharmacy, Integral University, Dasauli-Kursi Road, Lucknow, India
| | | |
Collapse
|
4
|
Theodoridis K, Arampatzis AS, Liasi G, Tsalikis L, Barmpalexis P, Christofilos D, Assimopoulou AN. 3D-Printed Antibacterial Scaffolds for the Regeneration of Alveolar Bone in Severe Periodontitis. Int J Mol Sci 2023; 24:16754. [PMID: 38069075 PMCID: PMC10706713 DOI: 10.3390/ijms242316754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Current clinical treatment of periodontitis alleviates periodontal symptoms and helps to keep the disease under control for extended periods. Despite this, a significant destruction of the tooth's underlying bone tissue often takes place progressively. Herein, we present a two-way therapeutic approach for local delivery of antibacterial agents and bone tissue regeneration, incorporating ~1% w/w tetracycline hydrochloride (TCH) into a 3D-printed scaffold composed of poly(ε-caprolactone) (PCL). Samples were assessed for their morphological, physicochemical, pharmacokinetic, and antibacterial properties. Furthermore, osteoprecursor cells (MC3T3-E1) were employed to evaluate the osteoinductive potential of the drug-loaded scaffolds. Cell proliferation, viability, and differentiation were determined on all cell-seeded scaffolds. At the end of the culture, PCL-TCH scaffolds promoted abundant collagen organic matrix, demonstrating augmented alkaline phosphatase (ALP) activity and areas of accumulated mineralised bone tissue, despite their belayed cell proliferation. Based on the observed effectiveness of the PCL-TCH scaffolds to inhibit Staphylococcus aureus, these constructs could serve as an alternative bioactive implant that supports bacterial inhibition and favours a 3D microenvironment for bone tissue regeneration in severe periodontitis.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.T.); (A.S.A.); (G.L.)
| | - Athanasios S. Arampatzis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.T.); (A.S.A.); (G.L.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Georgia Liasi
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.T.); (A.S.A.); (G.L.)
| | - Lazaros Tsalikis
- School of Dentistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Dimitrios Christofilos
- School of Chemical Engineering & Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Andreana N. Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.T.); (A.S.A.); (G.L.)
- Natural Products Research Center of Excellence (NatPro-AUTH), Center for Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| |
Collapse
|
5
|
Bhende PP, Chauhan R, Waigaonkar S, Bragança JM, Ganguly A. Composites of Bacillus megaterium H16 derived poly-3-hydroxybutyrate as a biomaterial for skin tissue engineering. Int J Biol Macromol 2023:125355. [PMID: 37327940 DOI: 10.1016/j.ijbiomac.2023.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/02/2023] [Accepted: 06/10/2023] [Indexed: 06/18/2023]
Abstract
Composite films of Bacillus megaterium H16 derived PHB with 1%Poly-L-lactic acid (PLLA), 1%Poly-ε-caprolactone (PCL), and 0.3 % graphene nanoplatelets (GNP) were produced by solvent cast method. The composite films were characterized by SEM, DSC-TGA, XRD, and ATR-FTIR. The ultrastructure of PHB and its composites depicted an irregular surface morphology with pores after the evaporation of chloroform. The GNPs were seen to be integrated inside the pores. The B. megaterium H16 derived-PHB and its composites demonstrated good biocompatibility which was evaluated in vitro on HaCaT and L929 cells by MTT assay. The cell viability was best for PHB followed by PHB/PLLA/PCL > PHB/PLLA/GNP > PHB/PLLA. PHB and its composites were highly hemocompatible as it resulted in <1 % hemolysis. The PHB/PLLA/PCL and PHB/PLLA/GNP composites can serve as ideal biomaterials for skin tissue engineering.
Collapse
Affiliation(s)
- Prajakta Praveen Bhende
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Rashmi Chauhan
- Department of Chemistry, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Sachin Waigaonkar
- Department of Mechanical Engineering, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Judith M Bragança
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Anasuya Ganguly
- Department of Biological Sciences, BITS Pilani KK Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
6
|
Theodoridis K, Aggelidou E, Manthou ME, Kritis A. Hypoxia Promotes Cartilage Regeneration in Cell-Seeded 3D-Printed Bioscaffolds Cultured with a Bespoke 3D Culture Device. Int J Mol Sci 2023; 24:ijms24076040. [PMID: 37047021 PMCID: PMC10094683 DOI: 10.3390/ijms24076040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
In this study, we investigated the effect of oxygen tension on the expansion of ADMSCs and on their differentiation toward their chondrocytic phenotype, regenerating a lab-based cartilaginous tissue with superior characteristics. Controversial results with reference to MSCs that were cultured under different hypoxic levels, mainly in 2D culturing settings combined with or without other biochemical stimulus factors, prompted our team to study the role of hypoxia on MSCs chondrogenic differentiation within an absolute 3D environment. Specifically, we used 3D-printed honeycomb-like PCL matrices seeded with ADMSCs in the presence or absence of TGF and cultured with a prototype 3D cell culture device, which was previously shown to favor nutrient/oxygen supply, cell adhesion, and infiltration within scaffolds. These conditions resulted in high-quality hyaline cartilage that was distributed uniformly within scaffolds. The presence of the TGF medium was necessary to successfully produce cartilaginous tissues with superior molecular and increased biomechanical properties. Despite hypoxia's beneficial effect, it was overall not enough to fully differentiate ADMSCs or even promote cell expansion within 3D scaffolds alone.
Collapse
Affiliation(s)
- Konstantinos Theodoridis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- CGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- CGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Maria-Eleni Manthou
- Laboratory of Histology, Embryology and Anthropology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- CGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
- Basic and Translational Research Unit (BTRU) of Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (A.U.Th), 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Yin H, Guo Y, Lai S, Fan L, Wang L, Xin JH, Yu H. Biomimetic three-layer hierarchical scaffolds for efficient water management and cell recruitment. Colloids Surf B Biointerfaces 2023; 222:113081. [PMID: 36566687 DOI: 10.1016/j.colsurfb.2022.113081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Taking inspiration from the structures of roots, stems and leaves of trees in nature, a biomimetic three-layered scaffold was designed for efficient water management and cell recruitment. Using polycaprolactone (PCL) and polyacrylonitrile (PAN) as raw materials, radially oriented nanofiber films and multistage adjustable nanofiber films were prepared through electrospinning technology as the base skin-friendly layer (roots) and middle unidirectional moisture conductive material (stems), the porous polyurethane foam was integrated as the outer moisturizing layer (leaves). Among which, radially oriented nanofiber films could promote the directional migration of fibroblasts and induce cell morphological changes. For the spatially hierarchically nanofiber films, the unidirectional transport of liquid was effectively realized. While the porous polyurethane foam membrane could absorb 9 times its weight in biofluid and retain moisture for up to 10 h. As a result, the biomimetic three-layered scaffolds with different structures can promote wound epithelization and drain biofluid while avoiding wound inflammation caused by excessive biofluid, which is expected to be applied in the field of skin wounds.
Collapse
Affiliation(s)
- Huiyi Yin
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Yongshi Guo
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Simin Lai
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Longfei Fan
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - Lihuan Wang
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China
| | - John H Xin
- Institute of Textiles & Clothing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hui Yu
- Guangdong-Hong Kong Joint Laboratory for Advanced Textile Materials, School of Textile Materials and Engineering, Wuyi University, Jiangmen 529020, China.
| |
Collapse
|
8
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Koletti AE, Kontogiannopoulos KN, Gardikis K, Letsiou S, Papageorgiou VP, Assimopoulou AN. Nanostructured lipid carriers of alkannins and shikonins: Experimental design, characterization and bioactivity studies. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
11
|
Wang G, Gao C, Xiao B, Zhang J, Jiang X, Wang Q, Guo J, Zhang D, Liu J, Xie Y, Shu C, Ding J. Research and clinical translation of trilayer stent-graft of expanded polytetrafluoroethylene for interventional treatment of aortic dissection. Regen Biomater 2022; 9:rbac049. [PMID: 35958517 PMCID: PMC9362767 DOI: 10.1093/rb/rbac049] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The aortic dissection (AD) is a life-threatening disease. The transcatheter endovascular aortic repair (EVAR) affords a minimally invasive technique to save lives of these critical patients, and an appropriate stent-graft gets to be the key medical device during an EVAR procedure. Herein, we report a trilayer stent-graft and corresponding delivery system used for the treatment of the AD disease. The stent-graft is made of nitinol stents with an asymmetric Z-wave design and two expanded polytetrafluoroethylene (ePTFE) membranes. Each of inner and outer surfaces of the stent-graft was covered by an ePTFE membrane, and the two membranes were then sintered together. The biological studies of the sintered ePTFE membranes indicated that the stent-graft had excellent cytocompatibility and hemocompatibility in vitro. Both the stent-graft and the delivery system exhibited satisfactory mechanical properties and operability. The safety and efficacy of this stent-graft and the corresponding delivery system were demonstrated in vivo. In 9 canine experiments, the blood vessels of the animals implanted with the stent-grafts were of good patency, and there were no thrombus and obvious stenosis by angiography after implantation for 6 months. Furthermore, all of the 9 clinical cases experienced successful implantation using the stent-graft and its post-release delivery system, and the one-year follow-ups indicated the preliminary safety and efficacy of the trilayer stent-graft with an asymmetric Z-wave design for interventional treatment.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Caiyun Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Benhao Xiao
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Jie Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Xunyuan Jiang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Qunsong Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Jingzhen Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Jianxiong Liu
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Yuehui Xie
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd. , Shenzhen, 518057, China
| | - Chang Shu
- Department of Vascular Surgery, the Second Xiangya Hospital of Central South University , Changsha, 410011, China
- State Key Laboratory of Cardiovascular Diseases, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College , Beijing, 100037, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University , Shanghai, 200438, China
| |
Collapse
|
12
|
Yadav S, Sharma A, Nayik GA, Cooper R, Bhardwaj G, Sohal HS, Mutreja V, Kaur R, Areche FO, AlOudat M, Shaikh AM, Kovács B, Mohamed Ahmed AE. Review of Shikonin and Derivatives: Isolation, Chemistry, Biosynthesis, Pharmacology and Toxicology. Front Pharmacol 2022; 13:905755. [PMID: 35847041 PMCID: PMC9283906 DOI: 10.3389/fphar.2022.905755] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
Shikonin and its derivatives, isolated from traditional medicinal plant species of the genus Lithospermum, Alkanna, Arnebia, Anchusa, Onosma, and Echium belonging to the Boraginaceae family, have numerous applications in foods, cosmetics, and textiles. Shikonin, a potent bioactive red pigment, has been used in traditional medicinal systems to cure various ailments and is well known for its diverse pharmacological potential such as anticancer, antithrombotic, neuroprotective, antidiabetic, antiviral, anti-inflammatory, anti-gonadotropic, antioxidants, antimicrobial and insecticidal. Herein, updated research on the natural sources, pharmacology, toxicity studies, and various patents filed worldwide related to shikonin and approaches to shikonin’s biogenic and chemical synthesis are reviewed. Furthermore, recent studies to establish reliable production systems to meet market demand, functional identification, and future clinical development of shikonin and its derivatives against various diseases are presented.
Collapse
Affiliation(s)
- Snehlata Yadav
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ajay Sharma
- Department of Chemistry, Chandigarh University, Mohali, India
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Chandigarh- Ludhiana Highway, Mohali, India
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College Shopian, Srinagar, India
| | - Raymond Cooper
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Garima Bhardwaj
- Department of Chemistry, Sant Longowal Institute of Engineering and Technology, Longowal, Sangrur, India
| | | | - Vishal Mutreja
- Department of Chemistry, Chandigarh University, Mohali, India
| | - Ramandeep Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | - Franklin Ore Areche
- Professional School of Agroindustrial Engineering, National University of Huancavelica, Huancavelica, Peru
| | - Mohannad AlOudat
- Doctoral School of Food Science, Hungarian University of Agriculture and Life Sciences, Budapset, Hungary
| | | | - Béla Kovács
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
| | - Abdelhakam Esmaeil Mohamed Ahmed
- Institute of Food Science, University of Debrecen, Debrecen, Hungary
- Faculty of Forestry, University of Khartoum, Khartoum North, Sudan
- *Correspondence: Abdelhakam Esmaeil Mohamed Ahmed,
| |
Collapse
|
13
|
Guo W, Yang K, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue repair and regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Arampatzis AS, Kontogiannopoulos KN, Theodoridis K, Aggelidou E, Rat A, Willems A, Tsivintzelis I, Papageorgiou VP, Kritis A, Assimopoulou AN. Electrospun wound dressings containing bioactive natural products: physico-chemical characterization and biological assessment. Biomater Res 2021; 25:23. [PMID: 34271983 PMCID: PMC8284004 DOI: 10.1186/s40824-021-00223-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Background Current research on skin tissue engineering has been focusing on novel therapies for the effective management of chronic wounds. A critical aspect is to develop matrices that promote growth and uniform distribution of cells across the wound area, and at the same time offer protection, as well as deliver drugs that help wound healing and tissue regeneration. In this context, we aimed at developing electrospun scaffolds that could serve as carriers for the bioactive natural products alkannin and shikonin (A/S). Methods A series of polymeric nanofibers composed of cellulose acetate (CA) or poly(ε-caprolactone) (PCL) and varying ratios of a mixture of A/S derivatives, has been successfully fabricated and their physico-chemical and biological properties have been explored. Results Scanning electron microscopy revealed a uniform and bead-free morphology for CA scaffolds, while for PCL beads along the fibers were observed. The average diameters for all nanofibers ranged between 361 ± 47 and 487 ± 88 nm. During the assessment of physicochemical characteristics, CA fiber mats exhibited a more favored profile, while the assessment of the biological properties of the scaffolds showed that CA samples containing A/S mixture up to 1 wt.% achieved to facilitate attachment, survival and migration of Hs27 fibroblasts. With respect to the antimicrobial properties of the scaffolds, higher drug-loaded (1 and 5 wt.%) samples succeeded in inhibiting the growth of Staphylococcus epidermidis and S. aureus around the edges of the fiber mats. Finally, carrying out a structure-activity relationship study regarding the biological activities (fibroblast toxicity/proliferation and antibacterial activity) of pure A/S compounds – present in the A/S mixture – we concluded that A/S ester derivatives and the dimeric A/S augmented cell proliferation after 3 days, whereas shikonin proved to be toxic at 500 nM and 1 μM and alkannin only at 1 μM. Additionally, alkannin, shikonin and acetyl-shikonin showed more pronounced antibacterial properties than the other esters, the dimeric derivative and the A/S mixture itself. Conclusions Taken together, these findings indicate that embedding A/S derivatives into CA nanofibers might be an advantageous drug delivery system that could also serve as a potential candidate for biomedical applications in the field of skin tissue engineering. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-021-00223-9.
Collapse
Affiliation(s)
- Athanasios S Arampatzis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Konstantinos N Kontogiannopoulos
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Konstantinos Theodoridis
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Eleni Aggelidou
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Angélique Rat
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Anne Willems
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 9000, Ghent, Belgium
| | - Ioannis Tsivintzelis
- Physical Chemistry Laboratory, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Vassilios P Papageorgiou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece
| | - Aristeidis Kritis
- Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece.,cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki (AUTh), 54124, Thessaloniki, Greece. .,Natural Products Research Center of Excellence (NatPro-AUTh), Center of Interdisciplinary Research and Innovation of Aristotle University of Thessaloniki (CIRI-AUTh), 57001, Thessaloniki, Greece.
| |
Collapse
|