1
|
Lu Y, Zhang T, Chen K, Canavese F, Huang C, Yang H, Shi J, He W, Zheng Y, Chen S. Application of biodegradable implants in pediatric orthopedics: shifting from absorbable polymers to biodegradable metals. Bioact Mater 2025; 50:189-214. [PMID: 40256329 PMCID: PMC12008652 DOI: 10.1016/j.bioactmat.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/05/2025] [Accepted: 04/02/2025] [Indexed: 04/22/2025] Open
Abstract
Over the past two decades, advances in pediatric orthopedics and closed reduction combined with percutaneous internal fixation techniques have led to significant growth in pediatric orthopedics surgery. Implants such as Kirschner-wires, cannulated screws and elastic stabilization intramedullary nails are commonly used in these procedures. However, traditional implants made of metal or inert materials are not absorbable, leading to complications that affect treatment outcomes. To address this issue, absorbable materials with excellent mechanical properties, good biocompatibility, and controlled degradation rates have been developed and applied in clinical practice. These materials include absorbable polymers and biodegradable metals. This article provides a comprehensive summary of these resorbable materials from a clinician's perspective. In addition, an in-depth discussion of the feasibility of their clinical applications and related research in pediatric orthopedics is included. We found that the applications of absorbable implants in pediatric orthopedics are shifting from absorbable polymers to biodegradable metals and emphasize that the functional characteristics of resorbable materials must be coordinated and complementary to the treatment in pediatric orthopedics.
Collapse
Affiliation(s)
- Yunan Lu
- Department of Pediatric Orthopedics, Fuzhou Second General Hospital, The Third Clinical Medicine College of Fujian Medical University, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian, China
- Department of Emergency Trauma Surgery, Shengli Clinical Medical College of Fujian Medical University, Shengli Hospital affiliated to Fuzhou University, Fuzhou, 350001, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kai Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, 518036, Guangdong, China
| | - Federico Canavese
- Orthopedic and Traumatology Department, IRCCS Istituto Giannina Gaslini, DISC-Dipartimento di scienze chirurgiche e diagnostiche integrate, University of Genova, Genova, Italy
| | - Chenyang Huang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hongtao Yang
- School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Jiahui Shi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wubing He
- Department of Emergency Trauma Surgery, Shengli Clinical Medical College of Fujian Medical University, Shengli Hospital affiliated to Fuzhou University, Fuzhou, 350001, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shunyou Chen
- Department of Pediatric Orthopedics, Fuzhou Second General Hospital, The Third Clinical Medicine College of Fujian Medical University, 47th Shangteng Road of Cangshan District, Fuzhou, 350007, Fujian, China
- Fujian Provincial Clinical Medical Research Center for First Aid and Rehabilitation in Orthopedic Trauma (2020Y2014), Fuzhou, 350007, China
- Key Clinical Specialty of Fujian Province and Fuzhou City (20220104), Fuzhou, China
| |
Collapse
|
2
|
Wu C, Lin F, Liu H, Pelletier MH, Lloyd M, Walsh WR, Nie JF. Stronger and coarser-grained biodegradable zinc alloys. Nature 2025; 638:684-689. [PMID: 39939767 DOI: 10.1038/s41586-024-08415-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/15/2024] [Indexed: 02/14/2025]
Abstract
Zinc is emerging as a key material for next-generation biodegradable implants1-5. However, its inherent softness limits its use in load-bearing orthopaedic implants. Although reducing the grain size of zinc can make it stronger, it also destabilizes its mechanical properties and thus makes it less durable at body temperature6. Here we show that extruded Zn alloys of dilute compositions can achieve ultrahigh strength and excellent durability when their micron-scale grain size is increased while maintaining a basal texture. In this inverse Hall-Petch effect, the dominant deformation mode changes from inter-granular grain boundary sliding and dynamic recrystallization at the original grain size to intra-granular pyramidal slip and unusual twinning at the increased grain size. The role of the anomalous twins, termed 'accommodation twins' in this work, is to accommodate the altered grain shape in the plane lying perpendicular to the external loading direction, in contrast to the well-known 'mechanical twins' whose role is to deliver plasticity along the external loading direction7,8. The strength level achieved in these dilute zinc alloys is nearly double those of biodegradable implants made of magnesium alloys-making them the strongest and most stable biodegradable alloys available, to our knowledge, for fabricating bone fixation implants.
Collapse
Affiliation(s)
- Chengcheng Wu
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
| | - Fengxiang Lin
- Department of Physics and Engineering Sciences, Karlstad University, Karlstad, Sweden
| | - Hong Liu
- National Engineering Research Centre of Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai, China
| | - Matthew H Pelletier
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Max Lloyd
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Williams R Walsh
- Surgical & Orthopaedic Research Laboratories, Prince of Wales Clinical School, UNSW Sydney, Sydney, New South Wales, Australia
| | - Jian-Feng Nie
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Berger L, Dolert S, Akhmetshina T, Burkhard JP, Tegelkamp M, Rich A, Rubin W, Darwiche S, Kuhn G, Schäublin R, von Rechenberg B, Schaller B, Nuss K, Löffler J. In vivo performance of lean bioabsorbable Mg-Ca alloy X0 and comparison to WE43: Influence of surface modification and alloying content. Bioact Mater 2025; 44:501-515. [PMID: 39559425 PMCID: PMC11570742 DOI: 10.1016/j.bioactmat.2024.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Magnesium alloys present a compelling prospect for absorbable implant materials in orthopedic and trauma surgery. This study evaluates an ultra-high purity, lean magnesium-calcium alloy (X0), both with and without plasma electrolytic oxidation (PEO) surface modification, in comparison to a clinically utilized WE43 magnesium alloy. It is shown that the mechanical properties of X0 can be tuned to yield a high-strength material suitable for bone screws (with an ultimate tensile strength of 336 MPa) or a ductile material appropriate for intraoperatively deformable plates (with an elongation at fracture of 24 %). Four plate-screw combinations were implanted onto the pelvic bones of six sheep without osteotomy for 8 weeks. Subsequent analysis utilized histology, micro-computed tomography, and light and electron microscopy. All implants exhibited signs of degradation and hydrogen-gas evolution, with PEO-coated X0 implants demonstrating the least volume loss and the most substantial new-bone formation on the implant surface and surrounding cancellous bone. Furthermore, the osteoconductive properties of the X0 implants, when uncoated, exceeded those of the uncoated WE43 implants, as evidenced by greater new-bone formation on the surface. This osteoconductivity was amplified with PEO surface modification, which mitigated gas evolution and enhanced osseointegration, encouraging bone apposition in the cancellous bone vicinity. These findings thus indicate that PEO-coated X0 implants hold substantial promise as a biocompatible and absorbable implant material.
Collapse
Affiliation(s)
- L. Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - S. Dolert
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - T. Akhmetshina
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - J.-P. Burkhard
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - M. Tegelkamp
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - A.M. Rich
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - W. Rubin
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - S. Darwiche
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - G. Kuhn
- Institute for Biomechanics, Department of Health Sciences and Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - R.E. Schäublin
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - B. von Rechenberg
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - B. Schaller
- Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - K.M. Nuss
- Musculoskeletal Research Unit, Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
- Competence Center for Applied Biotechnology and Molecular Medicine (CABMM), Vetsuisse Faculty ZH, University of Zurich, 8057 Zurich, Switzerland
| | - J.F. Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
4
|
Zhou H, Zhang Y, Tian T, Wang B, Pan Y. Meta-analysis of the Relationship Between Zinc and Copper in Patients with Osteoarthritis. Biol Trace Elem Res 2025; 203:635-645. [PMID: 38676877 DOI: 10.1007/s12011-024-04197-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
This study aims to explore the relationship between osteoarthritis and the trace elements zinc and copper and to provide a theoretical basis for research on the related mechanisms for the prevention, diagnosis, and treatment of osteoarthritis. We searched all the literature indexed in Web Of Science, Embase, and PubMed as of January 10, 2024, summarized the zinc and copper detection indexes in patients with osteoarthritis, obtained clinical data through literature screening, quality assessment, and data extraction, and analyzed the data using Revman 5.4. A total of 13 papers were included in this study, totaling 7983 study subjects. These were divided into osteoarthritis and healthy control groups. The results from the meta-analysis showed that in patients with osteoarthritis, circulating copper levels, but not zinc levels, were significantly higher compared to healthy individuals. The level of copper in the blood of patients with osteoarthritis is significantly higher than that of healthy people.
Collapse
Affiliation(s)
- Haowei Zhou
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yuchen Zhang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Tian Tian
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Bingqian Wang
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yalei Pan
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
- Co-Construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization By Shaanxi & Education Ministry State, Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Innovative Drug Research Center, Xianyang, 712083, China.
| |
Collapse
|
5
|
Ali W, Ordoño J, Kopp A, González C, Echeverry-Rendón M, LLorca J. Cytocompatibility, cell-material interaction, and osteogenic differentiation of MC3T3-E1 pre-osteoblasts in contact with engineered Mg/PLA composites. J Biomed Mater Res A 2024; 112:2136-2148. [PMID: 38899796 DOI: 10.1002/jbm.a.37767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Bioabsorbable Mg wire-reinforced poly-lactic acid (PLA) matrix composites are potential candidate for load-bearing orthopedic implants offering tailorable mechanical and degradation properties by stacking sequence, volume fraction and surface modification of Mg wires. In this study, we investigated the cytocompatibility, cell-material interaction, and bone differentiation behavior of MC3T3-E1 pre-osteoblast cells for medical-grade PLA, Mg/PLA, and PEO-Mg/PLA (having PEO surface modification on Mg wires) composites. MTT and live/dead assay showed excellent biocompatibility of both composites while cell-material interaction analysis revealed that cells were able to adhere and proliferate on the surface of composites. Cells on the longitudinal surface of composites showed a high and uniform cell density while those on transversal surfaces initially avoided Mg regions but later migrated back after the formation of the passivation layer. Bone differentiation tests showed that cells in extracts of PLA and composites were able to initiate the differentiation process as osteogenesis-related gene expressions, alkaline phosphatase protein quantity, and calcium mineralization increased after 7 and 14 days of culture. Interestingly, the bone differentiation response of PEO-Mg/PLA composite was found to be similar to medical-grade PLA, proving its superiority over Mg/PLA composite.
Collapse
Affiliation(s)
- Wahaaj Ali
- IMDEA Materials Institute, Getafe, Madrid, Spain
- Department of Material Science and Engineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | - Jesus Ordoño
- IMDEA Materials Institute, Getafe, Madrid, Spain
| | | | - Carlos González
- IMDEA Materials Institute, Getafe, Madrid, Spain
- Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Javier LLorca
- IMDEA Materials Institute, Getafe, Madrid, Spain
- Department of Materials Science, Polytechnic University of Madrid/Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Iskhakova K, Cwieka H, Meers S, Helmholz H, Davydok A, Storm M, Baltruschat IM, Galli S, Pröfrock D, Will O, Gerle M, Damm T, Sefa S, He W, MacRenaris K, Soujon M, Beckmann F, Moosmann J, O'Hallaran T, Guillory RJ, Wieland DF, Zeller-Plumhoff B, Willumeit-Römer R. Multi-modal investigation of the bone micro- and ultrastructure, and elemental distribution in the presence of Mg-xGd screws at mid-term healing stages. Bioact Mater 2024; 41:657-671. [PMID: 39296873 PMCID: PMC11408010 DOI: 10.1016/j.bioactmat.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/28/2024] [Accepted: 07/15/2024] [Indexed: 09/21/2024] Open
Abstract
Magnesium (Mg) - based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing, e.g. as a suture anchor. Due to their mechanical properties and biocompatibility, they may replace titanium or stainless-steel implants, commonly used in orthopedic field. Nevertheless, patient safety has to be assured by finding a long-term balance between metal degradation, osseointegration, bone ultrastructure adaptation and element distribution in organs. In order to determine the implant behavior and its influence on bone and tissues, we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone. The implants were present in rat tibia for 10, 20 and 32 weeks before sacrifice of the animal. Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal, degradation layer and bone structure. Additionally, X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface. Finally, with element specific mass spectrometry, the elements and their accumulation in the main organs and tissues are traced. The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks. No accumulation of Mg and Gd was observed in selected organs, except for the interfacial bone after 8 months of healing. Thus, we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants.
Collapse
Affiliation(s)
- Kamila Iskhakova
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Hanna Cwieka
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Svenja Meers
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Anton Davydok
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Malte Storm
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Silvia Galli
- Department of Prosthodontics, Faculty of Odontology, University of Malmö, Malmö, Sweden
| | - Daniel Pröfrock
- Institute of Coastal Environmental Chemistry, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Olga Will
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Mirko Gerle
- The Department of Oral and Maxillofacial Surgery Campus Kiel, UKSH, Kiel, Germany
| | - Timo Damm
- Molecular Imaging North Competence Center, Kiel University, Kiel, Germany
| | - Sandra Sefa
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Weilue He
- Department of Biomedical Engineering, Michigan Technological University, USA
| | - Keith MacRenaris
- Department of Microbiology and Biochemistry, Michigan State University, USA
| | - Malte Soujon
- Institute of Materials Mechanics, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Felix Beckmann
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Julian Moosmann
- Institute of Materials Physiscs, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | - Thomas O'Hallaran
- Department of Microbiology and Biochemistry, Michigan State University, USA
| | - Roger J. Guillory
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, USA
| | - D.C. Florian Wieland
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | |
Collapse
|
7
|
Riyaz S, Sun Y, Helmholz H, Medina TP, Medina OP, Wiese B, Will O, Albaraghtheh T, Mohamad FH, Hövener JB, Glüer CC, Römer RW. Inflammatory response toward a Mg-based metallic biomaterial implanted in a rat femur fracture model. Acta Biomater 2024; 185:41-54. [PMID: 38969080 DOI: 10.1016/j.actbio.2024.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
The immune system plays an important role in fracture healing, by modulating the pro-inflammatory and anti-inflammatory responses occurring instantly upon injury. An imbalance in these responses can lead to adverse outcomes, such as non-union of fractures. Implants are used to support and stabilize complex fractures. Biodegradable metallic implants offer the potential to avoid a second surgery for implant removal, unlike non-degradable implants. However, considering our dynamic immune system it is important to conduct in-depth studies on the immune response to these implants in living systems. In this study, we investigated the immune response to Mg and Mg-10Gd in vivo in a rat femur fracture model with external fixation. In vivo imaging using liposomal formulations was used to monitor the fluorescence-related inflammation over time. We combine ex vivo methods with our in vivo study to evaluate and understand the systemic and local effects of the implants on the immune response. We observed no significant local or systemic effects in the Mg-10Gd implanted group compared to the SHAM and Mg implanted groups over time. Our findings suggest that Mg-10Gd is a more compatible implant material than Mg, with no adverse effects observed in the early phase of fracture healing during our 4-week study. STATEMENT OF SIGNIFICANCE: Degradable metallic implants in form of Mg and Mg-10Gd intramedullary pins were assessed in a rat femur fracture model, alongside a non-implanted SHAM group with special respect to the potential to induce an inflammatory response. This pre-clinical study combines innovative non-invasive in vivo imaging techniques associated with multimodal, ex vivo cellular and molecular analytics. The study contributes to the development and evaluation of degradable biometals and their clinical application potential. The study results indicate that Mg-10Gd did not exhibit any significant harmful effects compared to the SHAM and Mg groups.
Collapse
Affiliation(s)
- Sana Riyaz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Yu Sun
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Heike Helmholz
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany.
| | - Tuula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany
| | - Oula Penate Medina
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany; Institute for Experimental Cancer Research, Kiel University, 24105 Kiel, Germany; Lonza Netherlands B.V., 6167 RB Geleen, the Netherlands
| | - Björn Wiese
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Olga Will
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Tamadur Albaraghtheh
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany; Helmholtz-Zentrum hereon GmbH, Institute of Surface Science, Max-Planck-Straße 1, Geesthacht 21502, Germany
| | - Farhad Haj Mohamad
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Claus Christian Glüer
- Section Biomedical Imaging, Department of Radiology and Neuroradiology University Hospital Schleswig-Holstein Campus Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Regine Willumeit Römer
- Helmholtz-Zentrum hereon GmbH, Institute of Metallic Biomaterials, Max-Planck-Straße 1, Geesthacht 21502, Germany
| |
Collapse
|
8
|
Akhmetshina T, Schäublin RE, Rich AM, Berger L, Zeng P, Rodriguez‐Fernandez I, Phillips NW, Löffler JF. Quantitative Imaging of Magnesium Biodegradation by 3D X‐Ray Ptychography and Electron Microscopy. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202408869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Indexed: 01/06/2025]
Abstract
AbstractMagnesium‐based alloys are excellent materials for temporary medical implants, but understanding and controlling their corrosion performance is crucial. Most nanoscale corrosion studies focus on the surface, providing only 2D information. In contrast, macro‐ and microscale X‐ray tomography offers representative volume information, which is, however, comparatively low in resolution and rather qualitative. Here a new mesoscale approach overcomes these drawbacks and bridges the scale gap by combining 3D measurements using ptychographic X‐ray computed tomography (PXCT) with electron microscopy. This combination allows to observe the corrosion progress non‐destructively in 3D and provides high‐resolution chemical information on the corrosion products. A medical Mg–Zn–Ca alloy is used and compared the same sample in the pristine and corroded states. With PXCT an isotropic resolution of 85 and 123 nm is achieved for the pristine and corroded states respectively, which enables to distinguish nanoscale Mg2Ca precipitates from the matrix. The corroded state in best approximation to the in situ conditions is imaged and reveals the complexity of corrosion products. The results illustrate that the corrosion‐layer is dense and defect‐free, and the corrosion of the material is grain‐orientation sensitive. The developed workflow can advance research on bioactive materials and corrosion‐sensitive functional materials.
Collapse
Affiliation(s)
- Tatiana Akhmetshina
- Laboratory of Metal Physics and Technology Department of Materials ETH Zurich Zurich 8093 Switzerland
| | - Robin E. Schäublin
- Laboratory of Metal Physics and Technology Department of Materials ETH Zurich Zurich 8093 Switzerland
- Scientific Center for Optical and Electron Microscopy (ScopeM) ETH Zurich Zurich 8093 Switzerland
| | - Andrea M. Rich
- Laboratory of Metal Physics and Technology Department of Materials ETH Zurich Zurich 8093 Switzerland
| | - Leopold Berger
- Laboratory of Metal Physics and Technology Department of Materials ETH Zurich Zurich 8093 Switzerland
| | - Peng Zeng
- Scientific Center for Optical and Electron Microscopy (ScopeM) ETH Zurich Zurich 8093 Switzerland
| | - Irene Rodriguez‐Fernandez
- Paul Scherrer Institute Villigen 5232 Switzerland
- Institute for Biomedical Engineering University and ETH Zurich Zurich 8092 Switzerland
| | | | - Jörg F. Löffler
- Laboratory of Metal Physics and Technology Department of Materials ETH Zurich Zurich 8093 Switzerland
| |
Collapse
|
9
|
Lin Z, Wei Y, Yang H. Mg alloys with antitumor and anticorrosion properties for orthopedic oncology: A review from mechanisms to application strategies. APL Bioeng 2024; 8:021504. [PMID: 38638143 PMCID: PMC11026114 DOI: 10.1063/5.0191800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/04/2024] [Indexed: 04/20/2024] Open
Abstract
As a primary malignant bone cancer, osteosarcoma (OS) poses a great threat to human health and is still a huge challenge for clinicians. At present, surgical resection is the main treatment strategy for OS. However, surgical intervention will result in a large bone defect, and some tumor cells remaining around the excised bone tissue often lead to the recurrence and metastasis of OS. Biomedical Mg-based materials have been widely employed as orthopedic implants in bone defect reconstruction, and, especially, they can eradicate the residual OS cells due to the antitumor activities of their degradation products. Nevertheless, the fast corrosion rate of Mg alloys has greatly limited their application scope in the biomedical field, and the improvement of the corrosion resistance will impair the antitumor effects, which mainly arise from their rapid corrosion. Hence, it is vital to balance the corrosion resistance and the antitumor activities of Mg alloys. The presented review systematically discussed the potential antitumor mechanisms of three corrosion products of Mg alloys. Moreover, several strategies to simultaneously enhance the anticorrosion properties and antitumor effects of Mg alloys were also proposed.
Collapse
Affiliation(s)
- Zhensheng Lin
- Medical Engineering Center, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yuhe Wei
- Department of Medical Equipment, Tianjin Chest Hospital, Tianjin 300350, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| |
Collapse
|
10
|
Wang X, Ma C, Zhang X, Yuan P, Wang Y, Fu M, Zhang Z, Shi R, Wei N, Wang J, Wu W. Mussel inspired 3D elastomer enabled rapid calvarial bone regeneration through recruiting more osteoprogenitors from the dura mater. Regen Biomater 2024; 11:rbae059. [PMID: 38911700 PMCID: PMC11193312 DOI: 10.1093/rb/rbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/17/2024] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Currently, the successful healing of critical-sized calvarial bone defects remains a considerable challenge. The immune response plays a key role in regulating bone regeneration after material grafting. Previous studies mainly focused on the relationship between macrophages and bone marrow mesenchymal stem cells (BMSCs), while dural cells were recently found to play a vital role in the calvarial bone healing. In this study, a series of 3D elastomers with different proportions of polycaprolactone (PCL) and poly(glycerol sebacate) (PGS) were fabricated, which were further supplemented with polydopamine (PDA) coating. The physicochemical properties of the PCL/PGS and PCL/PGS/PDA grafts were measured, and then they were implanted as filling materials for 8 mm calvarial bone defects. The results showed that a matched and effective PDA interface formed on a well-proportioned elastomer, which effectively modulated the polarization of M2 macrophages and promoted the recruitment of dural cells to achieve full-thickness bone repair through both intramembranous and endochondral ossification. Single-cell RNA sequencing analysis revealed the predominance of dural cells during bone healing and their close relationship with macrophages. The findings illustrated that the crosstalk between dural cells and macrophages determined the vertical full-thickness bone repair for the first time, which may be the new target for designing bone grafts for calvarial bone healing.
Collapse
Affiliation(s)
- Xuqiao Wang
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Chaoqun Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Xinchi Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Pingping Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Yujiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Mingdi Fu
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
| | - Zheqian Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Ruiying Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| | - Na Wei
- The College of Life Sciences, Northwest University, Xi'an, 710127, PR China
| | - Juncheng Wang
- Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, PR China
| | - Wei Wu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Oral & Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, PR China
| |
Collapse
|
11
|
Ashammakhi N. CORR Insights®: Mg-Zn-Ca Alloy (ZX00) Screws Are Resorbed at a Mean of 2.5 Years After Medial Malleolar Fracture Fixation: Follow-up of a First-in-humans Application and Insights From a Sheep Model. Clin Orthop Relat Res 2024; 482:198-200. [PMID: 37768868 PMCID: PMC10723840 DOI: 10.1097/corr.0000000000002866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023]
Affiliation(s)
- Nureddin Ashammakhi
- Institute for Quantitative Health Science & Engineering, Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, College of Engineering, Michigan State University, East Lansing, MI, USA
- College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
12
|
Labmayr V, Suljevic O, Sommer NG, Schwarze UY, Marek RL, Brcic I, Foessl I, Leithner A, Seibert FJ, Herber V, Holweg PL. Mg-Zn-Ca Alloy (ZX00) Screws Are Resorbed at a Mean of 2.5 Years After Medial Malleolar Fracture Fixation: Follow-up of a First-in-humans Application and Insights From a Sheep Model. Clin Orthop Relat Res 2024; 482:184-197. [PMID: 37603369 PMCID: PMC10723859 DOI: 10.1097/corr.0000000000002799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 07/05/2023] [Indexed: 08/22/2023]
Abstract
BACKGROUND In the ongoing development of bioresorbable implants, there has been a particular focus on magnesium (Mg)-based alloys. Several Mg alloys have shown promising properties, including a lean, bioresorbable magnesium-zinc-calcium (Mg-Zn-Ca) alloy designated as ZX00. To our knowledge, this is the first clinically tested Mg-based alloy free from rare-earth elements or other elements. Its use in medial malleolar fractures has allowed for bone healing without requiring surgical removal. It is thus of interest to assess the resorption behavior of this novel bioresorbable implant. QUESTIONS/PURPOSES (1) What is the behavior of implanted Mg-alloy (ZX00) screws in terms of resorption (implant volume, implant surface, and gas volume) and bone response (histologic evaluation) in a sheep model after 13 months and 25 months? (2) What are the radiographic changes and clinical outcomes, including patient-reported outcome measures, at a mean of 2.5 years after Mg-alloy (ZX00) screw fixation in patients with medial malleolar fractures? METHODS A sheep model was used to assess 18 Mg-alloy (ZX00) different-length screws (29 mm, 24 mm, and 16 mm) implanted in the tibiae and compared with six titanium-alloy screws. Micro-CT was performed at 13 and 25 months to quantify the implant volume, implant surface, and gas volume at the implant sites, as well as histology at both timepoints. Between July 2018 and October 2019, we treated 20 patients with ZX00 screws for medial malleolar fractures in a first-in-humans study. We considered isolated, bimalleolar, or trimalleolar fractures potentially eligible. Thus, 20 patients were eligible for follow-up. However, 5% (one patient) of patients were excluded from the analysis because of an unplanned surgery for a pre-existing osteochondral lesion of the talus performed 17 months after ZX00 implantation. Additionally, another 5% (one patient) of patients were lost before reaching the minimum study follow-up period. Our required minimum follow-up period was 18 months to ensure sufficient time to observe the outcomes of interest. At this timepoint, 10% (two patients) of patients were either missing or lost to follow-up. The follow-up time was a mean of 2.5 ± 0.6 years and a median of 2.4 years (range 18 to 43 months). RESULTS In this sheep model, after 13 months, the 29-mm screws (initial volume: 198 ± 1 mm 3 ) degraded by 41% (116 ± 6 mm 3 , mean difference 82 [95% CI 71 to 92]; p < 0.001), and after 25 months by 65% (69 ± 7 mm 3 , mean difference 130 [95% CI 117 to 142]; p < 0.001). After 13 months, the 24-mm screws (initial volume: 174 ± 0.2 mm 3 ) degraded by 51% (86 ± 21 mm 3 , mean difference 88 [95% CI 52 to 123]; p = 0.004), and after 25 months by 72% (49 ± 25 mm 3 , mean difference 125 [95% CI 83 to 167]; p = 0.003). After 13 months, the 16-mm screws (initial volume: 112 ± 5 mm 3 ) degraded by 57% (49 ± 8 mm 3 , mean difference 63 [95% CI 50 to 76]; p < 0.001), and after 25 months by 61% (45 ± 10 mm 3 , mean difference 67 [95% CI 52 to 82]; p < 0.001). Histologic evaluation qualitatively showed ongoing resorption with new bone formation closely connected to the resorbing screw without an inflammatory reaction. In patients treated with Mg-alloy screws after a mean of 2.5 years, the implants were radiographically not visible in 17 of 18 patients and the bone had homogenous texture in 15 of 18 patients. No clinical or patient-reported complications were observed. CONCLUSION In this sheep model, Mg-alloy (ZX00) screws showed a resorption to one-third of the original volume after 25 months, without eliciting adverse immunologic reactions, supporting biocompatibility during this period. Mg-alloy (ZX00) implants were not detectable on radiographs after a mean of 2.5 years, suggesting full resorption, but further studies are needed to assess environmental changes regarding bone quality at the implantation site after implant resorption. CLINICAL RELEVANCE The study demonstrated successful healing of medial malleolar fractures using bioresorbable Mg-alloy screws without clinical complications or revision surgery, resulting in pain-free ankle function after 2.5 years. Future prospective studies with larger samples and extended follow-up periods are necessary to comprehensively assess the long-term effectiveness and safety of ZX00 screws, including an exploration of limitations when there is altered bone integrity, such as in those with osteoporosis. Additional use of advanced imaging techniques, such as high-resolution CT, can enhance evaluation accuracy.
Collapse
Affiliation(s)
- Viktor Labmayr
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Omer Suljevic
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | | | - Uwe Yacine Schwarze
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Graz, Austria
| | - Romy Linda Marek
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Iva Brcic
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Graz, Austria
| | - Andreas Leithner
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Franz Josef Seibert
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| | - Valentin Herber
- Department of Dentistry and Oral Health, Division of Oral Surgery and Orthodontics, Medical University of Graz, Graz, Austria
- Department of Oral Surgery, University Center for Dental Medicine, University of Basel, Basel, Switzerland
| | - Patrick Lukas Holweg
- Department of Orthopaedics and Trauma, Medical University of Graz, Graz, Austria
| |
Collapse
|
13
|
Martinez DC, Dobkowska A, Marek R, Ćwieka H, Jaroszewicz J, Płociński T, Donik Č, Helmholz H, Luthringer-Feyerabend B, Zeller-Plumhoff B, Willumeit-Römer R, Święszkowski W. In vitro and in vivo degradation behavior of Mg-0.45Zn-0.45Ca (ZX00) screws for orthopedic applications. Bioact Mater 2023; 28:132-154. [PMID: 37250863 PMCID: PMC10209338 DOI: 10.1016/j.bioactmat.2023.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/31/2023] Open
Abstract
Magnesium (Mg) alloys have become a potential material for orthopedic implants due to their unnecessary implant removal, biocompatibility, and mechanical integrity until fracture healing. This study examined the in vitro and in vivo degradation of an Mg fixation screw composed of Mg-0.45Zn-0.45Ca (ZX00, in wt.%). With ZX00 human-sized implants, in vitro immersion tests up to 28 days under physiological conditions, along with electrochemical measurements were performed for the first time. In addition, ZX00 screws were implanted in the diaphysis of sheep for 6, 12, and 24 weeks to assess the degradation and biocompatibility of the screws in vivo. Using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX), micro-computed tomography (μCT), X-ray photoelectron spectroscopy (XPS), and histology, the surface and cross-sectional morphologies of the corrosion layers formed, as well as the bone-corrosion-layer-implant interfaces, were analyzed. Our findings from in vivo testing demonstrated that ZX00 alloy promotes bone healing and the formation of new bone in direct contact with the corrosion products. In addition, the same elemental composition of corrosion products was observed for in vitro and in vivo experiments; however, their elemental distribution and thicknesses differ depending on the implant location. Our findings suggest that the corrosion resistance was microstructure-dependent. The head zone was the least corrosion-resistant, indicating that the production procedure could impact the corrosion performance of the implant. In spite of this, the formation of new bone and no adverse effects on the surrounding tissues demonstrated that the ZX00 is a suitable Mg-based alloy for temporary bone implants.
Collapse
Affiliation(s)
- Diana C. Martinez
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Anna Dobkowska
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Romy Marek
- Department of Orthopedics and Traumatology, Medical University of Graz, Auenbruggerplatz 5, 8036, Graz, Austria
| | - Hanna Ćwieka
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502, Geesthacht, Germany
| | - Jakub Jaroszewicz
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Tomasz Płociński
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| | - Črtomir Donik
- Department of Physics and Chemistry of Materials, Institute of Metals and Technology, University of Ljubljana, Lepi Pot 11, SI-1000, Ljubljana, Slovenia
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502, Geesthacht, Germany
| | | | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502, Geesthacht, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon GmbH, 21502, Geesthacht, Germany
| | - Wojciech Święszkowski
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507, Warsaw, Poland
| |
Collapse
|
14
|
Li X, Ding J. Establishment of coverage-mass equation to quantify the corrosion inhomogeneity and examination of medium effects on iron corrosion. Regen Biomater 2023; 10:rbad007. [PMID: 36817974 PMCID: PMC9933843 DOI: 10.1093/rb/rbad007] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/19/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Metal corrosion is important in the fields of biomedicine as well as construction and transportation etc. While most corrosion occurs inhomogeneously, there is so far no satisfactory parameter to characterize corrosion inhomogeneity. Herein, we employ the Poisson raindrop question to model the corrosion process and derive an equation to relate corrosion coverage and corrosion mass. The resultant equation is named coverage-mass equation, abbreviated as C-M equation. We also suggest corrosion mass at 50% coverage, termed as half-coverage mass M corro50%, as an inhomogeneity parameter to quantify corrosion inhomogeneity. The equation is confirmed and the half-coverage mass M corro50% is justified in our experiments of iron corrosion in five aqueous media, normal saline, phosphate-buffered saline, Hank's solution, deionized water and artificial seawater, where the former three ones are biomimetic and very important in studies of biomedical materials. The half-coverage mass M corro50% is proved to be more comprehensive and mathematically convergent than the traditional pitting factor. Iron corrosion is detected using visual observation, scanning electron microscopy with a build-in energy dispersive spectrometer, inductive coupled plasma emission spectrometry and electrochemical measurements. Both rates and inhomogeneity extents of iron corrosion are compared among the five aqueous media. The factors underlying the medium effects on corrosion rate and inhomogeneity are discussed and interpreted. Corrosion rates of iron in the five media differ about 7-fold, and half-coverage mass values differ about 300 000-fold. The fastest corrosion and the most significant inhomogeneity occur both in biomimetic media, but not the same one. The new equation (C-M equation) and the new quantity (half-coverage mass) are stimulating for dealing with a dynamic and stochastic process with global inhomogeneity including but not limited to metal corrosion. The findings are particularly meaningful for research and development of next-generation biodegradable materials.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | | |
Collapse
|