1
|
Huang Y, Zhang X, Zhang W, Tang J, Liu J. Rational design matrix materials for organoid development and application in biomedicine. Regen Biomater 2025; 12:rbaf038. [PMID: 40556786 PMCID: PMC12187070 DOI: 10.1093/rb/rbaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/05/2025] [Accepted: 05/02/2025] [Indexed: 06/28/2025] Open
Abstract
Organoids are three-dimensional tissue analogues grown in vitro. Although they are not human organs in the strict sense, they can mimic the structure and function of tissues in vivo to the maximum extent, and have broad application prospects in the fields of organ development, personalized medicine, regenerative medicine, disease modeling, drug screening, gene editing, etc. There is even hope that organoids can replace experimental animals for preclinical testing, which will greatly shorten the cycle of preclinical testing and improve its efficiency. Nowadays, Matrigel remains the predominant substitute for organoid culture systems. At the same time, new extracellular matrix or inspired polymer materials with tunable and optimized biochemical and biophysical properties continue to emerge, which are of great significance for efficient and high-level cultivation of organoids. In this review, we critically evaluate how mechanobiological signaling dynamics at the cell-matrix interface inform the rational engineering of biomimetic extracellular matrices to achieve standardized and phenotypically regulated patient-derived organoid cultures. Then, we systematically classify hydrogel-based matrices encompassing natural, biohybrid, synthetic, protein-engineered and DNA crosslinked matrix systems by their biocompatibility and functional compatibility. Focusing on cancer oncogenesis and progression research, drug development and personalized medicine, we highlight biomimetic hydrogel innovations that recapitulate tumor organoids development. By summarizing the obstacles that hinder the development of organoid hydrogels, we hope to provide an outlook on the future directions for the development of organoid hydrogels and promote the application of organoids in the field of biomedicine.
Collapse
Affiliation(s)
- Yue Huang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Wanjun Zhang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Jinglong Tang
- Department of Occupational and Environmental Health, School of Public Health, Qingdao University, Qingdao 266021, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Chen T, Luo L, Li J, Li J, Lin T, Liu M, Sang H, Hong X, Pu J, Huang W. Advancements in 3D printing technologies for personalized treatment of osteonecrosis of the femoral head. Mater Today Bio 2025; 31:101531. [PMID: 40026627 PMCID: PMC11869124 DOI: 10.1016/j.mtbio.2025.101531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025] Open
Abstract
Three-dimensional (3D) printing technology has shown significant promise in the medical field, particularly in orthopedics, prosthetics, tissue engineering, and pharmaceutical preparations. This review focuses on the innovative application of 3D printing in addressing the challenges of osteonecrosis of the femoral head (ONFH). Unlike traditional hip replacement surgery, which is often suboptimal for younger patients, 3D printing offers precise localization of necrotic areas and the ability to create personalized implants. By integrating advanced biomaterials, this technology offers a promising strategy approach for early hip-preserving treatments. Additionally, 3D-printed bone tissue engineering scaffolds can mimic the natural bone environment, promoting bone regeneration and vascularization. In the future, the potential of 3D printing extends to combining with artificial intelligence for optimizing treatment plans, developing materials with enhanced bioactivity and compatibility, and translating these innovations from the laboratory to clinical practice. This review demonstrates how 3D printing technology uniquely addresses critical challenges in ONFH treatment, including insufficient vascularization, poor mechanical stability, and limited long-term success of conventional therapies. By introducing gradient porous scaffolds, bioactive material coatings, and AI-assisted design, this work outlines novel strategies to improve bone regeneration and personalized hip-preserving interventions. These advancements not only enhance treatment efficacy but also pave the way for translating laboratory findings into clinical applications.
Collapse
Affiliation(s)
- Tingting Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian , 350108, China
| | - Lincong Luo
- Yue Bei People's Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, 510515, China
| | - Jiaying Li
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong , 510515, China
| | - Jiamin Li
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, 523808, China
| | - Tao Lin
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong , 510515, China
| | - Mingrui Liu
- School of Basic Medicine, Dali University, Dali, Yunnan, 671003, China
| | - Hang Sang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong , 510515, China
| | - Xinyu Hong
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian , 350108, China
| | - Jiahao Pu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian , 350108, China
| | - Wenhua Huang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian , 350108, China
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong , 510515, China
| |
Collapse
|
3
|
Bao Z, Yang R, Chen B, Luan S. Degradable polymer bone adhesives. FUNDAMENTAL RESEARCH 2025; 5:782-795. [PMID: 40242523 PMCID: PMC11997572 DOI: 10.1016/j.fmre.2023.11.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2025] Open
Abstract
Highly comminuted fractures and bone defects pose a significant challenge for orthopedic surgery. Current surgical procedures commonly rely on metal implants (such as bone plates, nails and pins) for fracture internal and external fixations, but they are likely to result in problems, such as stress shielding and poor bone healing. Bone adhesive represents an attractive alternative for the treatment of fracture. The ideal bone adhesive should satisfy several performance requirements, including high adhesion strength for bone tissues, rapid in-situ curing in a physiological environment, good biocompatibility with no toxicity, degradability, and good stability in vivo. Among these requirements, degradability is a crucial characteristic of bone adhesives. This property enables the material to be easily removed without the need for surgery at a later stage, ensuring the regeneration of bone tissue without any hindrance. The degradation rate of bone adhesive varies depending on the application scenarios and tissues, ranging from weeks to years. Many bone adhesives are unable to guarantee degradability while achieving other necessary performances. Therefore, this article provides a detailed overview of the strategies to fabricate biodegradable polymer bone adhesives that can maintain high bulk and adhesion strength, biocompatibility and other properties. Finally, the current challenges in the clinical translation of bone adhesives and their future development directions are discussed.
Collapse
Affiliation(s)
- Zijian Bao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Ran Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Binggang Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Wang Z, Xu J, Zhu J, Fang H, Lei W, Qu X, Cheng YY, Li X, Guan Y, Wang H, Song K. Osteochondral Tissue Engineering: Scaffold Materials, Fabrication Techniques and Applications. Biotechnol J 2025; 20:e202400699. [PMID: 39865414 DOI: 10.1002/biot.202400699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025]
Abstract
Osteochondral damage, caused by trauma, tumors, or degenerative diseases, presents a major challenge due to the limited self-repair capacity of the tissue. Traditional treatments often result in significant trauma and unpredictable outcomes. Recent advances in bone/cartilage tissue engineering, particularly in scaffold materials and fabrication technologies, offer promising solutions for osteochondral regeneration. This review highlights the selection and design of scaffolds using natural and synthetic materials such as collagen, chitosan (Cs), and polylactic acid (PLA), alongside inorganic components like bioactive glass and nano-hydroxyapatite (nHAp). Key fabrication techniques-freeze-drying, electrospinning, and 3D printing-have improved scaffold porosity and mechanical properties. Special focus is placed on the design of multiphasic scaffolds that mimic natural tissue structures, promoting cell adhesion and differentiation and supporting the regeneration of cartilage and subchondral bone. In addition, the current obstacles and future directions for regenerating damaged osteochondral tissues will be discussed.
Collapse
Affiliation(s)
- Zhenyu Wang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jie Xu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Jingjing Zhu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Huan Fang
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Wanyu Lei
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Xinrui Qu
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Xiangqin Li
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | - Yanchun Guan
- Department of Rheumatology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongfei Wang
- Department of Orthopedics, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Kedong Song
- Cancer Hospital of Dalian University of Technology, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
5
|
Varpe A, Sayed M, Mane NS. A Comprehensive Literature Review on Advancements and Challenges in 3D Bioprinting of Human Organs: Ear, Skin, and Bone. Ann Biomed Eng 2025; 53:14-33. [PMID: 38977527 DOI: 10.1007/s10439-024-03580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
The field of 3D bioprinting is rapidly emerging within the realm of regenerative medicine, offering significant potential in dealing with the issue of organ shortages. Despite being in its early stages, it has the potential to replicate tissue structures accurately, providing new potential solutions for reconstructive surgery. This review explores the diverse applications of 3D bioprinting in regenerative medicine, pharmaceuticals, and the food industry, specifically focusing on ear, skin, and bone tissues due to their unique challenges and implications in the field. Significant progress has been made in cartilage and bone scaffold fabrication in ear reconstruction, yet challenges in functional maturation persist. Recent advancements highlight the potential for patient-specific ear substitutes, emphasizing the need for extensive clinical trials. In skin regeneration, 3D bioprinting addresses limitations in existing models, offering opportunities for improved wound healing and realistic skin models. While challenges exist, progress in biomaterials and in-situ bioprinting holds promise. In bone regeneration, 3D bioprinting presents personalized solutions for defects, but scaffold design refinement and addressing regulatory and ethical considerations are crucial. The transformative potential of 3D bioprinting in the field of medicine holds the promise of redefining therapeutic approaches and delivering personalized treatments and functional tissues. Interdisciplinary collaboration is essential for fully realizing the capabilities of 3D bioprinting. This review provides a detailed analysis of current methodologies, challenges, and prospects in 3D bioprinting for ear, skin, and bone tissue regeneration.
Collapse
Affiliation(s)
- Aishwarya Varpe
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India
| | - Marwana Sayed
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India
| | - Nikhil S Mane
- School of Engineering, Ajeenkya DY Patil University, Charholi Bk., Lohegaon, Pune, Maharashtra, 412105, India.
| |
Collapse
|
6
|
Zhang H, Luo Y, Xu R, Cao X, Li G, Chen S. Magnetically Induced Anisotropic Microstructures on Polyethylene Glycol Hydrogel Facilitate BMSC Alignment and Osteogenic Differentiation. Gels 2024; 10:814. [PMID: 39727572 DOI: 10.3390/gels10120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Many tissues exhibit structural anisotropy, which imparts orientation-specific properties and functions. However, recapitulating the cellular patterns found in anisotropic tissues presents a remarkable challenge, particularly when using soft and wet hydrogels. Herein, we develop self-assembled anisotropic magnetic Fe3O4 micropatterns on polyethylene glycol hydrogels utilizing dipole-dipole interactions. Under the influence of a static magnetic field, Fe3O4 nanoparticles align into highly ordered structures with a height of 400-600 nm and a width of 8-10 μm. Furthermore, our layer-by-layer assembly technique enables the creation of oriented micropatterns with varying densities and heights, which can be further manipulated to form three-dimensional structures by adjusting the angle of the magnetic field. These anisotropic magnetic Fe3O4 micropatterns can be applied to various substrates, including treated glass slides, standard glass slides, silicon wafers, and polydimethylsiloxane. The patterned Fe3O4 scaffolds, modified with gold coating, effectively enhance cellular adhesion, orientation, and osteogenic differentiation of bone marrow-derived stem cells, which is crucial for effective tissue repair. Overall, this study presents an efficient strategy for constructing anisotropic Fe3O4 micropattern hydrogels, providing a bioactive platform that significantly enhances cellular functions.
Collapse
Affiliation(s)
- Hua Zhang
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Yang Luo
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Rong Xu
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xu Cao
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Guanrong Li
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China
| | - Shang Chen
- Research Institute of Smart Medicine and Biological Engineering, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
7
|
Sifringer L, De Windt L, Bernhard S, Amos G, Clément B, Duru J, Tibbitt MW, Tringides CM. Photopatterning of conductive hydrogels which exhibit tissue-like properties. J Mater Chem B 2024; 12:10272-10284. [PMID: 39298131 DOI: 10.1039/d4tb00807c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Hydrogels are three-dimensional, highly tunable material systems that can match the properties of extracellular matrices. In addition to being widely used to grow and modulate cell behavior, hydrogels can be made conductive to further modulate electrically active cells, such as neurons, and even incorporated into multielectrode arrays to interface with tissues. To enable conductive hydrogels, graphene flakes can be mechanically suspended into a hydrogel precursor. The conductivity of the hydrogel can be increased by increasing the weight percentage of graphene flakes in the precursor while maintaining the mechanical properties of the formed gel similar to the properties of neural tissue. By using a photocrosslinkable hydrogel matrix, such as gelatin methacrylate, with a photoabsorber, the conductive precursor solutions can be crosslinked into predefined complex patterns. Finally, the formulations can be used to support the growth of sensory neurons, derived from human induced pluripotent stem cells, for more than 7 weeks while the neurons remain viable. These scaffolds can be patterned into components of multielectrode arrays, to enable ultrasoft electrodes with tissue-matched properties for further interactions, both in vitro and in vivo, with the nervous systems.
Collapse
Affiliation(s)
- Léo Sifringer
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Lina De Windt
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Stéphane Bernhard
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Giulia Amos
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Blandine Clément
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Jens Duru
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland
| | - Christina M Tringides
- Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zürich, Switzerland.
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| |
Collapse
|
8
|
Liu X, Gao J, Liu J, Cheng J, Han Z, Li Z, Chang Z, Zhang L, Li M, Tang P. Three-Dimensional-Printed Spherical Hollow Structural Scaffolds for Guiding Critical-Sized Bone Regeneration. ACS Biomater Sci Eng 2024; 10:2581-2594. [PMID: 38489227 DOI: 10.1021/acsbiomaterials.3c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The treatment of bone tissue defects continues to be a complex medical issue. Recently, three-dimensional (3D)-printed scaffold technology for bone tissue engineering (BTE) has emerged as an important therapeutic approach for bone defect repair. Despite the potential of BTE scaffolds to contribute to long-term bone reconstruction, there are certain challenges associated with it including the impediment of bone growth within the scaffolds and vascular infiltration. These difficulties can be resolved by using scaffold structural modification strategies that can effectively guide bone regeneration. This study involved the preparation of biphasic calcium phosphate spherical hollow structural scaffolds (SHSS) with varying pore sizes using 3D printing (photopolymerized via digital light processing). The chemical compositions, microscopic morphologies, mechanical properties, biocompatibilities, osteogenic properties, and impact on repairing critical-sized bone defects of SHSS were assessed through characterization analyses, in vitro cytological assays, and in vivo biological experiments. The results revealed the biomimetic properties of SHSS and their favorable biocompatibility. The scaffolds stimulated cell adhesion, proliferation, differentiation, and migration and facilitated the expression of osteogenic genes and proteins, including Col-1, OCN, and OPN. Furthermore, they could effectively repair a critical-sized bone defect in a rabbit femoral condyle by establishing an osteogenic platform and guiding bone regeneration in the defect region. This innovative strategy presents a novel therapeutic approach for assessing critical-sized bone defects.
Collapse
Affiliation(s)
- Xiao Liu
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianpeng Gao
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zhenchuan Han
- Medical School of Chinese PLA, Beijing 100853, China
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Zijian Li
- Medical School of Chinese PLA, Beijing 100853, China
| | | | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Peifu Tang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|
9
|
Nie X, Tang Y, Wu T, Zhao X, Xu Z, Yang R, Sun Y, Wu B, Han Q, Hui J, Liu W. 3D printing sequentially strengthening high-strength natural polymer hydrogel bilayer scaffold for cornea regeneration. Regen Biomater 2024; 11:rbae012. [PMID: 38454966 PMCID: PMC10918636 DOI: 10.1093/rb/rbae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/21/2024] [Accepted: 01/27/2024] [Indexed: 03/09/2024] Open
Abstract
3D printing of high-strength natural polymer biodegradable hydrogel scaffolds simultaneously resembling the biomechanics of corneal tissue and facilitating tissue regeneration remains a huge challenge due to the inherent brittleness of natural polymer hydrogels and the demanding requirements of printing. Herein, concentrated aqueous solutions of gelatin and carbohydrazide-modified alginate (Gel/Alg-CDH) are blended to form a natural polymer hydrogel ink, where the hydrazides in Alg-CDH are found to form strong hydrogen bonds with the gelatin. The hydrogen-bonding-strengthened Gel/Alg-CDH hydrogel demonstrates an appropriate thickened viscosity and shear thinning for extrusion printing. The strong hydrogen bonds contribute to remarkably increased mechanical properties of Gel/Alg-CDH hydrogel with a maximum elongation of over 400%. In addition, sequentially Ca2+-physical crosslinking and then moderately chemical crosslinking significantly enhance the mechanical properties of Gel/Alg-CDH hydrogels that ultimately exhibit an intriguing J-shaped stress-strain curve (tensile strength of 1.068 MPa and the toughness of 677.6 kJ/m2). The dually crosslinked Gel-Alg-CDH-Ca2+-EDC hydrogels demonstrate a high transparency, physiological swelling stability and rapid enzymatic degradability, as well as suturability. The growth factor and drug-loaded biomimetic bilayer hydrogel scaffold are customized via a multi-nozzle printing system. This bioactive bilayer hydrogel scaffold considerably promotes regeneration of corneal epithelium and stroma and inhibits cornea scarring in rabbit cornea keratoplasty.
Collapse
Affiliation(s)
- Xiongfeng Nie
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yong Tang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Tengling Wu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xinrui Zhao
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Ziyang Xu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Rong Yang
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yage Sun
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Bin Wu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Quanhong Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Jingwen Hui
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Tianjin 300020, China
| | - Wenguang Liu
- School of Material Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
10
|
Chai W, Chen X, Liu J, Zhang L, Liu C, Li L, Honiball JR, Pan H, Cui X, Wang D. Recent progress in functional metal-organic frameworks for bio-medical application. Regen Biomater 2023; 11:rbad115. [PMID: 38313824 PMCID: PMC10838214 DOI: 10.1093/rb/rbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/01/2023] [Accepted: 12/17/2023] [Indexed: 02/06/2024] Open
Abstract
Metal-organic frameworks (MOFs) have a high specific surface area, adjustable pores and can be used to obtain functional porous materials with diverse and well-ordered structures through coordination and self-assembly, which has intrigued wide interest in a broad range of disciplines. In the arena of biomedical engineering, the functionalized modification of MOFs has produced drug carriers with excellent dispersion and functionalities such as target delivery and response release, with promising applications in bio-detection, disease therapy, tissue healing, and other areas. This review summarizes the present state of research on the functionalization of MOFs by physical binding or chemical cross-linking of small molecules, polymers, biomacromolecules, and hydrogels and evaluates the role and approach of MOFs functionalization in boosting the reactivity of materials. On this basis, research on the application of functionalized MOFs composites in biomedical engineering fields such as drug delivery, tissue repair, disease treatment, bio-detection and imaging is surveyed, and the development trend and application prospects of functionalized MOFs as an important new class of biomedical materials in the biomedical field are anticipated, which may provide some inspiration and reference for further development of MOF for bio-medical applications.
Collapse
Affiliation(s)
- Wenwen Chai
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Xiaochen Chen
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Liu
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Liyan Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunyu Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Li Li
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - John Robert Honiball
- Department of Orthopaedics & Traumatology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobo Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xu Cui
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Deping Wang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
11
|
Leal SS, Gusmão GODM, Uchôa VT, Figueiredo-Silva J, Pinto LSS, Tim CR, Assis L, Maia-Filho ALM, de Oliveira RA, Lobo AO, Pavinatto A. Evaluation of How Methacrylate Gelatin Hydrogel Loaded with Ximenia americana L. Extract (Steam Bark) Effects Bone Repair Activity Using Rats as Models. J Funct Biomater 2023; 14:438. [PMID: 37754851 PMCID: PMC10531560 DOI: 10.3390/jfb14090438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/28/2023] Open
Abstract
The use of bioactive materials, such as Ximenia americana L., to stimulate the bone repair process has already been studied; however, the synergistic effects of its association with light emitting diode (LED) have not been reported. The present work aims to evaluate the effect of its stem bark extract incorporated into methacrylate gelatin hydrogel (GelMA) on the bone repair process using pure hydrogel and hydrogel associated with LED therapy. For this purpose, the GelMA hydrogel loaded with Ximenia americana L. extract (steam bark) was produced, characterized and applied in animal experiments. The tests were performed using 50 male Wistar rats (divided into 5 groups) submitted to an induced tibia diaphyseal fracture. The therapy effects were verified for a period of 15 and 30 days of treatment using histological analysis and Raman spectroscopy. After 15 days of induced lesion/treatment, the new bone formation was significantly higher in the GXG (GelMA + X. americana L.) group compared to the control group (p < 0.0001). After 30 days, a statistically significant difference was observed when comparing the GXLEDG (GelMA + X. americana L. + LED) and the control group (p < 0.0001), the GXG and the control group (p < 0.001), and when comparing the GG, GXG (p < 0.005) and GXLEDG (p < 0.001) groups. The results shows that the Ximenia americana L. stem extract incorporated into GelMA hydrogel associated with LED therapy is a potentiator for animal bone repair.
Collapse
Affiliation(s)
- Seânia Santos Leal
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | | | | | - José Figueiredo-Silva
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | - Lucielma Salmito Soares Pinto
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | - Carla R. Tim
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| | - Lívia Assis
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| | - Antonio Luiz Martins Maia-Filho
- Biotechnology and Biodiversity Research Center, State University of Piauí, Teresina 64002-150, Brazil; (J.F.-S.); (L.S.S.P.); (A.L.M.M.-F.)
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), Materials Science & Engineering Graduate Program (PPGCM), Federal University of Piauí (UFPI), Teresina 64049-550, Brazil
| | - Adriana Pavinatto
- Scientific and Technological Institute, Brazil University, São Paulo 08230-030, Brazil; (S.S.L.); (C.R.T.); (L.A.)
| |
Collapse
|