1
|
Mustelin T, Ukadike KC. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Front Immunol 2020; 11:593891. [PMID: 33281822 PMCID: PMC7691656 DOI: 10.3389/fimmu.2020.593891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
More than 200 human disorders include various manifestations of autoimmunity. The molecular events that lead to these diseases are still incompletely understood and their causes remain largely unknown. Numerous potential triggers of autoimmunity have been proposed over the years, but very few of them have been conclusively confirmed or firmly refuted. Viruses have topped the lists of suspects for decades, and it seems that many viruses, including those of the Herpesviridae family, indeed can influence disease initiation and/or promote exacerbations by a number of mechanisms that include prolonged anti-viral immunity, immune subverting factors, and mechanisms, and perhaps “molecular mimicry”. However, no specific virus has yet been established as being truly causative. Here, we discuss a different, but perhaps mechanistically related possibility, namely that retrotransposons or retroviruses that infected us in the past and left a lasting copy of themselves in our genome still can provoke an escalating immune response that leads to autoimmune disease. Many of these loci still encode for retroviral proteins that have retained some, or all, of their original functions. Importantly, these endogenous proviruses cannot be eliminated by the immune system the way it can eliminate exogenous viruses. Hence, if not properly controlled, they may drive a frustrated and escalating chronic, or episodic, immune response to the point of a frank autoimmune disorder. Here, we discuss the evidence and the proposed mechanisms, and assess the therapeutic options that emerge from the current understanding of this field.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kennedy C Ukadike
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Levet S, Medina J, Joanou J, Demolder A, Queruel N, Réant K, Normand M, Seffals M, Dimier J, Germi R, Piofczyk T, Portoukalian J, Touraine JL, Perron H. An ancestral retroviral protein identified as a therapeutic target in type-1 diabetes. JCI Insight 2017; 2:94387. [PMID: 28878130 DOI: 10.1172/jci.insight.94387] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/25/2017] [Indexed: 12/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs), remnants of ancestral viral genomic insertions, are known to represent 8% of the human genome and are associated with several pathologies. In particular, the envelope protein of HERV-W family (HERV-W-Env) has been involved in multiple sclerosis pathogenesis. Investigations to detect HERV-W-Env in a few other autoimmune diseases were negative, except in type-1 diabetes (T1D). In patients suffering from T1D, HERV-W-Env protein was detected in 70% of sera, and its corresponding RNA was detected in 57% of peripheral blood mononuclear cells. While studies on human Langerhans islets evidenced the inhibition of insulin secretion by HERV-W-Env, this endogenous protein was found to be expressed by acinar cells in 75% of human T1D pancreata. An extensive immunohistological analysis further revealed a significant correlation between HERV-W-Env expression and macrophage infiltrates in the exocrine part of human pancreata. Such findings were corroborated by in vivo studies on transgenic mice expressing HERV-W-env gene, which displayed hyperglycemia and decreased levels of insulin, along with immune cell infiltrates in their pancreas. Altogether, these results strongly suggest an involvement of HERV-W-Env in T1D pathogenesis. They also provide potentially novel therapeutic perspectives, since unveiling a pathogenic target in T1D.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Julie Dimier
- IBS, UMR 5075 CEA-CNRS-Université Grenoble-Alpes, Grenoble, France
| | - Raphaële Germi
- IBS, UMR 5075 CEA-CNRS-Université Grenoble-Alpes, Grenoble, France.,Department of Virology, Grenoble University Hospital, Grenoble, France
| | | | | | | | - Hervé Perron
- GeNeuro Innovation, Lyon, France.,Laboratoire des déficits immunitaires, University of Lyon, France.,GeNeuro SA, Plan-les-Ouates, Geneva, Switzerland
| |
Collapse
|
3
|
Grandi N, Tramontano E. Type W Human Endogenous Retrovirus (HERV-W) Integrations and Their Mobilization by L1 Machinery: Contribution to the Human Transcriptome and Impact on the Host Physiopathology. Viruses 2017; 9:v9070162. [PMID: 28653997 PMCID: PMC5537654 DOI: 10.3390/v9070162] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/08/2017] [Accepted: 06/20/2017] [Indexed: 01/07/2023] Open
Abstract
Human Endogenous Retroviruses (HERVs) are ancient infection relics constituting ~8% of our DNA. While HERVs’ genomic characterization is still ongoing, impressive amounts of data have been obtained regarding their general expression across tissues. Among HERVs, one of the most studied is the W group, which is the sole HERV group specifically mobilized by the long interspersed element-1 (LINE-1) machinery, providing a source of novel insertions by retrotransposition of HERV-W processed pseudogenes, and comprising a member encoding a functional envelope protein coopted for human placentation. The HERV-W group has been intensively investigated for its putative role in several diseases, such as cancer, inflammation, and autoimmunity. Despite major interest in the link between HERV-W expression and human pathogenesis, no conclusive correlation has been demonstrated so far. In general, (i) the absence of a proper identification of the specific HERV-W sequences expressed in a given condition; and (ii) the lack of studies attempting to connect the various observations in the same experimental conditions are the major problems preventing the definitive assessment of the HERV-W impact on human physiopathology. In this review, we summarize the current knowledge on the HERV-W group presence within the human genome and its expression in physiological tissues as well as in the main pathological contexts.
Collapse
Affiliation(s)
- Nicole Grandi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
| | - Enzo Tramontano
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato SS554, 09042 Monserrato, Cagliari, Italy.
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), 09042 Monserrato, Cagliari, Italy.
| |
Collapse
|
4
|
Human endogenous retrovirus W activity in cartilage of osteoarthritis patients. BIOMED RESEARCH INTERNATIONAL 2014; 2014:698609. [PMID: 25136615 PMCID: PMC4130134 DOI: 10.1155/2014/698609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 06/25/2014] [Indexed: 11/18/2022]
Abstract
The etiology of viruses in osteoarthritis remains controversial because the prevalence of viral nucleic acid sequences in peripheral blood or synovial fluid from osteoarthritis patients and that in healthy control subjects are similar. Until now the presence of virus has not been analyzed in cartilage. We screened cartilage and chondrocytes from advanced and non-/early osteoarthritis patients for parvovirus B19, herpes simplex virus-1, Epstein Barr virus, cytomegalovirus, human herpes virus-6, hepatitis C virus, and human endogenous retroviruses transcripts. Endogenous retroviruses transcripts, but none of the other viruses, were detected in 15 out the 17 patients. Sequencing identified the virus as HERV-WE1 and E2. HERV-W activity was confirmed by high expression levels of syncytin, dsRNA, virus budding, and the presence of virus-like particles in all advanced osteoarthritis cartilages examined. Low levels of HERV-WE1, but not E2 envelope RNA, were observed in 3 out of 8 non-/early osteoarthritis patients, while only 3 out of 7 chondrocytes cultures displayed low levels of syncytin, and just one was positive for virus-like particles. This study demonstrates for the first time activation of HERV-W in cartilage of osteoarthritis patients; however, a causative role for HERV-W in development or deterioration of the disease remains to be proven.
Collapse
|
5
|
|
6
|
Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C, Farinelli L, Faucard R, Veas F, Stefas I, Fabriek BO, Van-Horssen J, Van-der-Valk P, Gerdil C, Mancuso R, Saresella M, Clerici M, Marcel S, Creange A, Cavaretta R, Caputo D, Arru G, Morand P, Lang AB, Sotgiu S, Ruprecht K, Rieckmann P, Villoslada P, Chofflon M, Boucraut J, Pelletier J, Hartung HP. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult Scler 2012; 18:1721-36. [PMID: 22457345 PMCID: PMC3573672 DOI: 10.1177/1352458512441381] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: The envelope protein from multiple sclerosis (MS) associated retroviral element (MSRV), a member of the Human Endogenous Retroviral family ‘W’ (HERV-W), induces dysimmunity and inflammation. Objective: The objective of this study was to confirm and specify the association between HERV-W/MSRV envelope (Env) expression and MS. Methods: 103 MS, 199 healthy controls (HC) and controls with other neurological diseases (28), chronic infections (30) or autoimmunity (30) were analysed with an immunoassay detecting Env in serum. Env RNA or DNA copy numbers in peripheral blood mononuclear cells (PBMC) were determined by a quantitative polymerase chain reaction (PCR). Env was detected by immunohistology in the brains of patients with MS with three specific monoclonals. Results: Env antigen was detected in a serum of 73% of patients with MS with similar prevalence in all clinical forms, and not in chronic infection, systemic lupus, most other neurological diseases and healthy donors (p<0.01). Cases with chronic inflammatory demyelinating polyneuropathy (5/8) and rare HC (4/103) were positive. RNA expression in PBMC and DNA copy numbers were significantly elevated in patients with MS versus HC (p<0.001). In patients with MS, DNA copy numbers were significantly increased in chronic progressive MS (secondary progressive MS vs relapsing–remitting MS (RRMS) p<0.001; primary progressive MS vs RRMS –<0.02). Env protein was evidenced in macrophages within MS brain lesions with particular concentrations around vascular elements. Conclusion: The association between MS disease and the MSRV-type HERV-W element now appears quite strong, as evidenced ex-vivo from serum and PBMC with post-mortem confirmation in brain lesions. Chronic progressive MS, RRMS and clinically isolated syndrome show different ELISA (Enzyme-Linked Immunosorbent Assay) and/or PCR profiles suggestive of an increase with disease evolution, and amplicon sequencing confirms the association with particular HERV-W elements.
Collapse
|
7
|
Antony JM, Deslauriers AM, Bhat RK, Ellestad KK, Power C. Human endogenous retroviruses and multiple sclerosis: innocent bystanders or disease determinants? Biochim Biophys Acta Mol Basis Dis 2010; 1812:162-76. [PMID: 20696240 PMCID: PMC7172332 DOI: 10.1016/j.bbadis.2010.07.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 07/14/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022]
Abstract
Human endogenous retroviruses (HERVs) constitute 5–8% of human genomic DNA and are replication incompetent despite expression of individual HERV genes from different chromosomal loci depending on the specific tissue. Several HERV genes have been detected as transcripts and proteins in the central nervous system, frequently in the context of neuroinflammation. The HERV-W family has received substantial attention in large part because of associations with diverse syndromes including multiple sclerosis (MS) and several psychiatric disorders. A HERV-W-related retroelement, multiple sclerosis retrovirus (MSRV), has been reported in MS patients to be both a biomarker as well as an effector of aberrant immune responses. HERV-H and HERV-K have also been implicated in MS and other neurological diseases but await delineation of their contributions to disease. The HERV-W envelope-encoded glycosylated protein, syncytin-1, is encoded by chromosome 7q21 and exhibits increased glial expression within MS lesions. Overexpression of syncytin-1 in glia induces endoplasmic reticulum stress leading to neuroinflammation and the induction of free radicals, which damage proximate cells. Syncytin-1's receptor, ASCT1 is a neutral amino acid transporter expressed on glia and is suppressed in white matter of MS patients. Of interest, antioxidants ameliorate syncytin-1's neuropathogenic effects raising the possibility of using these agents as therapeutics for neuroinflammatory diseases. Given the multiple insertion sites of HERV genes as complete and incomplete open reading frames, together with their differing capacity to be expressed and the complexities of individual HERVs as both disease markers and bioactive effectors, HERV biology is a compelling area for understanding neuropathogenic mechanisms and developing new therapeutic strategies.
Collapse
|
8
|
Voisset C, Weiss RA, Griffiths DJ. Human RNA "rumor" viruses: the search for novel human retroviruses in chronic disease. Microbiol Mol Biol Rev 2008; 72:157-96, table of contents. [PMID: 18322038 PMCID: PMC2268285 DOI: 10.1128/mmbr.00033-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of additional human retroviral infections, particularly in cancer and other chronic diseases. Unfortunately, many of these putative viruses remain unproven and controversial, and some retrovirologists have dismissed them as merely "human rumor viruses." Work in this field was last reviewed in depth in 1984, and since then, the molecular techniques available for identifying and characterizing retroviruses have improved enormously in sensitivity. The advent of PCR in particular has dramatically enhanced our ability to detect novel viral sequences in human tissues. However, DNA amplification techniques have also increased the potential for false-positive detection due to contamination. In addition, the presence of many families of human endogenous retroviruses (HERVs) within our DNA can obstruct attempts to identify and validate novel human retroviruses. Here, we aim to bring together the data on "novel" retroviral infections in humans by critically examining the evidence for those putative viruses that have been linked with disease and the likelihood that they represent genuine human infections. We provide a background to the field and a discussion of potential confounding factors along with some technical guidelines. In addition, some of the difficulties associated with obtaining formal proof of causation for common or ubiquitous agents such as HERVs are discussed.
Collapse
Affiliation(s)
- Cécile Voisset
- CNRS-UMR8161, Institut de Biologie de Lille et Institut Pasteur de Lille, Lille, France
| | | | | |
Collapse
|
9
|
Antony JM, Zhu Y, Izad M, Warren KG, Vodjgani M, Mallet F, Power C. Comparative expression of human endogenous retrovirus-W genes in multiple sclerosis. AIDS Res Hum Retroviruses 2007; 23:1251-6. [PMID: 17961112 DOI: 10.1089/aid.2006.0274] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retroviruses (HERVs) have been associated with multiple sclerosis (MS) pathogenesis. Several related HERV-W sequences have been implicated in disease occurrence and progression; the MS retrovirus (MSRV) is one such element whose envelope protein has been recently demonstrated to be involved in innate immune pathogenesis. To distinguish MSRV from other HERV-W sequences we analyzed the relative abundance of individual HERV-W env sequences by employing a real-time PCR approach using specific oligonucleotide primers and tissue samples from MS and non-MS patients. Our analyses reveal that ERVWE1 env-encoding DNA and RNA exhibited increased detection (p < 0.05) and expression (p < 0.01) in the brains of MS patients. Similarly, ERVWE1 env transcripts were inducible in glial cells (p < 0.05), while comparable changes in MSRV abundance were not observed. These results indicate that individual HERVs might have distinct roles in MS pathogenesis.
Collapse
Affiliation(s)
- Joseph M. Antony
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Yu Zhu
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Maryam Izad
- Department of Immunology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohammed Vodjgani
- Department of Immunology, Tehran University of Medical Sciences, Tehran, Iran
| | - Francois Mallet
- UMR CNRS-bioMerieux, IFR128 BioSciences Lyon-Gerland, Ecole Normale Superieure de Lyon, Lyon, France
| | - Christopher Power
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
10
|
Mameli G, Astone V, Khalili K, Serra C, Sawaya BE, Dolei A. Regulation of the syncytin-1 promoter in human astrocytes by multiple sclerosis-related cytokines. Virology 2007; 362:120-30. [PMID: 17258784 DOI: 10.1016/j.virol.2006.12.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 11/07/2006] [Accepted: 12/14/2006] [Indexed: 11/28/2022]
Abstract
Syncytin-1 has a physiological role during early pregnancy, as mediator of trophoblast fusion into the syncytiotrophoblast layer, hence allowing embryo implantation. In addition, its expression in nerve tissue has been proposed to contribute to the pathogenesis of multiple sclerosis (MS). Syncytin-1 is the env glycoprotein of the ERVWE1 component of the W family of human endogenous retroviruses (HERV), located on chromosome 7q21-22, in a candidate region for genetic susceptibility to MS. The mechanisms of ERVWE1 regulation in nerve tissue remain to be identified. Since there are correlations between some cytokines and MS outcome, we examined the regulation of the syncytin-1 promoter by MS-related cytokines in human U-87MG astrocytic cells. Using transient transfection assays, we observed that the MS-detrimental cytokines TNFalpha, interferon-gamma, interleukin-6, and interleukin-1 activate the ERVWE1 promoter, while the MS-protective interferon-beta is inhibitory. The effects of cytokines are reduced by the deletion of the cellular enhancer domain of the promoter that contains binding sites for several transcription factors. In particular, we found that TNFalpha had the ability to activate the ERVWE1 promoter through an NF-kappaB-responsive element located within the enhancer domain of the promoter. Electrophoretic mobility shift and ChIP assays showed that TNFalpha enhances the binding of the p65 subunit of NF-kappaB, to its cognate site within the promoter. The effect of TNFalpha is abolished by siRNA directed against p65. Taken together, these results illustrate a role for p65 in regulating the ERVWE1 promoter and in TNFalpha-mediated induction of syncytin-1 in multiple sclerosis.
Collapse
Affiliation(s)
- Giuseppe Mameli
- Section of Microbiology, Department of Biomedical Sciences, Center of Excellence for Biotechnology Development and Biodiversity Research, Sassari, Italy.
| | | | | | | | | | | |
Collapse
|
11
|
Ejtehadi HD, Freimanis GL, Ali HA, Bowman S, Alavi A, Axford J, Callaghan R, Nelson PN. The potential role of human endogenous retrovirus K10 in the pathogenesis of rheumatoid arthritis: a preliminary study. Ann Rheum Dis 2006; 65:612-6. [PMID: 16192292 PMCID: PMC1798125 DOI: 10.1136/ard.2004.031146] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2005] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To examine whether human endogenous retrovirus K10 is associated with autoimmune rheumatic disease. DESIGN A novel multiplex reverse transcription polymerase chain reaction (RT-PCR) system was developed to investigate HERV-K10 mRNA expression in patients with rheumatoid arthritis. METHODS 40 patients with rheumatoid arthritis, 17 with osteoarthritis, and 27 healthy individuals were recruited and total RNA was extracted from peripheral blood mononuclear cells (PBMCs) and analysed using multiplex RT-PCR for the level of HERV-K10 gag mRNA expression. Southern blot and DNA sequencing confirmed the authenticity of the PCR products. RESULTS Using the histidyl tRNA synthetase (HtRNAS) gene as a housekeeping gene in the optimised multiplex RT-PCR, a significantly higher level of HERV-K10 gag mRNA expression was found in rheumatoid arthritis than in osteoarthritis (p = 0.01) or in the healthy controls (p = 0.02). CONCLUSION There is enhanced mRNA expression of the HERV-K10 gag region in rheumatoid arthritis compared with osteoarthritis or healthy controls. This could contribute to the pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- H D Ejtehadi
- Molecular Immunology Research Group, Research Institute in Healthcare Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1SB, UK.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Rakoff-Nahoum S, Kuebler PJ, Heymann JJ, E Sheehy M, Ortiz GM, S Ogg G, Barbour JD, Lenz J, Steinfeld AD, Nixon DF. Detection of T lymphocytes specific for human endogenous retrovirus K (HERV-K) in patients with seminoma. AIDS Res Hum Retroviruses 2006; 22:52-6. [PMID: 16438646 DOI: 10.1089/aid.2006.22.52] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human endogenous retrovirus K (HERV-K) is distinctive among the retroviruses that comprise about 8% of the human genome in that multiple HERV-K proviruses encode full-length viral proteins, and many HERV-K proviruses formed during recent human evolution. HERV-K gag proteins are found in the cytoplasm of primary tumor cells of patients with seminoma. We identified HERV-K-specific T cells in patients with a past history of seminoma using the interferon-gamma ELISPOT assay and an MHC-HERV-K peptide-specific tetramer. A minority of apparently healthy subjects without evident germ cell tumors also made HERV-K-specific T cell responses. In summary, we detected T cell reactivity to HERV-K peptides in both past seminoma patients and a minority of apparently healthy controls.
Collapse
Affiliation(s)
- Seth Rakoff-Nahoum
- J.D. Gladstone Institutes, Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Villesen P, Aagaard L, Wiuf C, Pedersen FS. Identification of endogenous retroviral reading frames in the human genome. Retrovirology 2004; 1:32. [PMID: 15476554 PMCID: PMC524368 DOI: 10.1186/1742-4690-1-32] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Accepted: 10/11/2004] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Human endogenous retroviruses (HERVs) comprise a large class of repetitive retroelements. Most HERVs are ancient and invaded our genome at least 25 million years ago, except for the evolutionary young HERV-K group. The far majority of the encoded genes are degenerate due to mutational decay and only a few non-HERV-K loci are known to retain intact reading frames. Additional intact HERV genes may exist, since retroviral reading frames have not been systematically annotated on a genome-wide scale. RESULTS By clustering of hits from multiple BLAST searches using known retroviral sequences we have mapped 1.1% of the human genome as retrovirus related. The coding potential of all identified HERV regions were analyzed by annotating viral open reading frames (vORFs) and we report 7836 loci as verified by protein homology criteria. Among 59 intact or almost-intact viral polyproteins scattered around the human genome we have found 29 envelope genes including two novel gammaretroviral types. One encodes a protein similar to a recently discovered zebrafish retrovirus (ZFERV) while another shows partial, C-terminal, homology to Syncytin (HERV-W/FRD). CONCLUSIONS This compilation of HERV sequences and their coding potential provide a useful tool for pursuing functional analysis such as RNA expression profiling and effects of viral proteins, which may, in turn, reveal a role for HERVs in human health and disease. All data are publicly available through a database at http://www.retrosearch.dk.
Collapse
Affiliation(s)
- Palle Villesen
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Lars Aagaard
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Carsten Wiuf
- Bioinformatics Research Center, University of Aarhus, Høegh-Guldbergs Gade 10, Bldg. 090, DK-8000 Aarhus, Denmark
| | - Finn Skou Pedersen
- Department of Molecular Biology, University of Aarhus, C. F. Møllers Allé, Bldg. 130, DK-8000 Aarhus, Denmark
- Department of Medical Microbiology and Immunology, University of Aarhus, DK-8000 Aarhus, Denmark
| |
Collapse
|
14
|
Burgoon MP, Gilden DH, Owens GP. B cells in multiple sclerosis. FRONTIERS IN BIOSCIENCE : A JOURNAL AND VIRTUAL LIBRARY 2004; 9:786-96. [PMID: 14766408 PMCID: PMC3291127 DOI: 10.2741/1278] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The most common laboratory abnormality in multiple sclerosis (MS) is an increased amount of cerebrospinal fluid IgG and the presence of oligoclonal bands. Despite studies of the humoral response that suggest the involvement of an infectious agent or autoantigen in disease, the major targets of the oligoclonal response are still unknown. Identification of these targets will reveal valuable insights into the cause and pathogenesis of MS and is likely to lead to effective treatment.
Collapse
Affiliation(s)
- Mark P Burgoon
- Department of Neurology, University of Colorado Health Sciences Center, Denver, CO 80262, USA.
| | | | | |
Collapse
|
15
|
Abstract
Endogenous retroviruses (ERVs) correspond to the integrated proviral form of infectious retroviruses that are trapped within the genome by mutations. Endogenous retroviruses represent a key molecular link between the host genome and infectious viral particles. Proteins encoded by ERVs are recognized by antiviral immune responses and become targets of autoreactivity. Activation of ERVs, such as human ERV-K or a human T-cell lymphotropic virus-related endogenous sequence, may also mediate pathogenicity of Epstein-Barr virus. Endogenous retrovirus peptides can directly regulate immune responses. Thus, molecular mimicry and immunomodulation by ERVs may account for self-reactivity and abnormal T- and B-cell functions in autoimmune disorders.
Collapse
Affiliation(s)
- Andras Perl
- Departments of Medicine and Microbiology and Immunology, College of Medicine, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA.
| |
Collapse
|
16
|
Pavlícek A, Paces J, Elleder D, Hejnar J. Processed pseudogenes of human endogenous retroviruses generated by LINEs: their integration, stability, and distribution. Genome Res 2002; 12:391-9. [PMID: 11875026 PMCID: PMC155283 DOI: 10.1101/gr.216902] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We report here the presence of numerous processed pseudogenes derived from the W family of endogenous retroviruses in the human genome. These pseudogenes are structurally colinear with the retroviral mRNA followed by a poly(A) tail. Our analysis of insertion sites of HERV-W processed pseudogenes shows a strong preference for the insertion motif of long interspersed nuclear element (LINE) retrotransposons. The genomic distribution, stability during evolution, and frequent truncations at the 5' end resemble those of the pseudogenes generated by LINEs. We therefore suggest that HERV-W processed pseudogenes arose by multiple and independent LINE-mediated retrotransposition of retroviral mRNA. These data document that the majority of HERV-W copies are actually nontranscribed promoterless pseudogenes. The current search for HERV-Ws associated with several human diseases should concentrate on a small subset of transcriptionally competent elements.
Collapse
Affiliation(s)
- Adam Pavlícek
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague 6, CZ-16637, Czech Republic
| | | | | | | |
Collapse
|