1
|
Wang X, Ye T, Huang J, Hu F, Huang C, Gu B, Xu X, Yang J. Aberrant Chitinase 3-Like 1 Expression in Basal Cells Contributes to Systemic Sclerosis Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2310169. [PMID: 39686726 PMCID: PMC11809421 DOI: 10.1002/advs.202310169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 10/06/2024] [Indexed: 12/18/2024]
Abstract
Systemic sclerosis (SSc) is an autoimmune disease characterized by extensive skin and internal organ fibrosis. However, the mechanism underlying fibrosis remains unclear, and effective treatments for halting or reversing fibrosis are lacking. In this study, single-cell RNA sequencing is used to obtain a comprehensive overview of skin cells from patients with SSc and healthy controls. A subset of basal cells with high chitinase 3-like 1 (Chi3L1) expression, which potentially plays an important role in fibroblast activation, is identified in SSc. Subsequently, patients with SSc are present with increased expression of Chi3L1 in the skin and serum, and elevated serum levels are associated with skin induration and pulmonary function. Furthermore, Chi3L1 promoted the differentiation of SSc dermal fibroblasts into myofibroblasts, and Chi3L1-deficient (Chi3L1-/-) mice showed amelioration of fibrosis in a bleomycin-induced SSc (BLM-SSc) model. Mechanistically, Chi3L1 mediates fibroblast activation primarily by interacting with interleukin-17 receptor A (IL-17RA), thereby initiating downstream nuclear factor kappa B and mitogen-activated protein kinases signaling pathways. Moreover, the anti-fibrotic effect of IL-17RA antagonists in BLM-SSc mice is demonstrated. In conclusion, Chi3L1 is a potential biomarker for the degree of fibrosis in SSc. Chi3L1 and its receptor, IL-17RA, are promising therapeutic targets for patients with SSc.
Collapse
Affiliation(s)
- Xiuyuan Wang
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| | - Tianbao Ye
- Sixth People's Hospital affiliated to Shanghai Jiao Tong UniversityShanghai200233China
- Xiamen Cardiovascular Hospital of Xiamen UniversitySchool of MedicineXiamen UniversityXiamenFujian361008China
| | - Junxia Huang
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| | - Feifei Hu
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| | - Chengjie Huang
- State Key Laboratory of Oncogenes and Related GenesInstitute for Personalized MedicineSchool of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030China
| | - Bei Gu
- Shanghai Normal UniversityShanghai200233China
| | - Xinzhi Xu
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| | - Ji Yang
- Department of DermatologyZhongshan Hospital of Fudan UniversityShanghai200032China
| |
Collapse
|
2
|
Yan YM, Jin MZ, Li SH, Wu Y, Wang Q, Hu FF, Shen C, Yin WH. Hub genes, diagnostic model, and predicted drugs in systemic sclerosis by integrated bioinformatics analysis. Front Genet 2023; 14:1202561. [PMID: 37501723 PMCID: PMC10369177 DOI: 10.3389/fgene.2023.1202561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Background: Systemic sclerosis (scleroderma; SSc), a rare and heterogeneous connective tissue disease, remains unclear in terms of its underlying causative genes and effective therapeutic approaches. The purpose of the present study was to identify hub genes, diagnostic markers and explore potential small-molecule drugs of SSc. Methods: The cohorts of data used in this study were downloaded from the Gene Expression Complex (GEO) database. Integrated bioinformatic tools were utilized for exploration, including Weighted Gene Co-Expression Network Analysis (WGCNA), least absolute shrinkage and selection operator (LASSO) regression, gene set enrichment analysis (GSEA), Connectivity Map (CMap) analysis, molecular docking, and pharmacokinetic/toxicity properties exploration. Results: Seven hub genes (THY1, SULF1, PRSS23, COL5A2, NNMT, SLCO2B1, and TIMP1) were obtained in the merged gene expression profiles of GSE45485 and GSE76885. GSEA results have shown that they are associated with autoimmune diseases, microorganism infections, inflammatory related pathways, immune responses, and fibrosis process. Among them, THY1 and SULF1 were identified as diagnostic markers and validated in skin samples from GSE32413, GSE95065, GSE58095 and GSE125362. Finally, ten small-molecule drugs with potential therapeutic effects were identified, mainly including phosphodiesterase (PDE) inhibitors (BRL-50481, dipyridamole), TGF-β receptor inhibitor (SB-525334), and so on. Conclusion: This study provides new sights into a deeper understanding the molecular mechanisms in the pathogenesis of SSc. More importantly, the results may offer promising clues for further experimental studies and novel treatment strategies.
Collapse
Affiliation(s)
- Yue-Mei Yan
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Meng-Zhu Jin
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Sheng-Hua Li
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yun Wu
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei-Fei Hu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Shen
- Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University, Shanghai, China
| | - Wen-Hao Yin
- Department of Dermatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
3
|
O'Reilly S. At the crossroads of inflammation and fibrosis: epiregulin. Ann Rheum Dis 2023; 82:740-741. [PMID: 36750320 DOI: 10.1136/ard-2023-223851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/27/2023] [Indexed: 02/09/2023]
|
4
|
Brasier AR, Qiao D, Zhao Y. The Hexosamine Biosynthetic Pathway Links Innate Inflammation With Epithelial-Mesenchymal Plasticity in Airway Remodeling. Front Pharmacol 2021; 12:808735. [PMID: 35002741 PMCID: PMC8727908 DOI: 10.3389/fphar.2021.808735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/07/2021] [Indexed: 01/15/2023] Open
Abstract
Disruption of the lower airway epithelial barrier plays a major role in the initiation and progression of chronic lung disease. Here, repetitive environmental insults produced by viral and allergens triggers metabolic adaptations, epithelial-mesenchymal plasticity (EMP) and airway remodeling. Epithelial plasticity disrupts epithelial barrier function, stimulates release of fibroblastic growth factors, and remodels the extracellular matrix (ECM). This review will focus on recent work demonstrating how the hexosamine biosynthetic pathway (HBP) links innate inflammation to airway remodeling. The HBP is a core metabolic pathway of the unfolded protein response (UPR) responsible for protein N-glycosylation, relief of proteotoxic stress and secretion of ECM modifiers. We will overview findings that the IκB kinase (IKK)-NFκB pathway directly activates expression of the SNAI-ZEB1 mesenchymal transcription factor module through regulation of the Bromodomain Containing Protein 4 (BRD4) chromatin modifier. BRD4 mediates transcriptional elongation of SNAI1-ZEB as well as enhancing chromatin accessibility and transcription of fibroblast growth factors, ECM and matrix metalloproteinases (MMPs). In addition, recent exciting findings that IKK cross-talks with the UPR by controlling phosphorylation and nuclear translocation of the autoregulatory XBP1s transcription factor are presented. HBP is required for N glycosylation and secretion of ECM components that play an important signaling role in airway remodeling. This interplay between innate inflammation, metabolic reprogramming and lower airway plasticity expands a population of subepithelial myofibroblasts by secreting fibroblastic growth factors, producing changes in ECM tensile strength, and fibroblast stimulation by MMP binding. Through these actions on myofibroblasts, EMP in lower airway cells produces expansion of the lamina reticularis and promotes airway remodeling. In this manner, metabolic reprogramming by the HBP mediates environmental insult-induced inflammation with remodeling in chronic airway diseases.
Collapse
Affiliation(s)
- Allan R. Brasier
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| | - Dianhua Qiao
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health (SMPH), Madison, WI, United States
| | - Yingxin Zhao
- Department of Internal Medicine, University of Texas Medical Branch Galveston, Galveston, TX, United States
| |
Collapse
|
5
|
Duffy L, Henderson J, Brown M, Pryzborski S, Fullard N, Summa L, Distler JHW, Stratton R, O'Reilly S. Bone Morphogenetic Protein Antagonist Gremlin-1 Increases Myofibroblast Transition in Dermal Fibroblasts: Implications for Systemic Sclerosis. Front Cell Dev Biol 2021; 9:681061. [PMID: 34150776 PMCID: PMC8213337 DOI: 10.3389/fcell.2021.681061] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/13/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Systemic Sclerosis is an autoimmune connective tissue disease which results in fibrosis of the skin and lungs. The disease is characterized by activation of myofibroblasts but what governs this is unknown. Gremlin-1 is a BMP antagonist that is developmentally regulated and we sought to investigate its role in Systemic Sclerosis. Methods Dermal fibroblasts were transfected with Grem1pcDNA3.1 expression vectors or empty vectors. Various markers of myofibroblasts were measured at the mRNA and protein levels. Scratch wound assays were also performed. Media Transfer experiments were performed to evaluate cytokine like effects. Various inhibitors of TGF-β signaling and MAPK signaling were used post-transfection. siRNA to Gremlin-1 in SSc dermal fibroblasts were performed to evaluate the role of Gremlin-1. Different cytokines were incubated with fibroblasts and Gremlin-1 measured. Bleomycin was used as model of fibrosis and immunohistochemistry performed. Results Overexpression of Gremlin-1 was achieved in primary dermal fibroblasts and lead to activation of quiescent cells to myofibroblasts indicated by collagen and α-Smooth muscle actin. Overexpression also led to functional effects. This was associated with increased TGF-β1 levels and SBE luciferase activity but not increased Thrombospondin-1 expression. Inhibition of Gremlin-1 overexpression cells with antibodies to TGF-β1 but not isotype controls led to reduced collagen and various TGF-β pathway chemical inhibitors also led to reduced collagen levels. In SSc cells siRNA mediated reduction of Gremlin-1 reduced collagen expression and CTGF gene and protein levels in these cells. IL-13 did not lead to elevated Gremlin-1 expression nor did IL-11. Gremlin-1 was elevated in an animal model of fibrosis compared to NaCl-treated mice. Conclusion Gremlin-1 is a key regulator of myofibroblast transition leading to enhanced ECM deposition. Strategies that block Gremlin-1 maybe a possible therapeutic target in fibrotic diseases such as SSc.
Collapse
Affiliation(s)
- Laura Duffy
- Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - John Henderson
- Faculty of Health and Life Science, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Max Brown
- Biosciences Department, Durham University, Durham, United Kingdom
| | | | - Nicola Fullard
- Biosciences Department, Durham University, Durham, United Kingdom
| | - Lena Summa
- Department of Internal Medicine 3 Friedrich-Alexander-University, Erlangen-Nurnberg, Germany
| | - Jorg H W Distler
- Department of Internal Medicine 3 Friedrich-Alexander-University, Erlangen-Nurnberg, Germany
| | - Richard Stratton
- Centre for Rheumatology, University College London, London, United Kingdom
| | - Steven O'Reilly
- Biosciences Department, Durham University, Durham, United Kingdom
| |
Collapse
|
6
|
Henderson J, Duffy L, Stratton R, Ford D, O'Reilly S. Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis. J Cell Mol Med 2020; 24:14026-14038. [PMID: 33140521 PMCID: PMC7754020 DOI: 10.1111/jcmm.16013] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Systemic Sclerosis (SSc) is a rare fibrotic autoimmune disorder for which no curative treatments currently exist. Metabolic remodelling has recently been implicated in other autoimmune diseases; however, its potential role in SSc has received little attention. Here, we aimed to determine whether changes to glycolysis and glutaminolysis are important features of skin fibrosis. TGF‐β1, the quintessential pro‐fibrotic stimulus, was used to activate fibrotic pathways in NHDFs in vitro. Dermal fibroblasts derived from lesions of SSc patients were also used for in vitro experiments. Parameters of glycolytic function were assessed using by measuring extracellular acidification in response to glycolytic activators/inhibitors, whilst markers of fibrosis were measured by Western blotting following the use of the glycolysis inhibitors 2‐dg and 3PO and the glutaminolysis inhibitor G968. Succinate was also measured after TGF‐β1 stimulation. Itaconate was added to SSc fibroblasts and collagen examined. TGF‐β1 up‐regulates glycolysis in dermal fibroblasts, and inhibition of glycolysis attenuates its pro‐fibrotic effects. Furthermore, inhibition of glutamine metabolism also reverses TGF‐β1‐induced fibrosis, whilst glutaminase expression is up‐regulated in dermal fibroblasts derived from SSc patient skin lesions, suggesting that enhanced glutamine metabolism is another aspect of the pro‐fibrotic metabolic phenotype in skin fibrosis. TGF‐β1 was also able to enhance succinate production, with increased succinate shown to be associated with increased collagen expression. Incubation of SSc cells with itaconate, an important metabolite, reduced collagen expression. TGF‐β1 activation of glycolysis is a key feature of the fibrotic phenotype induced by TGF‐B1 in skin cells, whilst increased glutaminolysis is also evident in SSc fibroblasts.
Collapse
Affiliation(s)
- John Henderson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Laura Duffy
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Richard Stratton
- Centre for Rheumatic and Connective Tissue Diseases, University College London, London, UK
| | - Dianne Ford
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven O'Reilly
- School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|