1
|
Kwon J, Neeland MR, Ellis JA, Munro J, Saffery R, Novakovic B, Mansell T. The plasma metabolome of juvenile idiopathic arthritis varies according to subtype and underlying inflammatory status. Pediatr Rheumatol Online J 2024; 22:113. [PMID: 39736759 DOI: 10.1186/s12969-024-01041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is challenging to classify and effectively monitor due to the lack of disease- and subtype-specific biomarkers. A robust molecular signature that tracks with specific JIA features over time is urgently required, and targeted plasma metabolomics may reveal such a signature. The primary aim of this study was to characterise the differences in the plasma metabolome between JIA patients and non-JIA controls and identify specific markers of JIA subtype. We also assessed the extent to which these signatures are due to underlying inflammation as assessed by glycoprotein acetyls (GlycA) and high-sensitivity C-Reactive Protein (hsCRP) levels. METHODS Targeted nuclear magnetic resonance (NMR) metabolomic profiles of plasma of 72 children with JIA and 18 controls were assessed cross-sectionally. Associations between 71 metabolomic biomarkers and JIA, JIA subtype, disease activity status, and inflammation markers (GlycA and hsCRP) were assessed using multivariable linear regression models. RESULTS JIA was associated with higher GlycA (mean difference = 0.93 standard deviations, 95% confidence interval = [0.370, 1.494], Padj = 0.039) and docosahexaenoic acid (1.06, [0.51, 1.60], Padj = 0.021), and lower acetate (-0.92, [-1.43, -0.41], Padj = 0.024) relative to controls. This variation was largely driven by systemic JIA (sJIA), with 24 of 71 total biomarkers significantly different (Padj <0.05) relative to controls. There were no specific differences identified in oligoarticular (oJIA) or polyarticular (rheumatoid factor positive or negative) JIA relative to controls. Despite being generally highly correlated with hsCRP (r > 0.70), GlycA, but not hsCRP, was positively associated with active disease in sJIA (0.22, [-0.40, -0.04], Padj = 0.018), and 6 of 24 sJIA-associated markers were associated with GlycA levels. Only 1 sJIA-associated biomarker, histidine, was associated with hsCRP levels. CONCLUSION Differences in the plasma NMR metabolomic profiles are apparent in children with sJIA, but not other JIA subtypes, relative to non-JIA controls. These findings suggest a potential utility for classifying and monitoring JIA through metabolomic profiling, with chronic inflammation, measured by GlycA, potentially playing a role in at least some of these metabolomic differences.
Collapse
Affiliation(s)
- Jooa Kwon
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Melanie R Neeland
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Justine A Ellis
- Northern Health Research Development and Governance Unit, Epping, VIC, 3076, Australia
- School of Health & Biomedical Sciences, RMIT University, Melbourne, VIC, 3000, Australia
| | - Jane Munro
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
- Royal Children's Hospital Melbourne, Parkville, VIC, 3052, Australia
| | - Richard Saffery
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Boris Novakovic
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Toby Mansell
- Infection, Immunity and Global Health Theme, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
2
|
Falconer J, Pucino V, Clayton SA, Marshall JL, Raizada S, Adams H, Philp A, Clark AR, Filer A, Raza K, Young SP, Buckley CD. Spontaneously Resolving Joint Inflammation Is Characterised by Metabolic Agility of Fibroblast-Like Synoviocytes. Front Immunol 2021; 12:725641. [PMID: 34512657 PMCID: PMC8426599 DOI: 10.3389/fimmu.2021.725641] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/09/2021] [Indexed: 01/01/2023] Open
Abstract
Fibroblast-like synoviocytes (FLS) play an important role in maintaining joint homeostasis and orchestrating local inflammatory processes. When activated during injury or inflammation, FLS undergo transiently increased bioenergetic and biosynthetic demand. We aimed to identify metabolic changes which occur early in inflammatory disease pathogenesis which might support sustained cellular activation in persistent inflammation. We took primary human FLS from synovial biopsies of patients with very early rheumatoid arthritis (veRA) or resolving synovitis, and compared them with uninflamed control samples from the synovium of people without arthritis. Metabotypes were compared using NMR spectroscopy-based metabolomics and correlated with serum C-reactive protein levels. We measured glycolysis and oxidative phosphorylation by Seahorse analysis and assessed mitochondrial morphology by immunofluorescence. We demonstrate differences in FLS metabolism measurable after ex vivo culture, suggesting that disease-associated metabolic changes are long-lasting. We term this phenomenon 'metabolic memory'. We identify changes in cell metabolism after acute TNFα stimulation across disease groups. When compared to FLS from patients with early rheumatoid arthritis, FLS from patients with resolving synovitis have significantly elevated mitochondrial respiratory capacity in the resting state, and less fragmented mitochondrial morphology after TNFα treatment. Our findings indicate the potential to restore cell metabotypes by modulating mitochondrial function at sites of inflammation, with implications for treatment of RA and related inflammatory conditions in which fibroblasts play a role.
Collapse
Affiliation(s)
- Jane Falconer
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom.,School of Medicine, Institute of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom
| | - Valentina Pucino
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Sally A Clayton
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Jennifer L Marshall
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Sabrina Raizada
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Holly Adams
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Andrew Philp
- Healthy Ageing Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew R Clark
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Andrew Filer
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Karim Raza
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Department of Rheumatology, Sandwell and West Birmingham NHS Trust, Birmingham, United Kingdom
| | - Stephen P Young
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom
| | - Christopher D Buckley
- Rheumatology Research Group, Institute for Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, United Kingdom.,Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Daly R, Blackburn G, Best C, Goodyear CS, Mudaliar M, Burgess K, Stirling A, Porter D, McInnes IB, Barrett MP, Dale J. Changes in Plasma Itaconate Elevation in Early Rheumatoid Arthritis Patients Elucidates Disease Activity Associated Macrophage Activation. Metabolites 2020; 10:metabo10060241. [PMID: 32531990 PMCID: PMC7344783 DOI: 10.3390/metabo10060241] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 12/29/2022] Open
Abstract
Changes in the plasma metabolic profile were characterised in newly diagnosed rheumatoid arthritis (RA) patients upon commencement of conventional disease-modifying anti-rheumatic drug (cDMARD) therapy. Plasma samples collected in an early RA randomised strategy study (NCT00920478) that compared clinical (DAS) disease activity assessment with musculoskeletal ultrasound assessment (MSUS) to drive treatment decisions were subjected to untargeted metabolomic analysis. Metabolic profiles were collected at pre- and three months post-commencement of nonbiologic cDMARD. Metabolites that changed in association with changes in the DAS44 score were identified at the three-month timepoint. A total of nine metabolites exhibited a clear correlation with a reduction in DAS44 score following cDMARD commencement, particularly itaconate, its derived anhydride and a derivative of itaconate CoA. Increasing itaconate correlated with improved DAS44 score and decreasing levels of C-reactive protein (CRP). cDMARD treatment effects invoke consistent changes in plasma detectable metabolites, that in turn implicate clinical disease activity with macrophages. Such changes inform RA pathogenesis and reveal for the first time a link between itaconate production and resolution of inflammatory disease in humans. Quantitative metabolic biomarker-based tests of clinical change in state are feasible and should be developed around the itaconate pathway.
Collapse
Affiliation(s)
- Rónán Daly
- Glasgow Polyomics, University of Glasgow, Glasgow G61 1BD, UK; (R.D.); (G.B.); (M.M.); (K.B.); (M.P.B.)
| | - Gavin Blackburn
- Glasgow Polyomics, University of Glasgow, Glasgow G61 1BD, UK; (R.D.); (G.B.); (M.M.); (K.B.); (M.P.B.)
| | - Cameron Best
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (C.B.); (C.S.G.); (D.P.); (I.B.M.)
| | - Carl S. Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (C.B.); (C.S.G.); (D.P.); (I.B.M.)
| | - Manikhandan Mudaliar
- Glasgow Polyomics, University of Glasgow, Glasgow G61 1BD, UK; (R.D.); (G.B.); (M.M.); (K.B.); (M.P.B.)
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (C.B.); (C.S.G.); (D.P.); (I.B.M.)
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Karl Burgess
- Glasgow Polyomics, University of Glasgow, Glasgow G61 1BD, UK; (R.D.); (G.B.); (M.M.); (K.B.); (M.P.B.)
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (C.B.); (C.S.G.); (D.P.); (I.B.M.)
- Institute of Quantitative Biology, Biochemistry and Biotechnology, The University of Edinburgh, Edinburgh EH9 3FF, UK
| | - Anne Stirling
- Department of Rheumatology, Gartnavel General Hospital, Glasgow G12 0YN, UK;
| | - Duncan Porter
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (C.B.); (C.S.G.); (D.P.); (I.B.M.)
- Department of Rheumatology, Gartnavel General Hospital, Glasgow G12 0YN, UK;
| | - Iain B. McInnes
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (C.B.); (C.S.G.); (D.P.); (I.B.M.)
| | - Michael P. Barrett
- Glasgow Polyomics, University of Glasgow, Glasgow G61 1BD, UK; (R.D.); (G.B.); (M.M.); (K.B.); (M.P.B.)
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (C.B.); (C.S.G.); (D.P.); (I.B.M.)
| | - James Dale
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK; (C.B.); (C.S.G.); (D.P.); (I.B.M.)
- Department of Rheumatology, Wishaw General Hospital, 50 Netherton Street, Wishaw, North Lanarkshire ML2 0DP, UK
- Correspondence:
| |
Collapse
|