1
|
Gniadecki R, Iyer A, Hennessey D, Khan L, O'Keefe S, Redmond D, Storek J, Durand C, Cohen-Tervaert JW, Osman M. Genomic instability in early systemic sclerosis. J Autoimmun 2022; 131:102847. [PMID: 35803104 DOI: 10.1016/j.jaut.2022.102847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is associated with secondary malignancies. Previous studies have suggested that mutated cancer proteins, such as RNA polymerase III, are autoantigens promoting an inflammatory response in SSc. However, it has never been previously investigated whether non-neoplastic tissue in SSc harbors mutations which may play a role in SSc pathogenesis. METHODS Skin biopsies were obtained from 8 sequential patients with a progressive form of early stage SSc (with severe skin and/or lung involvement). Areas of dermal fibrosis were microdissected and analyzed with deep, whole exome sequencing. Gene mutation patterns were compared to autologous buccal mucosal cells as a control. RESULTS SSc skin biopsies were hypermutated with an average of 58 mutations/106 base pairs. The mutational pattern in all samples exhibited a clock-like signature, which is ubiquitous in cancers and in senescent cells. Of the 1997 genes we identified which were mutated in at least two SSc patients, 39 genes represented cancer drivers (i.e. tumor suppressor genes or oncogenes) which are commonly found in gynecological, squamous and gastrointestinal cancer signatures. Of all the mutations, the most common mutated genes were important in regulating pathways related to epigenetic histone modifications, DNA repair and genome integrity. CONCLUSIONS Somatic hypermutation occurs in fibrotic skin in patients with early progressive SSc. Cancer driver gene mutations may potentially play a fundamental role in the pathogenesis of SSc.
Collapse
Affiliation(s)
| | | | | | - Lamia Khan
- Division of Rheumatology, University of Alberta, Edmonton, Canada
| | | | - Desiree Redmond
- Division of Rheumatology, University of Alberta, Edmonton, Canada
| | - Jan Storek
- Division of Hematology, University of Calgary, Canada
| | - Caylib Durand
- Division of Rheumatology, University of Calgary, Canada
| | | | - Mohammed Osman
- Division of Rheumatology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
2
|
Interleukin-36α is elevated in diffuse systemic sclerosis and may potentiate fibrosis. Cytokine 2022; 156:155921. [PMID: 35667282 DOI: 10.1016/j.cyto.2022.155921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022]
Abstract
Systemic sclerosis (SSc) is an autoimmune prototypical connective tissues disease that results in alterations in vasculature, inflammation and fibrosis of the skin. Interleukin-1 family cytokines has been implicated in the disease including IL-1. IL-36α is an IL-1 family member that is clearly implicated in psoriatic skin disease but its role in systemic sclerosis disease is not clear. The aim of this work is to evaluate the levels and role of IL-36α in systemic sclerosis. Early diffuse SSc patients sera was isolated along with healthy controls and IL-36 levels quantified by ELISA. In vitro analysis was also undertaken with primary dermal fibroblasts with recombinant IL-36α and keratinocyte cells were also incubated with IL-36α. Cytokines were measured by ELISA. Serum IL-36 was significantly elevated compared to healthy controls. Elevated neutrophil elastase was also elevated in the matched sera. IL-36 was not directly pro-fibrotic in dermal fibroblasts but did induce pro-inflammatory cytokines that were dependant on the MAPK pathway for their release. IL-36α also led to release of CCL20 and CCL2 in keratinocytes which may potentiate fibrosis. IL-36α is elevated in SSc serum and whilst not directly pro-fibrotic it may through keratinocytes, potentiate fibrosis through keratinocyte-immune fibroblast cross-talk.
Collapse
|
3
|
Distler JHW, O'Reilly S. Epigenetic profiling of twins identify repression of KLF4 as a novel pathomechanism in systemic sclerosis. Ann Rheum Dis 2022; 81:151-152. [PMID: 34844928 DOI: 10.1136/annrheumdis-2021-221605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/12/2021] [Indexed: 01/10/2023]
Affiliation(s)
- Jörg H W Distler
- Department of Internal Medicine III, University of Erlangen, Erlangen, Germany
| | | |
Collapse
|
4
|
Boison D, Masino SA, Lubin FD, Guo K, Lusardi T, Sanchez R, Ruskin DN, Ohm J, Geiger JD, Hur J. The impact of methodology on the reproducibility and rigor of DNA methylation data. Sci Rep 2022; 12:380. [PMID: 35013473 PMCID: PMC8748700 DOI: 10.1038/s41598-021-04346-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/14/2021] [Indexed: 01/05/2023] Open
Abstract
Epigenetic modifications are crucial for normal development and implicated in disease pathogenesis. While epigenetics continues to be a burgeoning research area in neuroscience, unaddressed issues related to data reproducibility across laboratories remain. Separating meaningful experimental changes from background variability is a challenge in epigenomic studies. Here we show that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. We examined genome-wide DNA methylation and gene expression profiles of hippocampal tissues from wild-type rats housed in three independent laboratories using nearly identical conditions. Reduced-representation bisulfite sequencing and RNA-seq respectively identified 3852 differentially methylated and 1075 differentially expressed genes between laboratories, even in the absence of experimental intervention. Difficult-to-match factors such as animal vendors and a subset of husbandry and tissue extraction procedures produced quantifiable variations between wild-type animals across the three laboratories. Our study demonstrates that seemingly minor experimental variations, even under normal baseline conditions, can have a significant impact on epigenome outcome measures and data interpretation. This is particularly meaningful for neurological studies in animal models, in which baseline parameters between experimental groups are difficult to control. To enhance scientific rigor, we conclude that strict adherence to protocols is necessary for the execution and interpretation of epigenetic studies and that protocol-sensitive epigenetic changes, amongst naive animals, may confound experimental results.
Collapse
Affiliation(s)
- Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Susan A Masino
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA
| | - Farah D Lubin
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kai Guo
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Theresa Lusardi
- Knight Cancer Institute, Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Portland, OR, 97239, USA
- Dow Neurobiology Labs, Legacy Research Institute, Portland, OR, 97232, USA
| | - Richard Sanchez
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Division of Biological Sciences, Neurobiology Section, University of California San Diego, La Jolla, CA, 92093, USA
| | - David N Ruskin
- Department of Psychology and Neuroscience Program, Trinity College, Hartford, CT, 06106, USA
| | - Joyce Ohm
- Department of Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58202, USA.
| |
Collapse
|
5
|
Zhang Z, Gao X, He Y, Kang Y, Jin F, Li Y, Li T, Wei Z, Li S, Cai W, Mao N, Wang S, Liu H, Yang F, Xu H, Yang J. MicroRNA-411-3p inhibits bleomycin-induced skin fibrosis by regulating transforming growth factor-β/Smad ubiquitin regulatory factor-2 signalling. J Cell Mol Med 2021; 25:11290-11299. [PMID: 34783198 PMCID: PMC8650044 DOI: 10.1111/jcmm.17055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 12/20/2022] Open
Abstract
Skin fibrosis, which is characterized by fibroblast proliferation and increased extracellular matrix, has no effective treatment. An increasing number of studies have shown that microRNAs (miRNAs/miRs) participate in the mechanism of skin fibrosis, such as in limited cutaneous systemic sclerosis and pathological scarring. The objective of the present study was to determine the role of miR‐411‐3p in bleomycin (BLM)‐induced skin fibrosis and skin fibroblast transformation. Using Western blot analysis and real‐time quantitative polymerase chain reaction assess the expression levels of miR‐411‐3p, collagen (COLI) and transforming growth factor (TGF)‐β/Smad ubiquitin regulatory factor (Smurf)‐2/Smad signalling factors both in vitro and in vivo with or without BLM. To explore the regulatory relationship between miR‐411‐3p and Smurf2, we used the luciferase reporter assay. Furthermore, miR‐411‐3p overexpression was identified in vitro and in vivo via transfection with Lipofectamine 2000 reagent and injection. Finally, we tested the dermal layer of the skin using haematoxylin and eosin and Van Gieson's staining. We found that miR‐411‐3p expression was decreased in bleomycin (BLM)‐induced skin fibrosis and fibroblasts. However, BLM accelerated transforming growth factor (TGF)‐β signalling and collagen production. Overexpression of miR‐411‐3p inhibited the expression of collagen, F‐actin and the TGF‐β/Smad signalling pathway factors in BLM‐induced skin fibrosis and fibroblasts. In addition, miR‐411‐3p inhibited the target Smad ubiquitin regulatory factor (Smurf)‐2. Furthermore, Smurf2 was silenced, which attenuated the expression of collagen via suppression of the TGF‐β/Smad signalling pathway. We demonstrated that miR‐411‐3p exerts antifibrotic effects by inhibiting the TGF‐β/Smad signalling pathway via targeting of Smurf2 in skin fibrosis.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Xuemin Gao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Yang He
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Yumeng Kang
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Fuyu Jin
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Yaqian Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Tian Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Zhongqiu Wei
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Shifeng Li
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Wenchen Cai
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Na Mao
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Shan Wang
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Heliang Liu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Fang Yang
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Hong Xu
- School of Public Health, Hebei Key Laboratory for Organ Fibrosis Research, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Jie Yang
- Department of Dermatology, Affiliated Hospital of North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| |
Collapse
|
6
|
Szabo I, Muntean L, Crisan T, Rednic V, Sirbe C, Rednic S. Novel Concepts in Systemic Sclerosis Pathogenesis: Role for miRNAs. Biomedicines 2021; 9:biomedicines9101471. [PMID: 34680587 PMCID: PMC8533248 DOI: 10.3390/biomedicines9101471] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease with heterogeneous clinical phenotypes. It is characterized by the pathogenic triad: microangiopathy, immune dysfunction, and fibrosis. Epigenetic mechanisms modulate gene expression without interfering with the DNA sequence. Epigenetic marks may be reversible and their differential response to external stimuli could explain the protean clinical manifestations of SSc while offering the opportunity of targeted drug development. Small, non-coding RNA sequences (miRNAs) have demonstrated complex interactions between vasculature, immune activation, and extracellular matrices. Distinct miRNA profiles were identified in SSc skin specimens and blood samples containing a wide variety of dysregulated miRNAs. Their target genes are mainly involved in profibrotic pathways, but new lines of evidence also confirm their participation in impaired angiogenesis and aberrant immune responses. Research approaches focusing on earlier stages of the disease and on differential miRNA expression in various tissues could bring novel insights into SSc pathogenesis and validate the clinical utility of miRNAs as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Iulia Szabo
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Laura Muntean
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
- Correspondence:
| | - Tania Crisan
- Department of Medical Genetics, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Voicu Rednic
- Department of Gastroenterology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania;
- Department of Gastroenterology II, “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, 400000 Cluj-Napoca, Romania
| | - Claudia Sirbe
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
| | - Simona Rednic
- Department of Rheumatology, “Iuliu Hațieganu” University of Medicine and Pharmacy Cluj-Napoca, 400000 Cluj-Napoca, Romania; (I.S.); (C.S.); (S.R.)
- Department of Rheumatology, County Emergency Hospital Cluj-Napoca, 400000 Cluj-Napoca, Romania
| |
Collapse
|
7
|
The Cell-Permeable Derivative of the Immunoregulatory Metabolite Itaconate, 4-Octyl Itaconate, Is Anti-Fibrotic in Systemic Sclerosis. Cells 2021; 10:cells10082053. [PMID: 34440821 PMCID: PMC8393335 DOI: 10.3390/cells10082053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 08/06/2021] [Indexed: 11/17/2022] Open
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disease that leads to skin fibrosis. Altered metabolism has recently been described in autoimmune diseases and SSc. Itaconate is a product of the Krebs cycle intermediate cis-aconitate and is an immunomodulator. This work examines the role of the cell-permeable derivative of itaconate, 4-octyl itaconate (4-OI), in SSc. SSc and healthy dermal fibroblasts were exposed to 4-OI. The levels of collagen Nrf2-target genes and pro-inflammatory cytokines interleukin 6 (IL-6) and monocyte chemotactic protein 1 (MCP-1) were determined. Levels of reactive oxygen species (ROS) as well as the gene expression of collagen and Cellular Communication Network Factor 2 (CCN2) were measured after transforming growth factor beta 1 (TGF-β1) stimulation in the presence or absence of 4-OI. Wild-type or Nrf2-knockout (Nrf2-KO) mouse embryonic fibroblasts (MEFs) were also treated with 4-OI to determine the role of Nrf2 in 4-OI-mediated effects. 4-OI reduced the levels of collagen in SSc dermal fibroblasts. Incubation with 4-OI led to activation of Nrf2 and its target genes heme oxygenase 1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1). 4-OI activated antioxidant response element (ARE)-dependent gene expression, reduced inflammatory cytokine release and reduced TGF-β1-induced collagen and ROS production in dermal fibroblasts. The effects of 4-OI are dependent on Nrf2. The cell-permeable derivative of itaconate 4-OI is anti-fibrotic through upregulation of Nrf2 and could be a potential therapeutic option in an intractable disease.
Collapse
|
8
|
Dees C, Chakraborty D, Distler JHW. Cellular and molecular mechanisms in fibrosis. Exp Dermatol 2021; 30:121-131. [PMID: 32931037 DOI: 10.1111/exd.14193] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
The activation of fibroblasts is required for physiological tissue remodelling such as wound healing. However, when the regulatory mechanisms are disrupted and fibroblasts remain persistently activated, the progressive deposition of extracellular matrix proteins leads to tissue fibrosis, which results in dysfunction or even loss of function of the affected organ. Although fibrosis has been recognized as a major cause of morbidity and mortality in modern societies, there are only few treatment options available that directly disrupt the release of extracellular matrix from fibroblasts. Intensive research in recent years, however, identified several pathways as core fibrotic mechanisms that are shared across different fibrotic diseases and organs. We discuss herein selection of those core pathways, especially downstream of the profibrotic TGF-β pathway, which are druggable and which may be transferable from bench to bedside.
Collapse
Affiliation(s)
- Clara Dees
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Debomita Chakraborty
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Department of Internal Medicine 3-Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
9
|
Tsai CY, Hsieh SC, Wu TH, Li KJ, Shen CY, Liao HT, Wu CH, Kuo YM, Lu CS, Yu CL. Pathogenic Roles of Autoantibodies and Aberrant Epigenetic Regulation of Immune and Connective Tissue Cells in the Tissue Fibrosis of Patients with Systemic Sclerosis. Int J Mol Sci 2020; 21:ijms21093069. [PMID: 32349208 PMCID: PMC7246753 DOI: 10.3390/ijms21093069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Systemic sclerosis (SSc) is a multi-system autoimmune disease with tissue fibrosis prominent in the skin and lung. In this review, we briefly describe the autoimmune features (mainly autoantibody production and cytokine profiles) and the potential pathogenic contributors including genetic/epigenetic predisposition, and environmental factors. We look in detail at the cellular and molecular bases underlying tissue-fibrosis which include trans-differentiation of fibroblasts (FBs) to myofibroblasts (MFBs). We also state comprehensively the pro-inflammatory and pro-fibrotic cytokines relevant to MFB trans-differentiation, vasculopathy-associated autoantibodies, and fibrosis-regulating microRNAs in SSc. It is conceivable that tissue fibrosis is mainly mediated by an excessive production of TGF-β, the master regulator, from the skewed Th2 cells, macrophages, fibroblasts, myofibroblasts, and keratinocytes. After binding with TGF-β receptors on MFB, the downstream Wnt/β-catenin triggers canonical Smad 2/3 and non-canonical Smad 4 signaling pathways to transcribe collagen genes. Subsequently, excessive collagen fiber synthesis and accumulation as well as tissue fibrosis ensue. In the later part of this review, we discuss limited data relevant to the role of long non-coding RNAs (lncRNAs) in tissue-fibrosis in SSc. It is expected that these lncRNAs may become the useful biomarkers and therapeutic targets for SSc in the future. The prospective investigations in the development of novel epigenetic modifiers are also suggested.
Collapse
Affiliation(s)
- Chang-Youh Tsai
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
- Correspondence: (C.-Y.T.); (C.-L.Y.); Fax: +886-2-28717483 (C.-Y.T.); +886-2-23957801 (C.-L.Y.)
| | - Song-Chou Hsieh
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
| | - Tsai-Hung Wu
- Division of Nephrology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
| | - Ko-Jen Li
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
| | - Chieh-Yu Shen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Hsien-Tzung Liao
- Division of Allergy, Immunology & Rheumatology, Taipei Veterans General Hospital & National Yang-Ming University, #201 Sec. 2, Shih-Pai Road, Taipei 11217, Taiwan;
| | - Cheng-Han Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Yu-Min Kuo
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Cheng-Shiun Lu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Institute of Clinical Medicine, National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan
| | - Chia-Li Yu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, #7 Chung-Shan South Road, Taipei 10002, Taiwan; (S.-C.H.); (K.-J.L.); (C.-Y.S.); (C.-H.W.); (Y.-M.K.); (C.-S.L.)
- Correspondence: (C.-Y.T.); (C.-L.Y.); Fax: +886-2-28717483 (C.-Y.T.); +886-2-23957801 (C.-L.Y.)
| |
Collapse
|
10
|
Ramos PS. Epigenetics of scleroderma: Integrating genetic, ethnic, age, and environmental effects. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2019; 4:238-250. [PMID: 35382507 PMCID: PMC8922566 DOI: 10.1177/2397198319855872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/15/2019] [Indexed: 08/02/2023]
Abstract
Scleroderma or systemic sclerosis is thought to result from the interplay between environmental or non-genetic factors in a genetically susceptible individual. Epigenetic modifications are influenced by genetic variation and environmental exposures, and change with chronological age and between populations. Despite progress in identifying genetic, epigenetic, and environmental risk factors, the underlying mechanism of systemic sclerosis remains unclear. Since epigenetics provides the regulatory mechanism linking genetic and non-genetic factors to gene expression, understanding the role of epigenetic regulation in systemic sclerosis will elucidate how these factors interact to cause systemic sclerosis. Among the cell types under tight epigenetic control and susceptible to epigenetic dysregulation, immune cells are critically involved in early pathogenic events in the progression of fibrosis and systemic sclerosis. This review starts by summarizing the changes in DNA methylation, histone modification, and non-coding RNAs associated with systemic sclerosis. It then discusses the role of genetic, ethnic, age, and environmental effects on epigenetic regulation, with a focus on immune system dysregulation. Given the potential of epigenome editing technologies for cell reprogramming and as a therapeutic approach for durable gene regulation, this review concludes with a prospect on epigenetic editing. Although epigenomics in systemic sclerosis is in its infancy, future studies will help elucidate the regulatory mechanisms underpinning systemic sclerosis and inform the design of targeted epigenetic therapies to control its dysregulation.
Collapse
Affiliation(s)
- Paula S Ramos
- Paula S. Ramos, Division of Rheumatology and Immunology, Department of Medicine and Department of Public Health Sciences, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 816, MSC 637, Charleston, SC 29425, USA.
| |
Collapse
|
11
|
Affandi AJ, Carvalheiro T, Ottria A, Broen JC, Bossini-Castillo L, Tieland RG, Bon LV, Chouri E, Rossato M, Mertens JS, Garcia S, Pandit A, de Kroon LM, Christmann RB, Martin J, van Roon JA, Radstake TR, Marut W. Low RUNX3 expression alters dendritic cell function in patients with systemic sclerosis and contributes to enhanced fibrosis. Ann Rheum Dis 2019; 78:1249-1259. [PMID: 31126957 DOI: 10.1136/annrheumdis-2018-214991] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is an autoimmune disease with unknown pathogenesis manifested by inflammation, vasculopathy and fibrosis in skin and internal organs. Type I interferon signature found in SSc propelled us to study plasmacytoid dendritic cells (pDCs) in this disease. We aimed to identify candidate pathways underlying pDC aberrancies in SSc and to validate its function on pDC biology. METHODS In total, 1193 patients with SSc were compared with 1387 healthy donors and 8 patients with localised scleroderma. PCR-based transcription factor profiling and methylation status analyses, single nucleotide polymorphism genotyping by sequencing and flow cytometry analysis were performed in pDCs isolated from the circulation of healthy controls or patients with SSc. pDCs were also cultured under hypoxia, inhibitors of methylation and hypoxia-inducible factors and runt-related transcription factor 3 (RUNX3) levels were determined. To study Runx3 function, Itgax-Cre:Runx3f/f mice were used in in vitro functional assay and bleomycin-induced SSc skin inflammation and fibrosis model. RESULTS Here, we show downregulation of transcription factor RUNX3 in SSc pDCs. A higher methylation status of the RUNX3 gene, which is associated with polymorphism rs6672420, correlates with lower RUNX3 expression and SSc susceptibility. Hypoxia is another factor that decreases RUNX3 level in pDC. Mouse pDCs deficient of Runx3 show enhanced maturation markers on CpG stimulation. In vivo, deletion of Runx3 in dendritic cell leads to spontaneous induction of skin fibrosis in untreated mice and increased severity of bleomycin-induced skin fibrosis. CONCLUSIONS We show at least two pathways potentially causing low RUNX3 level in SSc pDCs, and we demonstrate the detrimental effect of loss of Runx3 in SSc model further underscoring the role of pDCs in this disease.
Collapse
Affiliation(s)
- Alsya J Affandi
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Tiago Carvalheiro
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andrea Ottria
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jasper Ca Broen
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Lara Bossini-Castillo
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
- Department of Cellular Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Ralph G Tieland
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Lenny van Bon
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Eleni Chouri
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marzia Rossato
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Jorre S Mertens
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Dermatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Samuel Garcia
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Aridaman Pandit
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Laurie Mg de Kroon
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Romy B Christmann
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Javier Martin
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN-CSIC), Granada, Spain
| | - Joel Ag van Roon
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Timothy Rdj Radstake
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Rheumatology Section, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Wioleta Marut
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
12
|
Abstract
Systemic sclerosis (SSc) is a severe autoimmune disease that is characterized by vascular abnormalities, immunological alterations and fibrosis of the skin and internal organs. The results of genetic studies in patients with SSc have revealed statistically significant genetic associations with disease manifestations and progression. Nevertheless, genetic susceptibility to SSc is moderate, and the functional consequences of genetic associations remain only partially characterized. A current hypothesis is that, in genetically susceptible individuals, epigenetic modifications constitute the driving force for disease initiation. As epigenetic alterations can occur years before fibrosis appears, these changes could represent a potential link between inflammation and tissue fibrosis. Epigenetics is a fast-growing discipline, and a considerable number of important epigenetic studies in SSc have been published in the past few years that span histone post-translational modifications, DNA methylation, microRNAs and long non-coding RNAs. This Review describes the latest insights into genetic and epigenetic contributions to the pathogenesis of SSc and aims to provide an improved understanding of the molecular pathways that link inflammation and fibrosis. This knowledge will be of paramount importance for the development of medicines that are effective in treating or even reversing tissue fibrosis.
Collapse
|
13
|
Silva BRA, Rodrigues RS, Rufino R, Costa CH, Vilela VS, Levy RA, Guimarães ARM, Carvalho ARS, Lopes AJ. Computed tomography trachea volumetry in patients with scleroderma: Association with clinical and functional findings. PLoS One 2018; 13:e0200754. [PMID: 30067820 PMCID: PMC6070209 DOI: 10.1371/journal.pone.0200754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/01/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND In scleroderma, excessive collagen production can alter tracheal geometry, and computed tomography (CT) volumetry of this structure may aid in detecting possible abnormalities. The objectives of this study were to quantify the morphological abnormalities in the tracheas of patients with scleroderma and to correlate these findings with data on clinical and pulmonary function. METHODS This was a cross-sectional study in which 28 adults with scleroderma and 27 controls matched by age, gender and body mass index underwent chest CT with posterior segmentation and skeletonization of the images. In addition, all participants underwent pulmonary function tests and clinical evaluation, including the modified Rodnan skin score (mRSS). RESULTS Most patients (71.4%) had interstitial lung disease on CT. Compared to controls, patients with scleroderma showed higher values in the parameters measured by CT trachea volumetry, including area, eccentricity, major diameter, minor diameter, and tortuosity. The tracheal area and equivalent diameter were negatively correlated with the ratio between forced expiratory flow and forced inspiratory flow at 50% of forced vital capacity (FEF50%/FIF50%) (r = -0.44, p = 0.03 and r = -0.46, p = 0.02, respectively). The tracheal tortuosity was negatively correlated with peak expiratory flow (r = -0.51, p = 0.008). The mRSS showed a positive correlation with eccentricity (r = 0.62, p < 0.001) and tracheal tortuosity (r = 0.51, p = 0.007), while the presence of anti-topoisomerase I antibody (ATA) showed a positive correlation with tracheal tortuosity (r = 0.45, p = 0.03). CONCLUSIONS In a sample composed predominantly of scleroderma patients with associated interstitial lung disease, there were abnormalities in tracheal geometry, including greater eccentricity, diameter and tortuosity. In these patients, abnormalities in the geometry of the trachea were associated with functional markers of obstruction. In addition, tracheal tortuosity was correlated with cutaneous involvement and the presence of ATA.
Collapse
Affiliation(s)
- Bruno Rangel Antunes Silva
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Rogério Rufino
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia Henrique Costa
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Veronica Silva Vilela
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roger Abramino Levy
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan Ranieri Medeiros Guimarães
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alysson Roncally Silva Carvalho
- Laboratory of Respiration Physiology, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Pulmonary Engineering, Biomedical Engineering Programme, Alberto Luiz Coimbra Institute of Post-Graduation and Research in Engineering, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Agnaldo José Lopes
- Postgraduate Programme in Medical Sciences, School of Medical Sciences, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|