1
|
Liu C, Chen J, Zhang W, Ungar K. Outdoor Radon Dose Rate in Canada's Arctic amid Climate Change. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11309-11319. [PMID: 38907718 PMCID: PMC11223471 DOI: 10.1021/acs.est.4c02723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Decades of radiation monitoring data were analyzed to estimate outdoor Radon Dose Rates (RnDRs) and evaluate climate change impacts in Canada's Arctic Regions (Resolute and Yellowknife). This study shows that the RnDR involves dynamic sources and complex environmental factors and processes. Its seasonality and long-term trends are significantly impacted by temperatures and soil-and-above water contents. From 2005 to 2022, Yellowknife's RnDR increased by +0.35 ± 0.06 nGy/h per decade, with the fastest increases occurring in cold months (October to March). The rise is largely attributable to water condition changes over time in these months, which also caused enhanced soil gas emissions and likely higher indoor radon concentrations. In Resolute, the RnDR increased between 2013 and 2022 at +0.62 ± 0.19 nGy/h (or 16% relatively) per decade in summer months, with a positive temperature relationship of +0.12 nGy/h per °C. This work also demonstrates the relevance of local climate and terrain features (e.g., typical active layer depth, precipitation amount/pattern, and ground vegetation cover) in researching climate change implications. Such research can also benefit from using supporting monitoring data, which prove effective and scientifically significant. From the perspective of external exposure to outdoor radon, the observed climate change effects pose a low health risk.
Collapse
Affiliation(s)
- Chuanlei Liu
- Radiation
Protection Bureau of Health Canada, 775 Brookfield Rd, Ottawa, Ontario K1A 1C1, Canada
| | - Jing Chen
- Radiation
Protection Bureau of Health Canada, 775 Brookfield Rd, Ottawa, Ontario K1A 1C1, Canada
| | - Weihua Zhang
- Radiation
Protection Bureau of Health Canada, 775 Brookfield Rd, Ottawa, Ontario K1A 1C1, Canada
| | - Kurt Ungar
- Radiation
Protection Bureau of Health Canada, 775 Brookfield Rd, Ottawa, Ontario K1A 1C1, Canada
| |
Collapse
|
2
|
Hosoda M, Yamada R, Kobyashi H, Tamakuma Y, Nugraha ED, Hashimoto H, Negami R, Kranrod C, Omori Y, Tazoe H, Akata N, Tokonami S. INFLUENCE OF SAMPLING FLOW RATE ON THORON EXHALATION RATE MEASUREMENTS BY THE CIRCULATION METHOD. RADIATION PROTECTION DOSIMETRY 2022; 198:904-908. [PMID: 36083738 DOI: 10.1093/rpd/ncac004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/24/2021] [Accepted: 01/06/2022] [Indexed: 06/15/2023]
Abstract
Researchers have used various methods to obtain the exhalation rates of radon and thoron from soil and building materials. One of the typical methods for radon exhalation rate is the circulation method using an accumulation container, an external or internal sampling pump and a continuous radon monitor. However, it is necessary to consider sampling flow rate if this method is applied to exhalation rate measurement for thoron due to its short half-life. Based on a calibration experiment, the measured thoron concentrations obtained by an electrostatic collection type radon and thoron monitor (RAD7) were found to be influenced strongly by the sampling flow rate. It was also found that the thoron exhalation rate from a soil sample depended on the pressure difference which was proportional to the increasing sampling flow rate. The thoron exhalation rate measured at the generally used sampling flow rate of the internal sampling pump of the RAD7 was overestimated compared with the value at 0 L min-1.
Collapse
|
3
|
The Determination of Radon/Thoron Exhalation Rate in an Underground Coal Mine-Preliminary Results. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19106038. [PMID: 35627576 PMCID: PMC9141782 DOI: 10.3390/ijerph19106038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023]
Abstract
The objective of this work was to perform a series of measurements of radon and thoron exhalation in the underground workings of an experimental coal mine. In the years 2012–2015, experiments on underground coal gasification were carried out in a coal mine, which caused, among other effects, damage to rock mass. Afterward, periodic increases in the concentration of potential alpha energy (PAEC) of radon decay products in the air were found, which could pose a hazard to miners. The question posed was whether the gasification experiment resulted in the increased migration of radon and thoron. If so, did it increase the radiation hazard to miners? The adaptation of the existing instrumentation to the specific conditions was conducted, and a series of measurements were made. It was found that the measured values of radon and thoron exhalation rates ranged from 3.0 up to 38 Bq·m−2·h−1 for radon and from 500 up to 2000 Bq·m−2·h−1 for thoron.
Collapse
|
4
|
Alhamdi WA, Abdullah KHAIRIMOHAMMADS. Determination of Radium and Radon Exhalation Rate as a Function of Soil Depth of Duhok Province - Iraq. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2021. [DOI: 10.1080/16878507.2021.1999719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Long-Term Measurements of Radon and Thoron Exhalation Rates from the Ground Using the Vertical Distributions of Their Activity Concentrations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041489. [PMID: 33557427 PMCID: PMC7915545 DOI: 10.3390/ijerph18041489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 11/16/2022]
Abstract
A long-term measurement technique of radon exhalation rate was previously developed using a passive type radon and thoron discriminative monitor and a ventilated type accumulation chamber. In the present study, this technique was applied to evaluate the thoron exhalation rate as well, and long-term measurements of radon and thoron exhalation rates were conducted for four years in Gifu Prefecture. The ventilated type accumulation chamber (0.8 × 0.8 × 1.0 m3) with an open bottom was embedded 15 cm into the ground. The vertical distributions of radon and thoron activity concentrations from the ground were obtained using passive type radon-thoron discriminative monitors (RADUETs). The RADUETs were placed at 1, 3, 10, 30, and 80 cm above the ground inside the accumulation chamber. The measurements were conducted from autumn 2014 to autumn 2018. These long-term results were found to be in good agreement with the values obtained by another methodology. The radon exhalation rates from the ground showed a clearly seasonal variation. Similar to findings of previous studies, radon exhalation rates from summer to autumn were relatively higher than those from winter to spring. In contrast, thoron exhalation rates were not found to show seasonal variation.
Collapse
|
6
|
Omori Y, Hosoda M, Takahashi F, Sanada T, Hirao S, Ono K, Furukawa M. Japanese population dose from natural radiation. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2020; 40:R99-R140. [PMID: 32031989 DOI: 10.1088/1361-6498/ab73b1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The radiation doses from natural radiation sources in Japan are reviewed using the latest knowledge. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) and the Nuclear Safety Research Association report the annual effective doses from cosmic rays, terrestrial radiation, inhalation, and ingestion as natural sources. In this paper, the total annual effective dose from cosmic-ray exposure is evaluated as 0.29 mSv. The arithmetic mean of the annual effective dose from external exposure to terrestrial radiation is 0.33 mSv for the Japanese population using the data of nationwide surveys by the National Institute of Radiological Sciences. Previously in Japan, although three different groups have conducted nationwide indoor radon surveys using passive-type radon monitors, to date only the Japan Chemical Analysis Center (JCAC) has performed a nationwide radon survey using a unified method for radon measurements conducted indoor, outdoor, and in the workplace. Consequently, the JCAC results are used for the annual effective dose from radon and that for radon inhalation is estimated as 0.50 mSv using a current dose conversion factor. In this paper, UNSCEAR values are used for the mean indoor and outdoor thoron-progeny concentrations, and the annual effective dose from thoron is reported as 0.09 mSv. Thus, the annual effective dose from radon and thoron inhalation is 0.59 mSv. From a JCAC large-scale survey of foodstuffs, the committed effective dose from the main radionuclides in dietary intake is 0.99 mSv. Finally, the Japanese population dose from natural radiation is given as 2.2 mSv, which is similar to the reported global average of 2.4 mSv.
Collapse
Affiliation(s)
- Yasutaka Omori
- Ad hoc Committee of Japanese Population Dose Estimation of Japan Health Physics Society, Yoshimatsu Buid. 3F, 3-7-2 Shimbashi, Minato-ku, Tokyo 105-0004, Japan. Department of Radiation Physics and Chemistry, School of Medicine, Fukushima Medical University, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Pinto PV, Sudeep Kumara K, Karunakara N. Mass exhalation rates, emanation coefficients and enrichment pattern of radon, thoron in various grain size fractions of monazite rich beach placers. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2019.106220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Shiroma Y, Kina S, Fujitani T, Hosoda M, Sorimachi A, Ishikawa T, Sahoo SK, Tokonami S, Furukawa M. Characteristics of radon and thoron exhalation rates in Okinawa, subtropical region of Japan. RADIATION PROTECTION DOSIMETRY 2012; 152:184-188. [PMID: 22933409 DOI: 10.1093/rpd/ncs220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Radon and thoron exhalation rates from the ground surface were estimated in three islands of Okinawa Prefecture, a subtropical region of Japan. In situ measurements of the exhalation rates were conducted at a total of 88 points using an accumulation technique with a ZnS(Ag) scintillation detector. The radon and thoron exhalation rates were calculated to be 1-137 (arithmetic mean: 21) mBq m(-2) s(-1) and 32-6244 (1801) mBq m(-2) s(-1), respectively. In the surface soil samples collected at 53 measurement points, (238)U and (232)Th series concentrations were estimated to be 17.9-254.0 (64.0) Bq kg(-1) dry and 17.8-136.1 (58.8) Bq kg(-1) dry, respectively. The maximum rates and concentrations were observed in the dark red soil area. Recent studies strongly suggest that the base material of the soils may be the eolian dust derived from the southeastern part of China, a high background radiation area. The eolian dust is, therefore, considered to be an enhancer for the radon and thoron exhalations in Okinawa.
Collapse
Affiliation(s)
- Y Shiroma
- Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Prasad G, Ishikawa T, Hosoda M, Sorimachi A, Sahoo SK, Kavasi N, Tokonami S, Sugino M, Uchida S. Seasonal and diurnal variations of radon/thoron exhalation rate in Kanto-loam area in Japan. J Radioanal Nucl Chem 2012. [DOI: 10.1007/s10967-012-1620-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|