1
|
Loizeau N, Haas D, Zahner M, Stephan C, Schindler J, Gugler M, Fröhlich J, Ziegler T, Röösli M. Extremely low frequency magnetic fields (ELF-MF) in Switzerland: From exposure monitoring to daily exposure scenarios. ENVIRONMENT INTERNATIONAL 2024; 194:109181. [PMID: 39647411 DOI: 10.1016/j.envint.2024.109181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/10/2024]
Abstract
Exposure to extremely low frequency magnetic fields (ELF-MF) is ubiquitous in our daily environment. This study aims to provide a comprehensive overview of the ambient ELF-MF exposure in Switzerland and presents a novel environmental exposure matrix for exposure assessment and risk communication. Magnetic flux density levels (µT) were measured using a portable exposimeter carried in a backpack for the main ELF sources: railway power (16.7 Hz), domestic power (50 Hz), and tram ripple current (300 Hz). We collected ELF-MF levels between 2022 and 2024 in various environments representative of the Swiss population: 300 outdoor areas (e.g. city centres, residential areas), 245 public spaces (e.g. train stations, schools), 348 transport journeys (e.g. train, cars), and in 59 homes (e.g. bedrooms, living rooms). Over all environments, the highest ELF-MF exposure levels were measured in train stations (median: 0.48 µT), trains (median: 0.40 µT), and in living rooms near (<200 m) highest voltage lines of 220 kV and 380 kV (median: 0.37 µT). ELF-MF median levels measured two years apart showed high Pearson correlation coefficients in the same 150 outdoor areas (r = 0.88) and 86 public spaces (r = 0.87), without any significant changes. All measurements are well below the Swiss ambient regulatory limit based on the ICNIRP 1998 guidelines (median: 0.2 %). Finally, we derived an environmental exposure matrix and modelled 27 daily time-weighted average ELF-MF exposure scenarios by combining typical time spent at home, work and transport environments. People who do not live near highest voltage lines or work in highly exposed environments are typically exposed to less than 0.3 µT on average, while those who do are likely to exceed this level. This novel environmental exposure matrix is a useful tool for public communication and agent-based exposure modelling for future epidemiological research.
Collapse
Affiliation(s)
- Nicolas Loizeau
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland
| | - Dominik Haas
- Grolimund + Partner AG Environmental Engineering, 3097 Bern, Switzerland
| | | | - Christa Stephan
- Grolimund + Partner AG Environmental Engineering, 3097 Bern, Switzerland
| | - Johannes Schindler
- Grolimund + Partner AG Environmental Engineering, 3097 Bern, Switzerland
| | | | | | - Toni Ziegler
- Grolimund + Partner AG Environmental Engineering, 3097 Bern, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland; University of Basel, 4001 Basel, Switzerland.
| |
Collapse
|
2
|
Ramirez-Vazquez R, Escobar I, Vandenbosch GAE, Vargas F, Caceres-Monllor DA, Arribas E. Measurement studies of personal exposure to radiofrequency electromagnetic fields: A systematic review. ENVIRONMENTAL RESEARCH 2023; 218:114979. [PMID: 36460078 DOI: 10.1016/j.envres.2022.114979] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The last 25 years have seen an increase in the number of radiofrequency sources with the global adoption of smartphones as primary connectivity devices. The objective of this work was to review and evaluate the measured studies of personal exposure to Radiofrequency Electromagnetic Fields (RF-RMF) and meet the basic quality criteria eligible for inclusion in this Review, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, following the eligibility criteria of the PECO (Population, Exposure, Comparator, and Outcome) methodology, and the instrument for critical reading Critical Appraisal Skills Programme Español (CASPe). We systematically reviewed the works published between January 1, 1998, and December 31, 2021, yielding 56 publications. Of the different types of studies in which personal exposure to RF-EMF has been measured with two measurement methodologies can be highlighted: Personal measurements with volunteers and Personal measurements with a trained researcher (touring a specific area, one or several microenvironments, an entire city, walking or in some means of transport). Personal exposimeters were used in 83% of the studies. The lowest mean was measured in Egypt with a value of 0.00100 μW/m2 (1.00 nW/m2) in 2007 and the highest mean was measured in Belgium with a value of 285000 μW/m2 (0.285 W/m2) in 2019. The results of our study confirm that RF-EMF exposure levels are well below the maximum levels established by the ICNIRP guidelines.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain
| | - Isabel Escobar
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain
| | - Guy A E Vandenbosch
- ESAT-WaveCoRE, Dep. of Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, Box 2444, 3001, Leuven, Belgium
| | | | | | - Enrique Arribas
- University of Castilla-La Mancha, Applied Physics Department, Faculty of Computer Science Engineering, Avda. de España S/n, University Campus, 02071, Albacete, Spain.
| |
Collapse
|
3
|
Schmutz C, Bürgler A, Ashta N, Soenksen J, Bou Karim Y, Shen C, Smith RB, Jenkins RH, Mireku MO, Mutz J, Maes MJA, Hirst R, Chang I, Fleming C, Mussa A, Kesary D, Addison D, Maslanyj M, Toledano MB, Röösli M, Eeftens M. Personal radiofrequency electromagnetic field exposure of adolescents in the Greater London area in the SCAMP cohort and the association with restrictions on permitted use of mobile communication technologies at school and at home. ENVIRONMENTAL RESEARCH 2022; 212:113252. [PMID: 35421393 DOI: 10.1016/j.envres.2022.113252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Personal measurements of radiofrequency electromagnetic fields (RF-EMF) have been used in several studies to characterise personal exposure in daily life, but such data are limitedly available for adolescents, and not yet for the United Kingdom (UK). In this study, we aimed to characterise personal exposure to RF-EMF in adolescents and to study the association between exposure and rules applied at school and at home to restrict wireless communication use, likely implemented to reduce other effects of mobile technology (e.g. distraction). We measured exposure to RF-EMF for 16 common frequency bands (87.5 MHz-3.5 GHz), using portable measurement devices (ExpoM-RF), in a subsample of adolescents participating in the cohort Study of Cognition, Adolescents and Mobile Phones (SCAMP) from Greater London (UK) (n = 188). School and home rules were assessed by questionnaire and concerned the school's availability of WiFi and mobile phone policy, and parental restrictions on permitted mobile phone use. Adolescents recorded their activities in real time using a diary app on a study smartphone, while characterizing their personal RF-EMF exposure in daily life, during different activities and times of the day. Data analysis was done for 148 adolescents from 29 schools who recorded RF-EMF data for a median duration of 47 h. The majority (74%) of adolescents spent part of their time at school during the measurement period. Median total RF-EMF exposure was 40 μW/m2 at home, 94 μW/m2 at school, and 100 μW/m2 overall. In general, restrictions at school or at home made little difference for adolescents' measured exposure to RF-EMF, except for uplink exposure from mobile phones while at school, which was found to be significantly lower for adolescents attending schools not permitting phone use at all, compared to adolescents attending schools allowing mobile phone use during breaks. This difference was not statistically significant for total personal exposure. Total exposure to RF-EMF in adolescents living in Greater London tended to be higher compared to exposure levels reported in other European countries. This study suggests that school policies and parental restrictions are not associated with a lower RF-EMF exposure in adolescents.
Collapse
Affiliation(s)
- Claudia Schmutz
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Alexandra Bürgler
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Narain Ashta
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Jana Soenksen
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Yasmin Bou Karim
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom
| | - Chen Shen
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom
| | - Rachel B Smith
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Rosemary H Jenkins
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom; Public Health Policy Evaluation Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College London, Charing Cross Campus, The Reynolds Building, St Dunstan's Road, London, W6 8RP, United Kingdom
| | - Michael O Mireku
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; University of Lincoln, School of Psychology, Lincoln, United Kingdom
| | - Julian Mutz
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom; Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Mikaël J A Maes
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; Department of Geography, University College London, Pearson Building, Gower Street, London, WC1E 6BT, United Kingdom; Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Rosi Hirst
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Irene Chang
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Charlotte Fleming
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Aamirah Mussa
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Daphna Kesary
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Darren Addison
- UK Health Security Agency (UKHSA), Centre for Chemical, Radiation and Environmental Hazards, Harwell Campus, Oxon, OX11 0RQ, United Kingdom
| | - Myron Maslanyj
- UK Health Security Agency (UKHSA), Centre for Chemical, Radiation and Environmental Hazards, Harwell Campus, Oxon, OX11 0RQ, United Kingdom
| | - Mireille B Toledano
- MRC Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, W2 1PG, United Kingdom; National Institute for Health Research Health Protection Research Units in Environmental Exposures and Health & Chemical and Radiation Threats and Hazards, in partnership with UK Health Security Agency (UKHSA), Imperial College London, W2 1PG, United Kingdom; Mohn Centre for Children's Health and Wellbeing, School of Public Health, Imperial College London, W2 1PG, United Kingdom
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Ramirez-Vazquez R, Arabasi S, Al-Taani H, Sbeih S, Gonzalez-Rubio J, Escobar I, Arribas E. Georeferencing of Personal Exposure to Radiofrequency Electromagnetic Fields from Wi-Fi in a University Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1898. [PMID: 32183369 PMCID: PMC7142519 DOI: 10.3390/ijerph17061898] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
In the last two decades, due to the development of the information society, the massive increase in the use of information technologies, including the connection and communication of multiple electronic devices, highlighting Wi-Fi networks, as well as the emerging technological advances of 4G and 5G (new-generation mobile phones that will use 5G), have caused a significant increase in the personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF), and as a consequence, increasing discussions about the possible adverse health effects. The main objective of this study was to measure the personal exposure to radiofrequency electromagnetic fields from the Wi-Fi in the university area of German Jordanian University (GJU) and prepare georeferenced maps of the registered intensity levels and to compare them with the basic international restrictions. Spot measurements were made outside the university area at German Jordanian University. Measurements were made in the whole university area and around two buildings. Two Satimo EME SPY 140 (Brest, France) personal exposimeters were used, and the measurements were performed in the morning and afternoon, and on weekends and weekdays. The total average personal exposure to RF-EMF from the Wi-Fi band registered in the three study areas and in the four days measured was 28.82 μW/m2. The average total exposure from the Wi-Fi band registered in the ten measured points of the university area of GJU was 22.97 μW/m2, the one registered in the eight measured points of building H was 34.48 μW/m2, and the one registered in the eight points of building C was 29.00 μW/m2. The maximum average values registered in the campus of GJU are below the guidelines allowed by International Commission on Non-ionizing Radiation Protection (ICNIRP). The measurement protocol used in this work has been applied in measurements already carried out in Spain and Mexico, and it is applicable in university areas of other countries.
Collapse
Affiliation(s)
- Raquel Ramirez-Vazquez
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| | - Sameer Arabasi
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Hussein Al-Taani
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Suhad Sbeih
- School of Basic Sciences and Humanities, German Jordanian University, Amman Madaba Street, P.O. Box 35247, Amman 11180, Jordan; (S.A.); (H.A.-T.); (S.S.)
| | - Jesus Gonzalez-Rubio
- Medical Science Department, School of Medicine, University of Castilla-La Mancha, C/ Almansa 14, 02071 Albacete, Spain;
| | - Isabel Escobar
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| | - Enrique Arribas
- Applied Physics Department, Faculty of Computer Science, Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain; (R.R.-V.); (I.E.)
| |
Collapse
|
5
|
Jalilian H, Eeftens M, Ziaei M, Röösli M. Public exposure to radiofrequency electromagnetic fields in everyday microenvironments: An updated systematic review for Europe. ENVIRONMENTAL RESEARCH 2019; 176:108517. [PMID: 31202043 DOI: 10.1016/j.envres.2019.05.048] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Communication technologies are rapidly changing and this may affect public exposure to radiofrequency electromagnetic fields (RF-EMF). This systematic review of literature aims to update a previous review on public everyday RF-EMF exposure in Europe, which covered publications until 2015. From 144 eligible records identified by means of a systematic search in PubMed, Embase and Web of Knowledge databases, published between May 2015 and 1 July 2018, 26 records met the inclusion criteria. We extracted quantitative data on public exposure in different indoors, outdoors and transport environments. The data was descriptively analyzed with respect to the exposure patterns between different types of environments. Mean RF-EMF exposure in homes, schools and offices were between 0.04 and 0.76 V/m. Mean outdoor exposure values ranged from 0.07 to 1.27 V/m with downlink signals from mobile phone base stations being the most relevant contributor. RF-EMF levels tended to increase with increasing urbanity. Levels in public transport (bus, train and tram) and cars were between 0.14 and 0.69 V/m. The highest levels, up to 1.97 V/m, were measured in public transport stations with downlink as the most relevant contributor. In line with previous studies, RF-EMF exposure levels were highest in the transportation systems followed by outdoor and private indoor environments. This review does not indicate a noticeable increase in everyday RF-EMF exposure since 2012 despite increasing use of wireless communication devices.
Collapse
Affiliation(s)
- Hamed Jalilian
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Mansour Ziaei
- School of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002, Basel, Switzerland; University of Basel, Basel, Switzerland
| |
Collapse
|
6
|
Gallastegi M, Huss A, Santa-Marina L, Aurrekoetxea JJ, Guxens M, Birks LE, Ibarluzea J, Guerra D, Röösli M, Jiménez-Zabala A. Children's exposure assessment of radiofrequency fields: Comparison between spot and personal measurements. ENVIRONMENT INTERNATIONAL 2018; 118:60-69. [PMID: 29803802 DOI: 10.1016/j.envint.2018.05.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/06/2018] [Accepted: 05/13/2018] [Indexed: 06/08/2023]
Abstract
INTRODUCTION Radiofrequency (RF) fields are widely used and, while it is still unknown whether children are more vulnerable to this type of exposure, it is essential to explore their level of exposure in order to conduct adequate epidemiological studies. Personal measurements provide individualized information, but they are costly in terms of time and resources, especially in large epidemiological studies. Other approaches, such as estimation of time-weighted averages (TWAs) based on spot measurements could simplify the work. OBJECTIVES The aims of this study were to assess RF exposure in the Spanish INMA birth cohort by spot measurements and by personal measurements in the settings where children tend to spend most of their time, i.e., homes, schools and parks; to identify the settings and sources that contribute most to that exposure; and to explore if exposure assessment based on spot measurements is a valid proxy for personal exposure. METHODS When children were 8 years old, spot measurements were conducted in the principal settings of 104 participants: homes (104), schools and their playgrounds (26) and parks (79). At the same time, personal measurements were taken for a subsample of 50 children during 3 days. Exposure assessment based on personal and on spot measurements were compared both in terms of mean exposures and in exposure-dependent categories by means of Bland-Altman plots, Cohen's kappa and McNemar test. RESULTS Median exposure levels ranged from 29.73 (in children's bedrooms) to 200.10 μW/m2 (in school playgrounds) for spot measurements and were higher outdoors than indoors. Median personal exposure was 52.13 μW/m2 and median levels of assessments based on spot measurements ranged from 25.46 to 123.21 μW/m2. Based on spot measurements, the sources that contributed most to the exposure were FM radio, mobile phone downlink and Digital Video Broadcasting-Terrestrial, while indoor and personal sources contributed very little (altogether <20%). Similar distribution was observed with personal measurements. There was a bias proportional to power density between personal measurements and estimates based on spot measurements, with the latter providing higher exposure estimates. Nevertheless, there were no systematic differences between those methodologies when classifying subjects into exposure categories. Personal measurements of total RF exposure showed low to moderate agreement with home and bedroom spot measurements and agreed better, though moderately, with TWA based on spot measurements in the main settings where children spend time (homes, schools and parks; Kappa = 0.46). CONCLUSIONS Exposure assessment based on spot measurements could be a feasible proxy to rank personal RF exposure in children population, providing that all relevant locations are being measured.
Collapse
Affiliation(s)
- Mara Gallastegi
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; University of the Basque Country (UPV/EHU), Preventative Medicine and Public Health Department, Faculty of Medicine, Leioa 48940, Spain.
| | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Yalelaan 2, 3584, CM, Utrecht, The Netherlands
| | - Loreto Santa-Marina
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juan J Aurrekoetxea
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; University of the Basque Country (UPV/EHU), Preventative Medicine and Public Health Department, Faculty of Medicine, Leioa 48940, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Mònica Guxens
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; ISGlobal, C/Doctor Aiguader 88, 08003 Barcelona, Spain; Pompeu Fabra University, C/Doctor Aiguader 88, 08003 Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, PO Box 2060, 3000, CB, Rotterdam, The Netherlands
| | - Laura Ellen Birks
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; ISGlobal, C/Doctor Aiguader 88, 08003 Barcelona, Spain; Pompeu Fabra University, C/Doctor Aiguader 88, 08003 Barcelona, Spain
| | - Jesús Ibarluzea
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain; University of the Basque Country UPV-EHU, Faculty of Psychology, Tolosa hiribidea 70, 20018 San Sebastian, Spain
| | - David Guerra
- University of the Basque Country (UPV/EHU), Communications Engineering Department, Faculty of Engineering, Alameda Urquijo, Bilbao 48013, Spain
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4002, Switzerland; University of Basel, Basel, Switzerland
| | - Ana Jiménez-Zabala
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain
| |
Collapse
|
7
|
Birks LE, Struchen B, Eeftens M, van Wel L, Huss A, Gajšek P, Kheifets L, Gallastegi M, Dalmau-Bueno A, Estarlich M, Fernandez MF, Meder IK, Ferrero A, Jiménez-Zabala A, Torrent M, Vrijkotte TGM, Cardis E, Olsen J, Valič B, Vermeulen R, Vrijheid M, Röösli M, Guxens M. Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe. ENVIRONMENT INTERNATIONAL 2018; 117:204-214. [PMID: 29754001 DOI: 10.1016/j.envint.2018.04.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/26/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Exposure to radiofrequency electromagnetic fields (RF-EMF) has rapidly increased and little is known about exposure levels in children. This study describes personal RF-EMF environmental exposure levels from handheld devices and fixed site transmitters in European children, the determinants of this, and the day-to-day and year-to-year repeatability of these exposure levels. METHODS Personal environmental RF-EMF exposure (μW/m2, power flux density) was measured in 529 children (ages 8-18 years) in Denmark, the Netherlands, Slovenia, Switzerland, and Spain using personal portable exposure meters for a period of up to three days between 2014 and 2016, and repeated in a subsample of 28 children one year later. The meters captured 16 frequency bands every 4 s and incorporated a GPS. Activity diaries and questionnaires were used to collect children's location, use of handheld devices, and presence of indoor RF-EMF sources. Six general frequency bands were defined: total, digital enhanced cordless telecommunications (DECT), television and radio antennas (broadcast), mobile phones (uplink), mobile phone base stations (downlink), and Wireless Fidelity (WiFi). We used adjusted mixed effects models with region random effects to estimate associations of handheld device use habits and indoor RF-EMF sources with personal RF-EMF exposure. Day-to-day and year-to-year repeatability of personal RF-EMF exposure were calculated through intraclass correlations (ICC). RESULTS Median total personal RF-EMF exposure was 75.5 μW/m2. Downlink was the largest contributor to total exposure (median: 27.2 μW/m2) followed by broadcast (9.9 μW/m2). Exposure from uplink (4.7 μW/m2) was lower. WiFi and DECT contributed very little to exposure levels. Exposure was higher during day (94.2 μW/m2) than night (23.0 μW/m2), and slightly higher during weekends than weekdays, although varying across regions. Median exposures were highest while children were outside (157.0 μW/m2) or traveling (171.3 μW/m2), and much lower at home (33.0 μW/m2) or in school (35.1 μW/m2). Children living in urban environments had higher exposure than children in rural environments. Older children and users of mobile phones had higher uplink exposure but not total exposure, compared to younger children and those that did not use mobile phones. Day-to-day repeatability was moderate to high for most of the general frequency bands (ICCs between 0.43 and 0.85), as well as for total, broadcast, and downlink for the year-to-year repeatability (ICCs between 0.49 and 0.80) in a small subsample. CONCLUSION The largest contributors to total personal environmental RF-EMF exposure were downlink and broadcast, and these exposures showed high repeatability. Urbanicity was the most important determinant of total exposure and mobile phone use was the most important determinant of uplink exposure. It is important to continue evaluating RF-EMF exposure in children as device use habits, exposure levels, and main contributing sources may change.
Collapse
Affiliation(s)
- Laura Ellen Birks
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Benjamin Struchen
- Departement of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland; University of Basel, Basel, Switzerland
| | - Marloes Eeftens
- Departement of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland; University of Basel, Basel, Switzerland
| | - Luuk van Wel
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Peter Gajšek
- Institute of Non-ionizing Radiation (INIS), Ljubljana 1000, Slovenia
| | - Leeka Kheifets
- Department of Epidemiology, School of Public Health, University of California, Los Angeles, USA
| | - Mara Gallastegi
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian, Spain; University of the Basque Country (UPV/EHU), Preventative Medicine and Public Health Department, Faculty of Medicine, Leioa, Spain
| | - Albert Dalmau-Bueno
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Marisa Estarlich
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 València, Spain
| | - Mariana F Fernandez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; University of Granada, Department of Radiology and Physical Medicine, Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | | | - Amparo Ferrero
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I-Universitat de València, 46020 València, Spain
| | - Ana Jiménez-Zabala
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian, Spain; Public Health Division of Gipuzkoa, Basque Government, San Sebastian, Spain
| | - Maties Torrent
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; ib-salut, Area de Salut de Menorca, Menorca, Spain
| | - Tanja G M Vrijkotte
- Department of Public Health - Amsterdam Public Health Research Institute, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisabeth Cardis
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Jørn Olsen
- Danish Epidemiology Science Centre, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Blaž Valič
- Institute of Non-ionizing Radiation (INIS), Ljubljana 1000, Slovenia
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands; School of Public Health, Imperial College London, London, UK
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - Martin Röösli
- Departement of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland; University of Basel, Basel, Switzerland
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Pompeu Fabra University, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
8
|
Choi J, Hwang JH, Lim H, Joo H, Yang HS, Lee YH, Eeftens M, Struchen B, Röösli M, Lee AK, Choi HD, Kwon JH, Ha M. Assessment of radiofrequency electromagnetic field exposure from personal measurements considering the body shadowing effect in Korean children and parents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1544-1551. [PMID: 30857115 DOI: 10.1016/j.scitotenv.2018.01.318] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/24/2018] [Accepted: 01/30/2018] [Indexed: 06/09/2023]
Abstract
We aimed to assess the personal radiofrequency electromagnetic field (RF-EMF) exposure levels of children and adults through their activities, with consideration to the body shadowing effect. We recruited 50 child-adult pairs, living in Seoul, Cheonan, and Ulsan, South Korea. RF-EMF measurements were performed between September and December 2016, using a portable exposure meter tailored to capture 14 Korean radiofrequency (RF) bands ranging from 87.5 to 5875MHz. The participants carried the device for 48h and kept a time-activity diary using a smartphone application in flight mode. To enhance accuracy of the exposure assessment, the body shadowing effect was compensated during the statistical analysis with the measured RF-EMF exposure. The compensation was conducted using the hybrid model that represents the decrease of the exposure level due to the body shadowing effect. A generalized linear mixed model was used to compare the RF-EMF exposure levels by subjects and activities. The arithmetic (geometric) means of the total power density were 174.9 (36.6) μW/m2 for all participants, 226.9 (44.6) for fathers, 245.4 (44.8) for mothers, and 116.2 (30.1) for children. By compensating for the body shadowing effect, the total RF-EMF exposure increased marginally, approximately 1.4 times. Each frequency band contribution to total RF-EMF exposure consisted of 76.7%, 2.4%, 9.9%, 5.0%, 3.3%, and 2.6% for downlink, uplink, WiFi, FM Radio, TV, and WiBro bands, respectively. Among the three regions, total RF-EMF exposure was highest in Seoul, and among the activities, it was highest in the metro, followed by foot/bicycle, bus/car, and outside. The contribution of base-station exposure to total RF-EMF exposure was the highest both in parents and children. Total and base-station RF-EMF exposure levels in Korea were higher than those reported in European countries.
Collapse
Affiliation(s)
- Jonghyuk Choi
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jung-Hwan Hwang
- Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Hyungrul Lim
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hyunjoo Joo
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee-Sun Yang
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Yong-Han Lee
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Benjamin Struchen
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Ae-Kyoung Lee
- Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Hyung-Do Choi
- Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Jong Hwa Kwon
- Broadcasting and Media Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Mina Ha
- Department of Preventive Medicine, College of Medicine, Dankook University, Cheonan, Republic of Korea.
| |
Collapse
|
9
|
Aminzadeh R, Thielens A, Agneessens S, Van Torre P, Van den Bossche M, Dongus S, Eeftens M, Huss A, Vermeulen R, de Seze R, Mazet P, Cardis E, Rogier H, Röösli M, Martens L, Joseph W. A Multi-Band Body-Worn Distributed Radio-Frequency Exposure Meter: Design, On-Body Calibration and Study of Body Morphology. SENSORS (BASEL, SWITZERLAND) 2018; 18:E272. [PMID: 29346280 PMCID: PMC5795740 DOI: 10.3390/s18010272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/24/2023]
Abstract
A multi-band Body-Worn Distributed exposure Meter (BWDM) calibrated for simultaneous measurement of the incident power density in 11 telecommunication frequency bands, is proposed. The BDWM consists of 22 textile antennas integrated in a garment and is calibrated on six human subjects in an anechoic chamber to assess its measurement uncertainty in terms of 68% confidence interval of the on-body antenna aperture. It is shown that by using multiple antennas in each frequency band, the uncertainty of the BWDM is 22 dB improved with respect to single nodes on the front and back of the torso and variations are decreased to maximum 8.8 dB. Moreover, deploying single antennas for different body morphologies results in a variation up to 9.3 dB, which is reduced to 3.6 dB using multiple antennas for six subjects with various body mass index values. The designed BWDM, has an improved uncertainty of up to 9.6 dB in comparison to commercially available personal exposure meters calibrated on body. As an application, an average incident power density in the range of 26.7-90.8 μW·m - 2 is measured in Ghent, Belgium. The measurements show that commercial personal exposure meters underestimate the actual exposure by a factor of up to 20.6.
Collapse
Affiliation(s)
- Reza Aminzadeh
- Department of Information Technology (INTEC), Ghent University/imec, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.
| | - Arno Thielens
- Department of Information Technology (INTEC), Ghent University/imec, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.
| | - Sam Agneessens
- Department of Information Technology (INTEC), Ghent University/imec, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.
| | - Patrick Van Torre
- Department of Information Technology (INTEC), Ghent University/imec, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.
| | - Matthias Van den Bossche
- Department of Information Technology (INTEC), Ghent University/imec, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.
| | - Stefan Dongus
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.
- University of Basel, Petersplastz 1, 4001 Basel, Switzerland.
| | - Marloes Eeftens
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.
- University of Basel, Petersplastz 1, 4001 Basel, Switzerland.
| | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TD Utrecht, The Netherlands.
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3508 TD Utrecht, The Netherlands.
| | - René de Seze
- National Institute for Industrial Environment and Risks (INERIS), Parc Technologique Alata BP2, 60550 Verneuil-en-Halatte, France.
| | - Paul Mazet
- Technical Center for Mechanical Industries (CETIM), 60300 Senlis, France.
| | - Elisabeth Cardis
- Barcelona Institute for Global Health (ISGlobal), 08003 Barcelona, Spain.
| | - Hendrik Rogier
- Department of Information Technology (INTEC), Ghent University/imec, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland.
- University of Basel, Petersplastz 1, 4001 Basel, Switzerland.
| | - Luc Martens
- Department of Information Technology (INTEC), Ghent University/imec, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.
| | - Wout Joseph
- Department of Information Technology (INTEC), Ghent University/imec, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium.
| |
Collapse
|
10
|
Hedendahl LK, Carlberg M, Koppel T, Hardell L. Measurements of Radiofrequency Radiation with a Body-Borne Exposimeter in Swedish Schools with Wi-Fi. Front Public Health 2017; 5:279. [PMID: 29214149 PMCID: PMC5703119 DOI: 10.3389/fpubh.2017.00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/29/2017] [Indexed: 12/23/2022] Open
Abstract
Introduction Wireless access to the Internet is now commonly used in schools. Many schools give each student their own laptop and utilize the laptops and wireless fidelity (Wi-Fi) connection for educational purposes. Most children also bring their own mobile phones to school. Since children are obliged by law to attend school, a safe environment is important. Lately, it has been discussed if radiofrequency (RF) radiation can have long-term adverse effects on children’s health. Method This study conducted exposimetric measurements in schools to assess RF emissions in the classroom by measuring the teachers’ RF exposure in order to approximate the children’s exposure. Teachers in grades 7–12 carried a body-borne exposimeter, EME-Spy 200, in school during 1–4 days of work. The exposimeter can measure 20 different frequency bands from 87 to 5,850 MHz. Results Eighteen teachers from seven schools participated. The mean exposure to RF radiation ranged from 1.1 to 66.1 µW/m2. The highest mean level, 396.6 µW/m2, occurred during 5 min of a lesson when the teacher let the students stream and watch YouTube videos. Maximum peaks went up to 82,857 µW/m2 from mobile phone uplink. Discussion Our measurements are in line with recent exposure studies in schools in other countries. The exposure levels varied between the different Wi-Fi systems, and if the students were allowed to use their own smartphones on the school’s Wi-Fi network or if they were connected to GSM/3G/4G base stations outside the school. An access point over the teacher’s head gave higher exposure compared with a school with a wired Internet connection for the teacher in the classroom. All values were far below International Commission on Non-Ionizing Radiation Protection’s reference values, but most mean levels measured were above the precautionary target level of 3–6 µW/m2 as proposed by the Bioinitiative Report. The length of time wireless devices are used is an essential determinant in overall exposure. Measures to minimize children’s exposure to RF radiation in school would include preferring wired connections, allowing laptops, tablets and mobile phones only in flight mode and deactivating Wi-Fi access points, when not used for learning purposes.
Collapse
Affiliation(s)
| | - Michael Carlberg
- Department of Oncology, Faculty of Medicine and Health, University Hospital, Örebro, Sweden
| | - Tarmo Koppel
- Department of Work Environment and Safety, Tallinn University of Technology, Tallinn, Estonia
| | - Lennart Hardell
- Department of Oncology, Faculty of Medicine and Health, University Hospital, Örebro, Sweden
| |
Collapse
|
11
|
Gallastegi M, Jiménez-Zabala A, Santa-Marina L, Aurrekoetxea JJ, Ayerdi M, Ibarluzea J, Kromhout H, González J, Huss A. Exposure to extremely low and intermediate-frequency magnetic and electric fields among children from the INMA-Gipuzkoa cohort. ENVIRONMENTAL RESEARCH 2017; 157:190-197. [PMID: 28575784 DOI: 10.1016/j.envres.2017.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/03/2017] [Accepted: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Detailed assessment of exposure to extremely low frequency (ELF) and intermediate frequency (IF) fields is essential in order to conduct informative epidemiological studies of the health effects from exposure to these fields. There is limited information available regarding ELF electric fields and on both magnetic and electric field exposures of children in the IF range. The aim of this study was to characterize ELF and IF exposure of children in the Spanish INMA cohort. A combination of spot and fixed measurements was carried out in 104 homes, 26 schools and their playgrounds and 105 parks. Low levels of ELF magnetic fields (ELF-MF) were observed (with the highest 24-h time-weighted average (TWA) exposure being 0.15μT in one home). The interquartile range (IQR) of ELF electric fields (ELF-EF) ranged from 1 to 15V/m indoors and from 0.3 to 1.1V/m outdoors and a maximum value observed was 55.5V/m in one school playground. IQR ranges for IF magnetic and electric fields were between 0.02 and 0.23μT and 0.2 and 0.5V/m respectively and maximum values were 0.03μT and 1.51V/m in homes. Correlations between magnetic and electric fields were weak for ELF (Spearman 0.04-0.36 in different settings) and moderate for IF (between 0.28 and 0.75). Children of INMA-Gipuzkoa cohort were exposed to very low levels of ELF-MF in all settings and to similar levels of ELF-EF compared to the range of previously reported levels, although somewhat higher exposures occurred at home. Children enrolled to our study were similarly exposed to IF in all settings.
Collapse
Affiliation(s)
- Mara Gallastegi
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; University of the Basque Country (UPV/EHU), Preventative Medicine and Public Health Department, Faculty of Medicine, Leioa 48940, Spain.
| | - Ana Jiménez-Zabala
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain
| | - Loreto Santa-Marina
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Juan J Aurrekoetxea
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; University of the Basque Country (UPV/EHU), Preventative Medicine and Public Health Department, Faculty of Medicine, Leioa 48940, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain
| | - Mikel Ayerdi
- Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain
| | - Jesús Ibarluzea
- BIODONOSTIA Health Research Institute, Dr. Begiristain Pasealekua, San Sebastian 20014, Spain; Public Health Division of Gipuzkoa, Basque Government, 4 Av. de Navarra, San Sebastian 20013, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Hans Kromhout
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Julián González
- University of the Basque Country (UPV/EHU), Materials Physics Department, Faculty of Chemistry, Paseo Manuel de Lardizabal 3, San Sebastian 20018, Spain
| | - Anke Huss
- Institute for Risk Assessment Sciences (IRAS), Division Environmental Epidemiology, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| |
Collapse
|
12
|
Roser K, Schoeni A, Struchen B, Zahner M, Eeftens M, Fröhlich J, Röösli M. Personal radiofrequency electromagnetic field exposure measurements in Swiss adolescents. ENVIRONMENT INTERNATIONAL 2017; 99:303-314. [PMID: 28038972 DOI: 10.1016/j.envint.2016.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/10/2016] [Accepted: 12/11/2016] [Indexed: 05/16/2023]
Abstract
BACKGROUND Adolescents belong to the heaviest users of wireless communication devices, but little is known about their personal exposure to radiofrequency electromagnetic fields (RF-EMF). OBJECTIVES The aim of this paper is to describe personal RF-EMF exposure of Swiss adolescents and evaluate exposure relevant factors. Furthermore, personal measurements were used to estimate average contributions of various sources to the total absorbed RF-EMF dose of the brain and the whole body. METHODS Personal exposure was measured using a portable RF-EMF measurement device (ExpoM-RF) measuring 13 frequency bands ranging from 470 to 3600MHz. The participants carried the device for three consecutive days and kept a time-activity diary. In total, 90 adolescents aged 13 to 17years participated in the study conducted between May 2013 and April 2014. In addition, personal measurement values were combined with dose calculations for the use of wireless communication devices to quantify the contribution of various RF-EMF sources to the daily RF-EMF dose of adolescents. RESULTS Main contributors to the total personal RF-EMF measurements of 63.2μW/m2 (0.15V/m) were exposures from mobile phones (67.2%) and from mobile phone base stations (19.8%). WLAN at school and at home had little impact on the personal measurements (WLAN accounted for 3.5% of total personal measurements). According to the dose calculations, exposure from environmental sources (broadcast transmitters, mobile phone base stations, cordless phone base stations, WLAN access points, and mobile phones in the surroundings) contributed on average 6.0% to the brain dose and 9.0% to the whole-body dose. CONCLUSIONS RF-EMF exposure of adolescents is dominated by their own mobile phone use. Environmental sources such as mobile phone base stations play a minor role.
Collapse
Affiliation(s)
- Katharina Roser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Anna Schoeni
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Benjamin Struchen
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Marco Zahner
- Institute for Electromagnetic Fields, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Gloriastrasse 35, 8092 Zürich, Switzerland; Fields at Work GmbH, Sonneggstrasse 60, 8006 Zürich, Switzerland
| | - Marloes Eeftens
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland
| | - Jürg Fröhlich
- Institute for Electromagnetic Fields, Eidgenössische Technische Hochschule Zürich (ETH Zürich), Gloriastrasse 35, 8092 Zürich, Switzerland; Fields at Work GmbH, Sonneggstrasse 60, 8006 Zürich, Switzerland
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, 4002 Basel, Switzerland; University of Basel, Petersplatz 1, 4003 Basel, Switzerland.
| |
Collapse
|
13
|
Struchen B, Liorni I, Parazzini M, Gängler S, Ravazzani P, Röösli M. Analysis of personal and bedroom exposure to ELF-MFs in children in Italy and Switzerland. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2016; 26:586-596. [PMID: 26669849 DOI: 10.1038/jes.2015.80] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/05/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023]
Abstract
Little is known about the real everyday exposure of children in Europe to extremely low-frequency magnetic fields (ELF-MFs). The aims of this study are to (i) assess personal ELF-MF exposure in children; (ii) to identify factors determining personal and bedroom ELF-MF exposure measurements in children; (iii) to evaluate the reproducibility of exposure summary measures; and (iv) to compare personal with bedroom measurements. In Switzerland and Italy, 172 children aged between 5 and 13 years were equipped with ELF-MF measurement devices (EMDEX II, measuring 40-800 Hz) during 24-72 h twice, in the warm and the cold season. In addition, 24-h measurements were taken in the bedroom of children. In our study, sample geometric mean ELF-MF exposure was 0.04 μT for personal and 0.05 μT for bedroom measurements. Living within 100 m of a highest voltage power line increased geometric mean personal exposure by a factor of 3.3, and bedroom measurements by a factor 6.8 compared to a control group. Repeated measurements within the same subject showed high reproducibility for the geometric mean (Spearman's correlation 0.78 for personal and 0.86 for bedroom measurements) but less for the 95th and 99th percentile of the personal measurements (≤0.42). Spearman's correlation between bedroom and personal exposure was 0.86 for the geometric mean but considerably lower for the 95th and 99th percentiles (≤0.60). Most previous studies on ELF-MF childhood leukaemia used mean bedroom exposure. Our study demonstrates that geometric mean bedroom measurements is well correlated with personal geometric mean exposure, and has high temporal reproducibility.
Collapse
Affiliation(s)
- Benjamin Struchen
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Ilaria Liorni
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy
| | - Marta Parazzini
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Stephanie Gängler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland
- Cyprus International Institute for Environmental and Public Health in association with Harvard TH Chan School of Public Health, Cyprus University of Technology, Irenes 95, Limassol, Cyprus
| | - Paolo Ravazzani
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni (IEIIT), Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| |
Collapse
|
14
|
Bolte JFB. Lessons learnt on biases and uncertainties in personal exposure measurement surveys of radiofrequency electromagnetic fields with exposimeters. ENVIRONMENT INTERNATIONAL 2016; 94:724-735. [PMID: 27356850 DOI: 10.1016/j.envint.2016.06.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 06/06/2023]
Abstract
Personal exposure measurements of radio frequency electromagnetic fields are important for epidemiological studies and developing prediction models. Minimizing biases and uncertainties and handling spatial and temporal variability are important aspects of these measurements. This paper reviews the lessons learnt from testing the different types of exposimeters and from personal exposure measurement surveys performed between 2005 and 2015. Applying them will improve the comparability and ranking of exposure levels for different microenvironments, activities or (groups of) people, such that epidemiological studies are better capable of finding potential weak correlations with health effects. Over 20 papers have been published on how to prevent biases and minimize uncertainties due to: mechanical errors; design of hardware and software filters; anisotropy; and influence of the body. A number of biases can be corrected for by determining multiplicative correction factors. In addition a good protocol on how to wear the exposimeter, a sufficiently small sampling interval and sufficiently long measurement duration will minimize biases. Corrections to biases are possible for: non-detects through detection limit, erroneous manufacturer calibration and temporal drift. Corrections not deemed necessary, because no significant biases have been observed, are: linearity in response and resolution. Corrections difficult to perform after measurements are for: modulation/duty cycle sensitivity; out of band response aka cross talk; temperature and humidity sensitivity. Corrections not possible to perform after measurements are for: multiple signals detection in one band; flatness of response within a frequency band; anisotropy to waves of different elevation angle. An analysis of 20 microenvironmental surveys showed that early studies using exposimeters with logarithmic detectors, overestimated exposure to signals with bursts, such as in uplink signals from mobile phones and WiFi appliances. Further, the possible corrections for biases have not been fully applied. The main findings are that if the biases are not corrected for, the actual exposure will on average be underestimated.
Collapse
Affiliation(s)
- John F B Bolte
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands; Faculty of Technology, Innovation and Society, The Hague University of Applied Sciences, The Netherlands.
| |
Collapse
|
15
|
Liorni I, Parazzini M, Struchen B, Fiocchi S, Röösli M, Ravazzani P. Children's Personal Exposure Measurements to Extremely Low Frequency Magnetic Fields in Italy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060549. [PMID: 27258295 PMCID: PMC4924006 DOI: 10.3390/ijerph13060549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/07/2016] [Accepted: 05/26/2016] [Indexed: 12/17/2022]
Abstract
Extremely low frequency magnetic fields (ELF-MFs) exposure is still a topic of concern due to their possible impact on children's health. Although epidemiological studies claimed an evidence of a possible association between ELF-MF above 0.4 μT and childhood leukemia, biological mechanisms able to support a causal relationship between ELF-MF and this disease were not found yet. To provide further knowledge about children's ELF-MF exposure correlated to children's daily activities, a measurement study was conducted in Milan (Italy). Eighty-six children were recruited, 52 of whom were specifically chosen with respect to the distance to power lines and built-in transformers to oversample potentially highly exposed children. Personal and bedroom measurements were performed for each child in two different seasons. The major outcomes of this study are: (1) median values over 24-h personal and bedroom measurements were <3 μT established by the Italian law as the quality target; (2) geometric mean values over 24-h bedroom measurements were mostly <0.4 μT; (3) seasonal variations did not significantly influence personal and bedroom measurements; (4) the highest average MF levels were mostly found at home during the day and outdoors; (5) no significant differences were found in the median and geometric mean values between personal and bedroom measurements, but were found in the arithmetic mean.
Collapse
Affiliation(s)
- Ilaria Liorni
- CNR Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT, Piazza Leonardo da Vinci, Milano 20133, Italy.
| | - Marta Parazzini
- CNR Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT, Piazza Leonardo da Vinci, Milano 20133, Italy.
| | - Benjamin Struchen
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel 4002, Switzerland.
- University of Basel, Basel 4003, Switzerland.
| | - Serena Fiocchi
- CNR Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT, Piazza Leonardo da Vinci, Milano 20133, Italy.
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel 4002, Switzerland.
- University of Basel, Basel 4003, Switzerland.
| | - Paolo Ravazzani
- CNR Consiglio Nazionale delle Ricerche, Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni IEIIT, Piazza Leonardo da Vinci, Milano 20133, Italy.
| |
Collapse
|
16
|
Thielens A, Vanveerdeghem P, Van Torre P, Gängler S, Röösli M, Rogier H, Martens L, Joseph W. A Personal, Distributed Exposimeter: Procedure for Design, Calibration, Validation, and Application. SENSORS 2016; 16:180. [PMID: 26840320 PMCID: PMC4801557 DOI: 10.3390/s16020180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 11/16/2022]
Abstract
This paper describes, for the first time, the procedure for the full design, calibration, uncertainty analysis, and practical application of a personal, distributed exposimeter (PDE) for the detection of personal exposure in the Global System for Mobile Communications (GSM) downlink (DL) band around 900 MHz (GSM 900 DL). The PDE is a sensor that consists of several body-worn antennas. The on-body location of these antennas is investigated using numerical simulations and calibration measurements in an anechoic chamber. The calibration measurements and the simulations result in a design (or on-body setup) of the PDE. This is used for validation measurements and indoor radio frequency (RF) exposure measurements in Ghent, Belgium. The main achievements of this paper are: first, the demonstration, using both measurements and simulations, that a PDE consisting of multiple on-body textile antennas will have a lower measurement uncertainty for personal RF exposure than existing on-body sensors; second, a validation of the PDE, which proves that the device correctly estimates the incident power densities; and third, a demonstration of the usability of the PDE for real exposure assessment measurements. To this aim, the validated PDE is used for indoor measurements in a residential building in Ghent, Belgium, which yield an average incident power density of 0.018 mW/m².
Collapse
Affiliation(s)
- Arno Thielens
- Department of Information Technology, Ghent University/iMinds, Gaston Crommenlaan 8, Ghent B-9050, Belgium.
| | - Peter Vanveerdeghem
- Department of Information Technology, Ghent University/iMinds, Gaston Crommenlaan 8, Ghent B-9050, Belgium.
| | - Patrick Van Torre
- Department of Information Technology, Ghent University/iMinds, Gaston Crommenlaan 8, Ghent B-9050, Belgium.
| | - Stephanie Gängler
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland.
- University of Basel, Basel 4051, Switzerland.
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland.
- University of Basel, Basel 4051, Switzerland.
| | - Hendrik Rogier
- Department of Information Technology, Ghent University/iMinds, Gaston Crommenlaan 8, Ghent B-9050, Belgium.
| | - Luc Martens
- Department of Information Technology, Ghent University/iMinds, Gaston Crommenlaan 8, Ghent B-9050, Belgium.
| | - Wout Joseph
- Department of Information Technology, Ghent University/iMinds, Gaston Crommenlaan 8, Ghent B-9050, Belgium.
| |
Collapse
|
17
|
Calvente I, Dávila-Arias C, Ocón-Hernández O, Pérez-Lobato R, Ramos R, Artacho-Cordón F, Olea N, Núñez MI, Fernández MF. Characterization of indoor extremely low frequency and low frequency electromagnetic fields in the INMA-Granada cohort. PLoS One 2014; 9:e106666. [PMID: 25192253 PMCID: PMC4156360 DOI: 10.1371/journal.pone.0106666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/30/2014] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To characterize the exposure to electric fields and magnetic fields of non-ionizing radiation in the electromagnetic spectrum (15 Hz to 100 kHz) in the dwellings of children from the Spanish Environment and Childhood-"INMA" population-based birth cohort. METHODOLOGY The study sample was drawn from the INMA-Granada cohort. Out of 300 boys participating in the 9-10 year follow-up, 123 families agreed to the exposure assessment at home and completed a specific ad hoc questionnaire gathering information on sources of non-ionizing radiation electric and magnetic fields inside the homes and on patterns of use. Long-term indoor measurements were carried out in the living room and bedroom. RESULTS Survey data showed a low exposure in the children's homes according to reference levels of the International Commission on Non-Ionizing Radiation Protection but with large differences among homes in mean and maximum values. Daytime electrostatic and magnetic fields were below the quantification limit in 78.6% (92 dwellings) and 92.3% (108 dwellings) of houses, with an arithmetic mean value (± standard deviation) of 7.31±9.32 V/m and 162.30±91.16 nT, respectively. Mean magnetic field values were 1.6 lower during the night than the day. Nocturnal electrostatic values were not measured. Exposure levels were influenced by the area of residence (higher values in urban/semi-urban versus rural areas), type of dwelling, age of dwelling, floor of the dwelling, and season. CONCLUSION Given the greater sensitivity to extremely low-frequency electromagnetic fields of children and following the precautionary principle, preventive measures are warranted to reduce their exposure.
Collapse
Affiliation(s)
- Irene Calvente
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Cristina Dávila-Arias
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Olga Ocón-Hernández
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Rocío Pérez-Lobato
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Rosa Ramos
- Unit Research Support of the San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Francisco Artacho-Cordón
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Radiology, University of Granada, Granada, Spain
| | - Nicolás Olea
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Radiology, University of Granada, Granada, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - María Isabel Núñez
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Radiology, University of Granada, Granada, Spain
| | - Mariana F. Fernández
- University of Granada, San Cecilio University Hospital, Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
- Department of Radiology, University of Granada, Granada, Spain
- CIBER en Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|