1
|
Chen M, He K, Wang K, Cai Y, Ying Z, Li X, Liu Y, Xiang L, Yang P, Wu H, Jiang J. Low-dose radiation ameliorates doxorubicin-induced renal injury via reducing oxidative stress and protecting mitochondrial function. PLoS One 2025; 20:e0313649. [PMID: 39932912 PMCID: PMC11813107 DOI: 10.1371/journal.pone.0313649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/28/2024] [Indexed: 02/13/2025] Open
Abstract
Doxorubicin (DOX) is a well-established chemotherapy drug, but its clinical application is restricted due to significant tissue toxicity, of which nephrotoxicity is a serious adverse reaction. Low-dose radiation (LDR) exerts effects through stimulating diverse cell and molecular mechanisms, which has been shown to have anti-inflammatory and alter immune adaptation effects. This study aims to investigate how LDR protects against DOX-induced nephrotoxicity and to explore the underlying mechanism involved. Sixty mice were randomly divided into control (CTR), LDR, DOX, and combination (COM) group. Nephrotoxicity was induced by injecting a single dose of DOX (7.5 mg/kg) in mice abdominal cavity, and LDR was performed 72 h before DOX treatment. Histological analysis, immunohistochemical analysis, immunofluorescence analysis and western-blotting were used to detect the related indicators. Research data was showed as mean ±SD and tested by One-way ANOVA. The results showed that compared with DOX group, the contents of serum UREA, UA, and the expression level of Bax and caspase 9 were significantly reduced in COM group (P<0.05). Western-blotting and immunohistochemical analysis showed that the expression level of MDA and Nrf2 in COM group were significantly lower than that in DOX group (P<0.05). In addition, the activity of complex Ⅰ, ATP, NDUFA1 and CYC1 were enhanced in COM group compared with DOX group (P<0.05). All the results suggested that LDR pretreatment prevented excessive accumulation of peroxides, restored antioxidants activity (SOD, GSH, CAT), activated Nrf2/HO-1/NQO1 signaling pathway, attenuated damage to the mitochondrial respiratory chain, and protected kidney cells from DOX attack. This study demonstrated that LDR could effectively and safely inhibit the progression of DOX-induced nephrotoxicity. Future studies should further investigate the mechanism of LDR protecting tissues from DOX-induced damage and find an optimal radiation dose for humans.
Collapse
Affiliation(s)
- Mengmeng Chen
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Kang He
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Kai Wang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yibo Cai
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Zhaohui Ying
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xueting Li
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yating Liu
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Liting Xiang
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Pingping Yang
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongjuan Wu
- Department of Nursing, Zhejiang Cancer Hospital, Hangzhou, China
| | - Jian Jiang
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhang J, Dai K, An R, Wang C, Zhou X, Tian Z, Liao Z. Single Low-Dose Ionizing Radiation Transiently Enhances Rat RIN-m5F Cell Function via the ROS/p38 MAPK Pathway Without Inducing Cell Damage. Antioxidants (Basel) 2025; 14:120. [PMID: 40002307 PMCID: PMC11851861 DOI: 10.3390/antiox14020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/18/2025] [Accepted: 01/19/2025] [Indexed: 02/27/2025] Open
Abstract
High doses of ionizing radiation (HDIR) are known to induce cellular damage, whereas low-dose ionizing radiation (LDIR) may trigger protective biological responses. Recent studies have explored the potential benefits of LDIR in treating diabetes and its complications. However, the direct effects of LDIR on pancreatic β-cells and the underlying mechanisms remain to be elucidated. This study aimed to evaluate the effects of LDIR on pancreatic β-cell functionality and elucidate the underlying molecular mechanisms involved. Rat RIN-m5F cells were exposed to LDIR (25 mGy) or HDIR (2.5 Gy) to examine changes in insulin mRNA expression, secretion, DNA damage, and apoptosis. The roles of reactive oxygen species (ROS) and the p38 mitogen-activated protein kinase (MAPK) pathway were assessed via the use of antioxidants and pathway inhibitors. The findings indicated that LDIR transiently increased both insulin synthesis and secretion without inducing apoptosis or affecting cell proliferation. In contrast, HDIR induced a significant increase in apoptosis and a marked inhibition of proliferation. LDIR was observed to temporarily increase ROS production, activating the p38 MAPK pathway and facilitating insulin synthesis via the upregulation of PDX-1. Notably, LDIR did not induce DNA double-strand breaks or activate the ATM-dependent DNA repair pathways, unlike HDIR, which induced apoptosis through overactivation of the ROS/p38 MAPK pathway. In conclusion, LDIR enhanced pancreatic β-cell functionality via ROS-mediated activation of the p38 MAPK pathway, highlighting its potential therapeutic applications in diabetes management.
Collapse
Affiliation(s)
- Jitai Zhang
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (K.D.); (R.A.)
| | - Kaicen Dai
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (K.D.); (R.A.)
| | - Ruike An
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China; (J.Z.); (K.D.); (R.A.)
| | - Chengying Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; (C.W.); (X.Z.)
| | - Xuanting Zhou
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; (C.W.); (X.Z.)
| | - Zhujun Tian
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; (C.W.); (X.Z.)
| | - Zhonglu Liao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; (C.W.); (X.Z.)
| |
Collapse
|
3
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
4
|
Polgár S, Schofield PN, Madas BG. Datasets of in vitro clonogenic assays showing low dose hyper-radiosensitivity and induced radioresistance. Sci Data 2022; 9:555. [PMID: 36075916 PMCID: PMC9458642 DOI: 10.1038/s41597-022-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Low dose hyper-radiosensitivity and induced radioresistance are primarily observed in surviving fractions of cell populations exposed to ionizing radiation, plotted as the function of absorbed dose. Several biophysical models have been developed to quantitatively describe these phenomena. However, there is a lack of raw, openly available experimental data to support the development and validation of quantitative models. The aim of this study was to set up a database of experimental data from the public literature. Using Google Scholar search, 46 publications with 101 datasets on the dose-dependence of surviving fractions, with clear evidence of low dose hyper-radiosensitivity, were identified. Surviving fractions, their uncertainties, and the corresponding absorbed doses were digitized from graphs of the publications. The characteristics of the cell line and the irradiation were also recorded, along with the parameters of the linear-quadratic model and/or the induced repair model if they were provided. The database is available in STOREDB, and can be used for meta-analysis, for comparison with new experiments, and for development and validation of biophysical models.
Collapse
Affiliation(s)
- Szabolcs Polgár
- Doctoral School of Physics, ELTE Eötvös Loránd University, Budapest, Hungary
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary
| | - Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Balázs G Madas
- Environmental Physics Department, Centre for Energy Research, Budapest, Hungary.
- Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Budapest, Hungary.
| |
Collapse
|
5
|
Sui JD, Tang Z, Chen BPC, Huang P, Yang MQ, Wang NH, Yang HN, Tu HL, Jiang QM, Zhang J, Wang Y, Wu YZ. Protein phosphatase 2A-dependent mitotic hnRNPA1 dephosphorylation and TERRA formation facilitate telomere capping. Mol Cancer Res 2021; 20:583-595. [PMID: 34933911 DOI: 10.1158/1541-7786.mcr-21-0581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/02/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Jiang-Dong Sui
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Zheng Tang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Benjamin P C Chen
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ping Huang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Meng-Qi Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Nuo-Han Wang
- School of Medicine, Chongqing University, Chongqing, China
| | - Hao-Nan Yang
- School of Medicine, Chongqing University, Chongqing, China
| | - Hong-Lei Tu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Qing-Ming Jiang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Zhang
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ying Wang
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| | - Yong-Zhong Wu
- Radiation Oncology Center, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
6
|
Avoidance or adaptation of radiotherapy in patients with cancer with Li-Fraumeni and heritable TP53-related cancer syndromes. Lancet Oncol 2021; 22:e562-e574. [PMID: 34856153 DOI: 10.1016/s1470-2045(21)00425-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/18/2022]
Abstract
The management of patients with cancer and Li-Fraumeni or heritable TP53-related cancer syndromes is complex because of their increased risk of developing second malignant neoplasms after genotoxic stresses such as systemic treatments or radiotherapy (radiosusceptibility). Clinical decision making also integrates the risks of normal tissue toxicity and sequelae (radiosensitivity) and tumour response to radiotherapy (radioresistance and radiocurability). Radiotherapy should be avoided in patients with cancer and Li-Fraumeni or heritable TP53 cancer-related syndromes, but overall prognosis might be poor without radiotherapy: radioresistance in these patients seems similar to or worse than that of the general population. Radiosensitivity in germline TP53 variant carriers seems similar to that in the general population. The risk of second malignant neoplasms according to germline TP53 variant and the patient's overall oncological prognosis should be assessed during specialised multidisciplinary staff meetings. Radiotherapy should be avoided whenever other similarly curative treatment options are available. In other cases, it should be adapted to minimise the risk of second malignant neoplasms in patients who still require radiotherapy despite its genotoxicity, in view of its potential benefit. Adaptations might be achieved through the reduction of irradiated volumes using proton therapy, non-ionising diagnostic procedures, image guidance, and minimal stray radiation. Non-ionising imaging should become more systematic. Radiotherapy approaches that might result in a lower probability of misrepaired DNA damage (eg, particle therapy biology and tumour targeting) are an area of investigation.
Collapse
|
7
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
8
|
Wang Q, Chen Y, Chang H, Hu T, Wang J, Xie Y, Cheng J. The Role and Mechanism of ATM-Mediated Autophagy in the Transition From Hyper-Radiosensitivity to Induced Radioresistance in Lung Cancer Under Low-Dose Radiation. Front Cell Dev Biol 2021; 9:650819. [PMID: 34055781 PMCID: PMC8149741 DOI: 10.3389/fcell.2021.650819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/07/2021] [Indexed: 11/15/2022] Open
Abstract
Objective: This study aimed to investigate the effect of ataxia telangiectasia mutated (ATM)–mediated autophagy on the radiosensitivity of lung cancer cells under low-dose radiation and to further investigate the role of ATM and its specific mechanism in the transition from hyper-radiosensitivity (HRS) to induced radioresistance (IRR). Methods: The changes in the HRS/IRR phenomenon in A549 and H460 cells were verified by colony formation assay. Changes to ATM phosphorylation and cell autophagy in A549 and H460 cells under different low doses of radiation were examined by western blot, polymerase chain reaction (PCR), and electron microscopy. ATM expression was knocked down by short interfering RNA (siRNA) transfection, and ATM-regulated molecules related to autophagy pathways were screened by transcriptome sequencing analysis. The detection results were verified by PCR and western blot. The differential metabolites were screened by transcriptome sequencing and verified by colony formation assay and western blot. The nude mouse xenograft model was used to verify the results of the cell experiments. Results: (1) A549 cells with high expression of ATM showed positive HRS/IRR, whereas H460 cells with low expression of ATM showed negative HRS/IRR. After the expression of ATM decreased, the HRS phenomenon in A549 cells increased, and the radiosensitivity of H460 cells also increased. This phenomenon was associated with the increase in the autophagy-related molecules phosphorylated c-Jun N-terminal kinase (p-JNK) and autophagy/Beclin 1 regulator 1 (AMBRA1). (2) DL-Norvaline, a product of carbon metabolism in cells, inhibited autophagy in A549 cells under low-dose radiation. DL-Norvaline increased the expression levels of ATM, JNK, and AMBRA1 in A549 cells. (3) Mouse experiments confirmed the regulatory role of ATM in autophagy and metabolism and its function in HRS/IRR. Conclusion: ATM may influence autophagy through p-JNK and AMBRA1 to participate in the regulation of the HRS/IRR phenomenon. Autophagy interacts with the cellular carbon metabolite DL-Norvaline to participate in regulating the low-dose radiosensitivity of cells.
Collapse
Affiliation(s)
- Qiong Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Chang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Hu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiu Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Cheng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Luo K, Guo W, Yu Y, Xu S, Zhou M, Xiang K, Niu K, Zhu X, Zhu G, An Z, Yu Q, Gan Z. Reduction-sensitive platinum (IV)-prodrug nano-sensitizer with an ultra-high drug loading for efficient chemo-radiotherapy of Pt-resistant cervical cancer in vivo. J Control Release 2020; 326:25-37. [PMID: 32531414 DOI: 10.1016/j.jconrel.2020.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 01/03/2023]
Abstract
Cisplatin is widely used in the chemoradiotherapy (CRT) of cervical cancers. However, despite the severe systemic side effects, the therapeutic efficacy of cisplatin is often compromised by the development of drug resistance, which is closely related to the elevated intracellular thiol-containing species (especially glutathione (GSH)) and the adenosine triphosphate (ATP)-dependent glutathione S-conjugate pumps. The construction of a safe and redox-sensitive nano-sensitizer with high disulfide density and high Pt(IV) prodrug loading capacity (up to 16.50% Pt and even higher), as described herein, is a promising way to overcome the cisplatin resistance and enhance the CRT efficacy. The optimized nanoparticles (NPs) (referred to as SSCV5) with moderate Pt loading (7.62% Pt) and median size (c.a. 40 nm) was screened out and used for further biological evaluation. Compared with free cisplatin, more drugs could be transported and released inside the cisplatin resistant cells (Hela-CDDP) by SSCV5 NPs. With the synergistic effect of GSH scavenging and mitochondrial damage, SSCV5 NPs can easily reverse the cisplatin resistance. Moreover, the higher nucleus DNA binding Pt content of SSCV5 NPs not only caused the DNA damage and apoptosis of Hela-CDDP cells but also sensitized these cells to X-Ray radiation. The in vivo safety and efficacy results showed that SSCV5 NPs effectively accumulated inside tumor and inhibited the growth of cisplatin resistant xenograft models while alleviating the serious side effect associated with cisplatin (the maximum tolerated cisplatin equivalent of single injection is higher than 20 mg/kg body weight). The intervention of exogenous radiation further improved the anticancer efficacy of SSCV5 NPs and caused the shrinkage of tumor volume, thus making this safe and facile nano-sensitizer a promising route for the neoadjuvant CRT of cervical cancers.
Collapse
Affiliation(s)
- Kejun Luo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Wenxuan Guo
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Yanting Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Simeng Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Min Zhou
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Keqi Xiang
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Kun Niu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Xianqi Zhu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China
| | - Guangying Zhu
- Department of radiation oncology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Zheng An
- Proton therapy center, China-Japan Friendship Hospital, Beijing 100029, China
| | - Qingsong Yu
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China.
| | - Zhihua Gan
- State Key Laboratory of Organic-Inorganic Composite Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China; Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029, China.
| |
Collapse
|
10
|
Pulsed low dose-rate irradiation response in isogenic HNSCC cell lines with different radiosensitivity. Radiol Oncol 2020; 54:168-179. [PMID: 32229678 PMCID: PMC7276640 DOI: 10.2478/raon-2020-0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022] Open
Abstract
Background Management of locoregionally recurrent head and neck squamous cell carcinomas (HNSCC) is challenging due to potential radioresistance. Pulsed low-dose rate (PLDR) irradiation exploits phenomena of increased radiosensitivity, low-dose hyperradiosensitivity (LDHRS), and inverse dose-rate effect. The purpose of this study was to evaluate LDHRS and the effect of PLDR irradiation in isogenic HNSCC cells with different radiosensitivity. Materials and methods Cell survival after different irradiation regimens in isogenic parental FaDu and radioresistant FaDu-RR cells was determined by clonogenic assay; post irradiation cell cycle distribution was studied by flow cytometry; the expression of DNA damage signalling genes was assesed by reverse transcription-quantitative PCR. Results Radioresistant Fadu-RR cells displayed LDHRS and were more sensitive to PLDR irradiation than parental FaDu cells. In both cell lines, cell cycle was arrested in G2/M phase 5 hours after irradiation. It was restored 24 hours after irradiation in parental, but not in the radioresistant cells, which were arrested in G1-phase. DNA damage signalling genes were under-expressed in radioresistant compared to parental cells. Irradiation increased DNA damage signalling gene expression in radioresistant cells, while in parental cells only few genes were under-expressed. Conclusions We demonstrated LDHRS in isogenic radioresistant cells, but not in the parental cells. Survival of LDHRS-positive radioresistant cells after PLDR was significantly reduced. This reduction in cell survival is associated with variations in DNA damage signalling gene expression observed in response to PLDR most likely through different regulation of cell cycle checkpoints.
Collapse
|
11
|
Bian L, Meng Y, Zhang M, Guo Z, Liu F, Zhang W, Ke X, Su Y, Wang M, Yao Y, Wu L, Li D. ATM Expression Is Elevated in Established Radiation-Resistant Breast Cancer Cells and Improves DNA Repair Efficiency. Int J Biol Sci 2020; 16:1096-1106. [PMID: 32174787 PMCID: PMC7053315 DOI: 10.7150/ijbs.41246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022] Open
Abstract
Repair of damaged DNA induced by radiation plays an important role in the development of radioresistance, which greatly restricts patients' benefit from radiotherapy. However, the relation between radioresistance development and DNA double-strand break repair pathways (mainly non-homologous end joining and homologous recombination) and how these pathways contribute to radioresistance are unclear. Here, we established a radioresistant breast cancer cell line by repeated ionizing radiation and studied the alteration in DNA repair capacity. Compared with parental sham-treated cells, radioresistant breast cancer cells present elevated radioresistance, enhanced malignancy, increased expression of Ataxia-telangiectasia mutated (ATM), and increased DNA damage repair efficiency, as reflected by accelerated γ-H2AX kinetic. These defects can be reversed by ATM inhibition or ATM knockdown, indicating a potential link between ATM, DNA repair pathway and radiosensitivity. We propose that cancer cells develop elevated radioresistance through enhanced DNA damage repair efficiency mediated by increased ATM expression. Our work might provide a new evidence supporting the potential of ATM as a potential target of cancer therapy.
Collapse
Affiliation(s)
- Lei Bian
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yiling Meng
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meichao Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhuying Guo
- Department of Clinical Laboratory, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Furao Liu
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiwen Zhang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xue Ke
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuxuan Su
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Meng Wang
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuan Yao
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lizhong Wu
- Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dong Li
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
A Mathematical Model for the Effect of Low-Dose Radiation on the G2/M Transition. Bull Math Biol 2019; 81:3998-4021. [PMID: 31392576 DOI: 10.1007/s11538-019-00645-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
Abstract
We develop a mathematical model to study the immediate effect of low-dose radiation on the G2 checkpoint and the G2/M transition of the cell cycle via a radiation pathway (the ATM-Chk2 pathway) of an individual mammalian cell. The model consists of a system of nonlinear differential equations describing the dynamics of a network of regulatory proteins that play key roles in the G2/M transition, cell cycle oscillations, and the radiation pathway. We simulate the application of a single pulse of low-dose radiation at different intensities ([Formula: see text] 0-0.4 Gy) and times during the latter part of the G2-phase. We use bifurcation analysis to characterize the effect of radiation on the G2/M transition via the ATM-Chk2 pathway. We show that radiation between 0.1 and 0.3 Gy can delay the G2/M transition, and radiation higher than 0.3 Gy can fully activate the G2 checkpoint. Also, our results show that radiation can be low enough to neither delay the G2/M transition nor activate the G2 checkpoint ([Formula: see text] 0.1 Gy). Our model supports the idea that the cell response to radiation during G2-phase explains hyper-radiosensitivity and increased radioresistance (HRS/IRR) observed at low dose.
Collapse
|
13
|
Madas BG, Drozsdik EJ. COMPUTATIONAL MODELING OF LOW DOSE HYPER-RADIOSENSITIVITY AND INDUCED RADIORESISTANCE APPLYING THE PRINCIPLE OF MINIMUM MUTATION LOAD. RADIATION PROTECTION DOSIMETRY 2019; 183:147-150. [PMID: 30535421 DOI: 10.1093/rpd/ncy227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Low dose hyper-radiosensitivity (HRS) and induced radioresistance (IRR) can be observed in the dose dependence of survival of many different cell lines. While surviving fraction decreases exponentially in a large-scale view, a local minimum can be found at around 0.5 Gy. Although, there is evidence that the regulation of apoptosis and DNA repair are involved in HRS and IRR, the fundamental causes of the phenomena remain unclear. The objective of the present study is to test whether the principle of minimum mutation load can provide an explanation for both low dose HRS and IRR. For this purpose, a mathematical model was elaborated considering radiation induced mutagenic DNA lesions as well as cell divisions as sources of mutations. It was presumed that cell number is in dynamic equilibrium in the tissue, the number of mutations follows Poisson distribution, and its average is proportional to absorbed dose. For each value of absorbed dose, the minimum number of mutations were computed for different surviving fractions. Then that surviving fraction was plotted that results in the lowest number of mutations. One minimum or multiple minima can be seen in the dose dependence of surviving fractions with reasonable values for the model parameters: spontaneous and radiation induced mutation rate. Although the mechanisms remain unclear, the principle of minimum mutation load provides a potential explanation for low dose HRS and IRR and for the fact that they are mostly observed in cell lines with defected DNA repair.
Collapse
Affiliation(s)
- Balázs G Madas
- Radiation Biophysics Group, Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
| | - Emese J Drozsdik
- Radiation Biophysics Group, Environmental Physics Department, MTA Centre for Energy Research, Budapest, Hungary
- Department of Biological Physics, Doctoral School of Physics, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
14
|
Pathak RK, Basu U, Ahmad A, Sarkar S, Kumar A, Surnar B, Ansari S, Wilczek K, Ivan ME, Marples B, Kolishetti N, Dhar S. A designer bow-tie combination therapeutic platform: An approach to resistant cancer treatment by simultaneous delivery of cytotoxic and anti-inflammatory agents and radiation. Biomaterials 2018; 187:117-129. [DOI: 10.1016/j.biomaterials.2018.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/20/2022]
|
15
|
Qiu B, Jiang W, Qiu W, Mu W, Qin Y, Zhu Y, Zhang J, Wang Q, Liu D, Qu Z. Pine needle oil induces G2/M arrest of HepG2 cells by activating the ATM pathway. Exp Ther Med 2018; 15:1975-1981. [PMID: 29434792 PMCID: PMC5776635 DOI: 10.3892/etm.2017.5648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/23/2017] [Indexed: 11/06/2022] Open
Abstract
Over the last two decades, inducing DNA damage of cancer cells by natural medicines has become a research hotspot in the field of cancer treatment. Although various natural medicines have anticancer effects, very few studies have been conducted to explore the anti-cancer effect of pine needle oil. In the present study, the role of pine needle oil in inducing G2/M arrest in HepG2 cells was investigated. The data revealed that pine needle oil could induce DNA damage in a dose-dependent manner. In the pine needle oil-treated HepG2 cells, the protein levels of phosphorylated (p)-ataxia-telangiectasia mutated (ATM), γ-H2A histone family, member X, p-p53, p-checkpoint kinase 2 and p-cell division cycle 25C were evidently increased, indicating that pine needle oil facilitated G2/M arrest in HepG2 cells through the ATM pathway. In response to the treatment with pine needle oil, ATM was activated in HepG2 cells, which subsequently phosphorylated downstream targets and induced G2/M arrest. In summary, the data of the present study indicated that pine needle oil induces G2/M arrest in HepG2 cells by facilitating ATM activation.
Collapse
Affiliation(s)
- Bing Qiu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Wei Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Wenliang Qiu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Wenling Mu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yujing Qin
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Yongcui Zhu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Jianying Zhang
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Qingyi Wang
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dongjie Liu
- Department of Gastroenterology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150036, P.R. China
| | - Zhangyi Qu
- Department of Hygienic Microbiology, Public Health College, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
16
|
Jiang X, Hong Y, Zhao D, Meng X, Zhao L, Du Y, Wang Z, Zheng Y, Cai L, Jiang H. Low dose radiation prevents doxorubicin-induced cardiotoxicity. Oncotarget 2018; 9:332-345. [PMID: 29416617 PMCID: PMC5787469 DOI: 10.18632/oncotarget.23013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/26/2017] [Indexed: 02/02/2023] Open
Abstract
This study aimed to develop a novel and non-invasive approach, low-dose radiation (LDR, 75 mGy X-rays), to prevent doxorubicin (DOX)-induced cardiotoxicity. BALB/c mice were randomly divided into five groups, Control, LDR (a single exposure), Sham (treated same as LDR group except for irradiation), DOX (a single intraperitoneal injection of DOX at 7.5 mg/kg), and LDR/DOX (received LDR and 72 h later received DOX). Electrocardiogram analysis displayed several kinds of abnormal ECG profiles in DOX-treated mice, but less in LDR/DOX group. Cardiotoxicity indices included histopathological changes, oxidative stress markers, and measurements of mitochondrial membrane permeability. Pretreatment of DOX group with LDR reduced oxidative damages (reactive oxygen species formation, protein nitration, and lipid peroxidation) and increased the activities of antioxidants (superoxide dismutase and glutathione peroxidase) in the heart of LDR/DOX mice compared to DOX mice. Pretreatment of DOX-treated mice with LDR also decreased DOX-induced cardiac cell apoptosis (TUNEL staining and cleaved caspase-3) and mitochondrial apoptotic pathway (increased p53, Bax, and caspase-9 expression and decreased Bcl2 expression and ΔΨm dissipation). These results suggest that LDR could induce adaptation of the heart to DOX-induced toxicity. Cardiac protection by LDR may attribute to attenuate DOX-induced cell death via suppressing mitochondrial-dependent oxidative stress and apoptosis signaling.
Collapse
Affiliation(s)
- Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yaqiong Hong
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lijing Zhao
- The School of Basic Medicine, Jilin University, Changchun, Jilin 130021, China
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, Jilin 130021, China
| | - Zan Wang
- Department of Internal Neurology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Yan Zheng
- Department of Gerontology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Lu Cai
- Pediatric Research Institute, The Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, The University of Louisville, Louisville, KY 40202, USA
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
17
|
Abstract
PURPOSE It was first suggested more than 40 years ago that heterozygous carriers for the human autosomal recessive disorder Ataxia-Telangiectasia (A-T) might also be at increased risk for cancer. Subsequent studies have identified the responsible gene, Ataxia-Telangiectasia Mutated (ATM), characterized genetic variation at this locus in A-T and a variety of different cancers, and described the functions of the ATM protein with regard to cellular DNA damage responses. However, an overall model of how ATM contributes to cancer risk, and in particular, the role of DNA damage in this process, remains lacking. This review considers these questions in the context of contralateral breast cancer (CBC). CONCLUSIONS Heterozygous carriers of loss of function mutations in ATM that are A-T causing, are at increased risk of breast cancer. However, examination of a range of genetic variants, both rare and common, across multiple cancers, suggests that ATM may have additional effects on cancer risk that are allele-dependent. In the case of CBC, selected common alleles at ATM are associated with a reduced incidence of CBC, while other rare and predicted deleterious variants may act jointly with radiation exposure to increase risk. Further studies that characterize germline and somatic ATM mutations in breast cancer and relate the detected genetic changes to functional outcomes, particularly with regard to radiation responses, are needed to gain a complete picture of the complex relationship between ATM, radiation and breast cancer.
Collapse
Affiliation(s)
- Jonine L Bernstein
- a Department of Epidemiology and Biostatistics , Memorial Sloan Kettering Cancer Center , New York , NY , U.S.A
| | | | - Patrick Concannon
- b Genetics Institute and Department of Pathology, Immunology and Laboratory Medicine , University of Florida , Gainesville , FL , U.S.A
| |
Collapse
|
18
|
Yang G, Li W, Jiang H, Liang X, Zhao Y, Yu D, Zhou L, Wang G, Tian H, Han F, Cai L, Cui J. Low-dose radiation may be a novel approach to enhance the effectiveness of cancer therapeutics. Int J Cancer 2016; 139:2157-2168. [PMID: 27299986 DOI: 10.1002/ijc.30235] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/01/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
It has been generally accepted that both natural and man-made sources of ionizing radiation contribute to human exposure and consequently pose a possible risk to human health. However, accumulating evidence has shown that the biological effects of low-dose radiation (LDR) are different from those of high-dose radiation. LDR can stimulate proliferation of normal cells and activate their defense systems, while these biological effects are not observed in some cancer cell types. Although there is still no concordance on this matter, the fact that LDR has the potential to enhance the effects of cancer therapeutics and reduce the toxic side effects of anti-cancer therapy has garnered significant interest. Here, we provide an overview of the current knowledge regarding the experimental data detailing the different responses of normal and cancer tissues to LDR, the underlying mechanisms, and its significance in clinical application.
Collapse
Affiliation(s)
- Guozi Yang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
- Department of Radiation-Oncology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Li
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongyu Jiang
- Health Examination Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xinyue Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Dehai Yu
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lei Zhou
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guanjun Wang
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Huimin Tian
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Fujun Han
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Lu Cai
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
- Kosair Children's Hospital Research Institute, Departments of Pediatrics, Radiation Oncology, Pharmacology and Toxicology of the University of Louisville, Louisville, KY, 40202.
| | - Jiuwei Cui
- Cancer Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
19
|
Cheng H. Inhibiting CD146 by its Monoclonal Antibody AA98 Improves Radiosensitivity of Cervical Cancer Cells. Med Sci Monit 2016; 22:3328-33. [PMID: 27647179 PMCID: PMC5032850 DOI: 10.12659/msm.896731] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Cervical cancer is one of the major causes of cancer death of females worldwide. Radiotherapy is considered effective for cervical cancer treatment, but the low radiosensitivity found in some cases severely affects therapeutic outcomes. This study aimed to reveal the role of CD146, an important adhesion molecule facilitating tumor angiogenesis, in regulating radiosensitivity of cervical cancer cells. Material/Methods CD146 protein expression was compared in normal cells, cervical cancer cells with lower radiosensitivity, and cervical cancer cells with higher sensitivity from cervical squamous cell carcinoma patients. Anti-CD146 monoclonal antibody AA98 was used to inhibit CD146 in human cervical cancer SiHa cells with relatively low radiosensitivity, and then the cell survival and apoptosis changes after radiation were detected by colony formation assay and flow cytometry. Results CD146 protein was significantly up-regulated in cervical cancer cells (P<0.001), especially in cancer cells with lower radiosensitivity. The SiHa cells treated with AA98 showed more obvious inhibition in cell survival (P<0.05) and promotion in cell apoptosis (P<0.01) after radiation, compared to the untreated cells. More dramatic changes in apoptotic factors Caspase 3 and Bcl-XL were also detected in AA98-treated cells. Conclusions These results indicate that inhibiting CD146 improves the effect of radiation in suppressing SiHa cells. This study shows the potential of CD146 as a target for increasing radiosensitivity of cervical cancer cells, which might allow improvement in treatment outcome in cervical cancer. Further studies are necessary for understanding the detailed mechanism of CD146 in regulating radiosensitivity.
Collapse
Affiliation(s)
- Huawen Cheng
- Department of Oncology, People's Hospital of Xintai City, The Affiliated Xintai Hospital of Taishan Medical University, Xintai, Shandong, China (mainland)
| |
Collapse
|
20
|
Fernandez-Palomo C, Seymour C, Mothersill C. Inter-Relationship between Low-Dose Hyper-Radiosensitivity and Radiation-Induced Bystander Effects in the Human T98G Glioma and the Epithelial HaCaT Cell Line. Radiat Res 2016; 185:124-33. [PMID: 26849405 DOI: 10.1667/rr14208.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Over the past several years, investigations in both low-dose hyper-radiosensitivity and increased radioresistance have been a focus of radiation oncology and biology research, since both conditions occur primarily in tumor cell lines. There has been significant progress in elucidating their signaling pathways, however uncertainties exist when they are studied together with radiation-induced bystander effects. Therefore, the aim of this work was to further investigate this relationship using the T98G glioma and HaCaT cell lines. T98G glioma cells have demonstrated a strong transition from hyper-radiosensitivity to induced radioresistance, and HaCaT cells do not show low-dose hypersensitivity. Both cell lines were paired using a mix-and-match protocol, which involved growing nonirradiated cells in culture media from irradiated cells and covering all possible combinations between them. The end points analyzed were clonogenic cell survival and live calcium measurements through the cellular membrane. Our data demonstrated that T98G cells produced bystander signals that decreased the survival of both reporter T98G and HaCaT cells. The bystander effect occurred only when T98G cells were exposed to doses below 1 Gy, which was corroborated by the induction of calcium fluxes. However, when bystander signals originated from HaCaT cells, the survival fraction increased in reporter T98G cells while it decreased in HaCaT cells. Moreover, the corresponding calcium data showed no calcium fluxes in T98G cells, while HaCaT cells displayed a biphasic calcium profile. In conclusion, our findings indicate a possible link between low-dose hyper-radiosensitivity and bystander effects. This relationship varies depending on which cell line functions as the source of bystander signals. This further suggests that the bystander mechanisms are more complex than previously expected and caution should be taken when extrapolating bystander results across all cell lines and all radiation doses.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, L8S 1K4, Canada
| | - Colin Seymour
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, L8S 1K4, Canada
| | - Carmel Mothersill
- Medical Physics and Applied Radiation Sciences Department, McMaster University, Hamilton, Ontario, L8S 1K4, Canada
| |
Collapse
|