1
|
Port M, Anderson D, Swartz HM, Goh VST, Satyamitra MM, Jacob NK, Romeo M, Wilkins R, Barry Flood A. Addressing major issues regarding the roles of biodosimetry in responding to a major nuclear incident: report of EPR BioDose 2024 roundtable discussion. Int J Radiat Biol 2025:1-12. [PMID: 40366883 DOI: 10.1080/09553002.2025.2498978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/04/2025] [Accepted: 04/23/2025] [Indexed: 05/16/2025]
Abstract
The roundtable discussion at EPR BioDose 2024 focused on identifying challenges for using biodosimetry in a large nuclear incident and exploring potential solutions to strengthen preparedness and response frameworks. This report outlines the major themes discussed, including advancements in techniques, challenges in scaling operations, and the future of biodosimetry in emergency response. Initiated by International Association of Biological and EPR Radiation Dosimetry (IABERD), a group of experts comprised of professionals in academia, government and other agencies, were asked to discuss the question: 'When and how should biodosimetry be used for an unplanned radiation explosion in the short or long term?' This question challenged participants to consider a range of scenarios, from immediate triage in the aftermath of an incident to long-term health monitoring and risk assessment. Panelists acknowledged that, while biodosimetry plays a crucial role in rapidly assessing exposure levels to guide medical response, its practical implementation can vary based on scale, resources, and timing. They emphasized that in the short term, methods that provide quick, large-scale screening are important, whereas long-term strategies might include more detailed biological assessments to understand cumulative effects and potential health risks. Despite the difficulty of a one-size-fits-all approach, the insights gathered aimed to inform strategies that balance speed, accuracy, and sustainability in biodosimetry practices. Finally, panelists emphasized the need for better communication about preparedness with the general public and healthcare providers, and a more collaborative approach that also takes into account evaluating the practicality of various methods for triage or guiding treatment.
Collapse
Affiliation(s)
- Matthias Port
- Bundeswehr Institute of Radiobiology affiliated with the University of Ulm, Munich, Germany
| | - Donovan Anderson
- Institute of Radiation Emergency Medicine, Hirosaki University, Aomori, Japan
| | - Harold M Swartz
- Departments of Radiology and Health Policy and Clinical Practice, Geisel School of Medicine, Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Clin-EPR, LLC, Lyme, New Hampshire, USA
| | - Valerie Swee Ting Goh
- Department of Radiobiology, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Merriline M Satyamitra
- Radiation and Nuclear Countermeasures Program, Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Naduparambil K Jacob
- Department of Radiation Oncology, College of Medicine. Arthur G. James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Mattia Romeo
- Department of Physics and Chemistry 'Emilio Segrè', University of Palermo, Palermo, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Palermo, Italy
- Istituto Nazionale di Fisica Nucleare (INFN), Catania Division, Catania, Italy
| | - Ruth Wilkins
- Ionizing Radiation Health Sciences Division, Healthy Environments and Consumer Safety Branch, Health Canada/Government of Canada, Ottawa, Canada
| | - Ann Barry Flood
- Clin-EPR, LLC, Lyme, New Hampshire, USA
- Departments of Radiology and Health Policy and Clinical Practice, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Draeger E, Roberts K, Decker RD, Bahar N, Wilson LD, Contessa J, Husain Z, Williams BB, Flood AB, Swartz HM, Carlson DJ. In Vivo Verification of Electron Paramagnetic Resonance Biodosimetry Using Patients Undergoing Radiation Therapy Treatment. Int J Radiat Oncol Biol Phys 2024; 119:292-301. [PMID: 38072322 DOI: 10.1016/j.ijrobp.2023.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/28/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE Electron paramagnetic resonance (EPR) biodosimetry, used to triage large numbers of individuals incidentally exposed to unknown doses of ionizing radiation, is based on detecting a stable physical response in the body that is subject to quantifiable variation after exposure. In vivo measurement is essential to fully characterize the radiation response relevant to a living tooth measured in situ. The purpose of this study was to verify EPR spectroscopy in vivo by estimating the radiation dose received in participants' teeth. METHODS AND MATERIALS A continuous wave L-band spectrometer was used for EPR measurements. Participants included healthy volunteers and patients undergoing head and neck and total body irradiation treatments. Healthy volunteers completed 1 measurement each, and patients underwent measurement before starting treatment and between subsequent fractions. Optically stimulated luminescent dosimeters and diodes were used to determine the dose delivered to the teeth to validate EPR measurements. RESULTS Seventy measurements were acquired from 4 total body irradiation and 6 head and neck patients over 15 months. Patient data showed a linear increase of EPR signal with delivered dose across the dose range tested. A linear least-squares weighted fit of the data gave a statistically significant correlation between EPR signal and absorbed dose (P < .0001). The standard error of inverse prediction (SEIP), used to assess the usefulness of fits, was 1.92 Gy for the dose range most relevant for immediate triage (≤7 Gy). Correcting for natural background radiation based on patient age reduced the SEIP to 1.51 Gy. CONCLUSIONS This study demonstrated the feasibility of using spectroscopic measurements from radiation therapy patients to validate in vivo EPR biodosimetry. The data illustrated a statistically significant correlation between the magnitude of EPR signals and absorbed dose. The SEIP of 1.51 Gy, obtained under clinical conditions, indicates the potential value of this technique in response to large radiation events.
Collapse
Affiliation(s)
- Emily Draeger
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.
| | - Kenneth Roberts
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Roy D Decker
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Nina Bahar
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Lynn D Wilson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Joseph Contessa
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Zain Husain
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Benjamin B Williams
- Department of Radiology & EPR Center, Geisel Medical School at Dartmouth, Hanover, New Hampshire
| | - Ann Barry Flood
- Department of Radiology & EPR Center, Geisel Medical School at Dartmouth, Hanover, New Hampshire
| | - Harold M Swartz
- Department of Radiology & EPR Center, Geisel Medical School at Dartmouth, Hanover, New Hampshire
| | - David J Carlson
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
3
|
Park JI, Koo CU, Oh J, Kim IJ, Choi K, Ye SJ. Enhancing Precision in L-band Electron Paramagnetic Resonance Tooth Dosimetry: Incorporating Digital Image Processing and Radiation Therapy Plans for Geometric Correction. HEALTH PHYSICS 2024; 126:79-95. [PMID: 37948057 DOI: 10.1097/hp.0000000000001773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
ABSTRACT Following unforeseen exposure to radiation, quick dose determination is essential to prioritize potential patients that require immediate medical care. L-band electron paramagnetic resonance tooth dosimetry can be efficiently used for rapid triage as this poses no harm to the human incisor, although geometric variations among human teeth may hinder accurate dose estimation. Consequently, we propose a practical geometric correction method using a mobile phone camera. Donated human incisors were irradiated with calibrated 6-MV photon beam irradiation, and dose-response curves were developed by irradiation with a predetermined dose using custom-made poly(methyl methacrylate) slab phantoms. Three radiation treatment plans for incisors were selected and altered to suit the head phantom. The mean doses on tooth structures were calculated using a commercial treatment planning system, and the electron paramagnetic resonance signals of the incisors were measured. The enamel area was computed from camera-acquired tooth images. The relative standard uncertainty was rigorously estimated both with and without geometric correction. The effects on the electron paramagnetic resonance signal caused by axial and rotational movements of tooth samples were evaluated through finite element analysis. The mean absolute deviations of mean doses both with and without geometric correction showed marginal improvement. The average relative differences without and with geometric correction significantly decreased from 21.0% to 16.8% (p = 0.01). The geometric correction method shows potential in improving dose precision measurement with minimal delay. Furthermore, our findings demonstrated the viability of using treatment planning system doses in dose estimation for L-band electron paramagnetic resonance tooth dosimetry.
Collapse
Affiliation(s)
- Jong In Park
- Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Chang Uk Koo
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeonghun Oh
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - In Jung Kim
- Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Kwon Choi
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | | |
Collapse
|
4
|
Swartz HM, Flood AB. EPR biodosimetry: challenges and opportunities. RADIATION PROTECTION DOSIMETRY 2023; 199:1441-1449. [PMID: 37721062 DOI: 10.1093/rpd/ncad009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/27/2022] [Accepted: 01/10/2023] [Indexed: 09/19/2023]
Abstract
This paper briefly examines electron paramagnetic resonance (EPR) techniques to measure dose from exposure to external radiation, assessing their current status, potential future uses and the challenges impacting their progress. We conclude the uses and potential value of different EPR techniques depend on the number of victims and whether they characterize short- or long-term risks from exposure. For large populations, EPR biodosimetry based on in vivo measurements or using co-located inanimate objects offer the greatest promise for assessing acute, life-threatening risk and the magnitude and extent of such risk. To assess long-term risk, ex vivo EPR methods using concentrated enamel from exfoliated teeth are most impactful. For small groups, ex vivo EPR biodosimetry based on available samples of teeth, nails and/or bones are most useful. The most important challenges are common to all approaches: improve the technique's technical capabilities and advance recognition by planning groups of the relative strengths EPR techniques offer for each population size. The most useful applications are likely to be for triage and medical guidance in large events and for radiation epidemiology to evaluate long-term risks.
Collapse
Affiliation(s)
- Harold M Swartz
- Radiology Department, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Clin-EPR, LLC, Lyme, NH, USA
| | - Ann Barry Flood
- Radiology Department, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- Clin-EPR, LLC, Lyme, NH, USA
| |
Collapse
|
5
|
Uk Koo C, In Park J, Oh J, Choi K, Yoon J, Hirata H, Ye SJ. Frequency-fixed motion compensation system for in-vivo electron paramagnetic resonance tooth dosimetry. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 353:107520. [PMID: 37459701 DOI: 10.1016/j.jmr.2023.107520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/16/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023]
Abstract
This article describes the design process for a motion compensation system that can suppress the spectral distortion caused by human motion and breathing during in-vivo electron paramagnetic resonance (EPR) spectroscopy on an intact incisor. The developed system consists of two elements: an electronically controlled tunable resonator and an automatic control circuit (ACC). The resonator can modify the resonant frequency and impedance by tuning and matching the voltage, while the ACC can generate a feedback signal using phase-sensitive detection (PSD). The signal is transferred into the resonator to maintain the critical coupling state. The tunable frequency range of the resonator was measured at over 10 MHz, offering approximately eight times the required range. The bandwidth of the resonator fluctuated in a negligible range (0.14% relative standard error) following the resonant frequency. With the feedback signal on, in-vivo EPR measurements were demonstrated to be a stable baseline with 35% higher signal-to-noise ratio (SNR). When one incisor sample was irradiated by an X-ray instrument, the EPR signal responses to the absorbed doses of 0-10 Gy exhibited high linearity (R2 = 0.994). In addition, the standard error of inverse prediction was estimated to be 0.35 Gy. The developed system achieved a discrimination ability of 2 Gy, which is required for triage in large-scale radiation accidents. Moreover, the compensation is fully automated, meaning that the system can be operated with simple training in an emergency.
Collapse
Affiliation(s)
- Chang Uk Koo
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jong In Park
- Ionizing Radiation Metrology Group, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jeonghun Oh
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwon Choi
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Joanne Yoon
- Program in Biomedical Radiation Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Faculty of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan
| | - Sung-Joon Ye
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul Natioanl University, Suwon 16629, Republic of Korea; Biomedical Research Institute, Seoul Natioanl University Hospital, Seoul 03080, Republic of Korea.
| |
Collapse
|
6
|
Blakely WF, Port M, Abend M. Early-response multiple-parameter biodosimetry and dosimetry: risk predictions. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:R152-R175. [PMID: 34280908 DOI: 10.1088/1361-6498/ac15df] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
The accepted generic multiple-parameter and early-response biodosimetry and dosimetry assessment approach for suspected high-dose radiation (i.e. life-threatening) exposure includes measuring radioactivity associated with the exposed individual (if appropriate); observing and recording prodromal signs/symptoms; obtaining serial complete blood counts with white-blood-cell differential; sampling blood for the chromosome-aberration cytogenetic bioassay using the 'gold standard' dicentric assay (premature chromosome condensation assay for exposures >5 Gy photon acute doses equivalent), measurement of proteomic biomarkers and gene expression assays for dose assessment; bioassay sampling, if appropriate, to determine radioactive internal contamination; physical dose reconstruction, and using other available opportunistic dosimetry approaches. Biodosimetry and dosimetry resources are identified and should be setup in advance along with agreements to access additional national, regional, and international resources. This multifaceted capability needs to be integrated into a biodosimetry/dosimetry 'concept of operations' for use in a radiological emergency. The combined use of traditional biological-, clinical-, and physical-dosimetry should be use in an integrated approach to provide: (a) early-phase diagnostics to guide the development of initial medical-management strategy, and (b) intermediate and definitive assessment of radiation dose and injury. Use of early-phase (a) clinical signs and symptoms, (b) blood chemistry biomarkers, and (c) triage cytogenetics shows diagnostic utility to predict acute radiation injury severity.
Collapse
Affiliation(s)
- William F Blakely
- Scientific Research Department, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University of Ulm, Munich, Germany
| |
Collapse
|
7
|
Lamkowski A, Combs SE, Abend M, Port M. Training of clinical triage of acute radiation casualties: a performance comparison of on-siteversus onlinetraining due to the covid-19 pandemic. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:S540-S560. [PMID: 34256358 DOI: 10.1088/1361-6498/ac13c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 06/13/2023]
Abstract
A collection of powerful diagnostic tools have been developed under the umbrellas of NATO for ionising radiation dose assessment (BAT, WinFRAT) and estimate of acute health effects in humans (WinFRAT, H-Module). We assembled a database of 191 ARS cases using the medical treatment protocols for radiation accident victims (n= 167) and the system for evaluation and archiving of radiation accidents based on case histories (n= 24) for training purposes of medical personnel. From 2016 to 2019, we trained 39 participants comprising MSc level radiobiology students in an on-site teaching class. Enforced by the covid-19 pandemic in 2020 for the first time, an online teaching of nine MSc radiobiology students replaced the on-site teaching. We found that: (a) limitations of correct diagnostic decision-making based on clinical signs and symptoms were experienced unrelated to the teaching format. (b) A significant performance decrease concerning online (first number in parenthesis) versus on-site teaching (reference and second number in parenthesis) was seen regarding the estimate time (31 vs 61 cases per hour, two-fold decrease,p= 0.005). Also, the accurate assessment of response categories (89.9% vs 96.9%,p= 0.001), ARS (92.4% vs 96.7%,p= 0.002) and hospitalisation (93.5% vs 97.0%,p= 0.002) decreased by around 3%-7%. The performances of the online attendees were mainly distributed within the lower quartile performance of on-site participants and the 25%-75% interquartile range increased 3-7-fold. (c) Comparison of dose estimates performed by training participants with hematologic acute radiation syndrome (HARS) severity mirrored the known limitations of dose alone as a surrogate parameter for HARS severity at doses less than 1.5 Gy, but demonstrated correct determination of HARS 2-4 and support for clinical decision making at dose estimates >1.5 Gy, regardless of teaching format. (d) Overall, one-third of the online participants showed substantial misapprehension and insecurities of elementary course content that did not occur after the on-site teaching.
Collapse
Affiliation(s)
- Andreas Lamkowski
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| | - Stephanie E Combs
- Department of Radiation Oncology, Technical University of Munich (TUM), Ismaninger Straße 22, 81675 Munich, Germany
- Institute of Radiation Medicine (IRM), Department of Radiation Sciences (DRS), Helmholtz Zentrum München (HMGU), Ingolstaedter Landstr. 1 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site, Munich, Germany
| | - Michael Abend
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| | - Matthias Port
- Bundeswehr Institute of Radiobiology affiliated to the University Ulm, Neuherbergstrasse 11, Munich 80937, Germany
| |
Collapse
|
8
|
Park JI, Choi K, Koo CU, Oh J, Hirata H, Swartz HM, Ye SJ. Dependence of Radiation-induced Signals on Geometry of Tooth Enamel Using a 1.15 GHz Electron Paramagnetic Resonance Spectrometer: Improvement of Dosimetric Accuracy. HEALTH PHYSICS 2021; 120:152-162. [PMID: 32701613 DOI: 10.1097/hp.0000000000001292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
ABSTRACT We aim to improve the accuracy of electron paramagnetic resonance (EPR)-based in vivo tooth dosimetry using the relationship between tooth geometry and radiation-induced signals (RIS). A homebuilt EPR spectrometer at L-band frequency of 1.15 GHz originally designed for non-invasive and in vivo measurements of intact teeth was used to measure the RIS of extracted human teeth. Twenty human central incisors were scanned by microCT and irradiated by 220 kVp x-rays. The RISs of the samples were measured by the EPR spectrometer as well as simulated by using the finite element analysis of the electromagnetic field. A linear relationship between simulated RISs and tooth geometric dimensions, such as enamel area, enamel volume, and labial enamel volume, was confirmed. The dose sensitivity was quantified as a slope of the calibration curve (i.e., RIS vs. dose) for each tooth sample. The linear regression of these dose sensitivities was established for each of three tooth geometric dimensions. Based on these findings, a method for the geometry correction was developed by use of expected dose sensitivity of a certain tooth for one of the tooth geometric dimensions. Using upper incisors, the mean absolute deviation (MAD) without correction was 1.48 Gy from an estimated dose of 10 Gy; however, the MAD corrected by enamel area, volume, and labial volume was reduced to 1.04 Gy, 0.77 Gy, and 0.83 Gy, respectively. In general, the method corrected by enamel volume showed the best accuracy in this study. This homebuilt EPR spectrometer for the purpose of non-invasive and in vivo tooth dosimetry was successfully tested for achieving measurements in situ. We demonstrated that the developed correction method could reduce dosimetric uncertainties resulting from the variations in tooth geometric dimensions.
Collapse
Affiliation(s)
| | | | | | - Jeonghun Oh
- Program in Biomedical Radiation Sciences, Department of Transdisciplinary Studies, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hiroshi Hirata
- Division of Bioengineering and Bioinformatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo, 060-0814, Japan
| | - Harold M Swartz
- Geisel School of Medicine, HB 7785 Dartmouth College, Hanover, NH 03755
| | | |
Collapse
|
9
|
Xi C, Zhao H, Lu X, Cai TJ, Li S, Liu KH, Tian M, Liu QJ. Screening of Lipids for Early Triage and Dose Estimation after Acute Radiation Exposure in Rat Plasma Based on Targeted Lipidomics Analysis. J Proteome Res 2020; 20:576-590. [PMID: 33200940 DOI: 10.1021/acs.jproteome.0c00560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rapid early triage and dose estimation is vital for limited medical resource allocation and treatment of a large number of the wounded after radiological accidents. Lipidomics has been utilized to delineate biofluid lipid signatures after irradiation. Here, high-coverage targeted lipidomics was employed to screen radiosensitive lipids after 0, 1, 2, 3, 5, and 8 Gy total body irradiation at 4, 24, and 72 h postirradiation in rat plasma. Ultra-performance liquid chromatography-tandem mass spectrometry with a multiple reaction monitoring method was utilized. In total, 416 individual lipids from 18 major classes were quantified and those biomarkers altered in a dose-dependent manner constituted panel A-panel D. Receiver operator characteristic curve analysis using combined lipids showed good to excellent sensitivity and specificity in triaging different radiation exposure levels (area under curve = 0.814-1.000). The equations for dose estimation were established by stepwise regression analysis for three time points. A novel strategy for radiation early triage and dose estimation was first established and validated using panels of lipids. Our study suggests that it is feasible to acquire quantitative lipid biomarker panels using targeted lipidomics platforms for rapid, high-throughput triage, which can provide further insights in developing lipidomics strategies for radiation biodosimetry in humans.
Collapse
Affiliation(s)
- Cong Xi
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Hua Zhao
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Ke-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, P. R. China
| |
Collapse
|
10
|
Machine learning for determination of the native background EPR signal amplitude in the teeth enamel. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2020.106435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
11
|
Kultova G, Tichy A, Rehulkova H, Myslivcova-Fucikova A. The hunt for radiation biomarkers: current situation. Int J Radiat Biol 2020; 96:370-382. [PMID: 31829779 DOI: 10.1080/09553002.2020.1704909] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Purpose: The possibility of a large-scale acute radiation exposure necessitates the development of new methods that could provide a rapid assessment of the doses received by individuals using high-throughput technologies. There is also a great interest in developing new biomarkers of dose exposure, which could be used in large molecular epidemiological studies in order to correlate estimated doses received and health effects. The goal of this review was to summarize current literature focused on biological dosimetry, namely radiation-responsive biomarkers.Methods: The studies involved in this review were thoroughly selected according to the determined criteria and PRISMA guidelines.Results: We described briefly recent advances in radiation genomics and metabolomics, giving particular emphasis to proteomic analysis. The majority of studies were performed on animal models (rats, mice, and non-human primates). They have provided much beneficial information, but the most relevant tests have been done on human (oncological) patients. By inspecting the radiaiton biodosimetry literate of the last 10 years, we identified a panel of candidate markers for each -omic approach involved.Conslusions: We reviewed different methodological approaches and various biological materials, which can be exploited for dose-effect prediction. The protein biomarkers from human plasma are ideal for this specific purpose. From a plethora of candidate markers, FDXR is a very promising transcriptomic candidate, and importantly this biomarker was also confirmed by some studies at protein level in humans.
Collapse
Affiliation(s)
- Gabriela Kultova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.,Department of Biology, Faculty of Science, University of Hradec Králové, Hradec Kralove, Czech Republic
| | - Ales Tichy
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Helena Rehulkova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alena Myslivcova-Fucikova
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
12
|
Groves AM, Williams JP. Saving normal tissues - a goal for the ages. Int J Radiat Biol 2019; 95:920-935. [PMID: 30822213 PMCID: PMC7183326 DOI: 10.1080/09553002.2019.1589654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 02/08/2023]
Abstract
Almost since the earliest utilization of ionizing radiation, many within the radiation community have worked toward either preventing (i.e. protecting) normal tissues from unwanted radiation injury or rescuing them from the downstream consequences of exposure. However, despite over a century of such investigations, only incremental gains have been made toward this goal and, with certainty, no outright panacea having been found. In celebration of the 60th anniversary of the International Journal of Radiation Biology and to chronicle the efforts that have been made to date, we undertook a non-rigorous survey of the articles published by normal tissue researchers in this area, using those that have appeared in the aforementioned journal as a road map. Three 'snapshots' of publications on normal tissue countermeasures were taken: the earliest (1959-1963) and most recent (2013-2018) 5-year of issues, as well as a 5-year intermediate span (1987-1991). Limiting the survey solely to articles appearing within International Journal of Radiation Biology likely reduced the number of translational studies interrogated given the basic science tenor of this particular publication. In addition, by taking 'snapshots' rather than considering the entire breadth of the journal's history in this field, important papers that were published during the interim periods were omitted, for which we apologize. Nonetheless, since the journal's inception, we observed that, during the chosen periods, the majority of studies undertaken in the field of normal tissue countermeasures, whether investigating radiation protectants, mitigators or treatments, have focused on agents that interfere with the physical, chemical and/or biological effects known to occur during the acute period following whole body/high single dose exposures. This relatively narrow approach to the reduction of normal tissue effects, especially those that can take months, if not years, to develop, seems to contradict our growing understanding of the progressive complexities of the microenvironmental disruption that follows the initial radiation injury. Given the analytical tools now at our disposal and the enormous benefits that may be reaped in terms of improving patient outcomes, as well as the potential for offering countermeasures to those affected by accidental or mass casualty exposures, it appears time to broaden our approaches to developing normal tissue countermeasures. We have no doubt that the contributors and readership of the International Journal of Radiation Biology will continue to contribute to this effort for the foreseeable future.
Collapse
Affiliation(s)
- Angela M. Groves
- Departments of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, USA
| | - Jacqueline P. Williams
- Departments of Environmental Medicine, University of Rochester Medical Center, Rochester, USA
- Departments of Radiation Oncology, University of Rochester Medical Center, Rochester, USA
| |
Collapse
|
13
|
Zou J, Guo J, Ma L, Dong G, Cong J, Liu Y, Tian Y, Wu K. A normalization method of the volume and geometry of tooth for X-band in vivo EPR dosimetry. Appl Radiat Isot 2019; 149:123-129. [PMID: 31054478 DOI: 10.1016/j.apradiso.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 11/29/2022]
Abstract
The accuracy of in vivo EPR tooth dosimetry may be influenced by the volume and geometry variations in teeth, especially when there is considerable non-uniform sensitivity distribution in the active detection area of the cavity. To solve this problem, the present research proposed a normalization method specifically for X-band EPR in vivo tooth dosimetry. The volume and geometry of the measured tooth were reconstructed by digital image processing with images of the tooth impression slices, which were obtained by a custom-made impression module. The sensitivity distribution in the active detection area was established based on experiments with a point sample. Consequently, a composite normalization process that could calibrate the evaluated dose effectively was carried out by taking into account the influences not only from tooth volume and geometry but also from the non-uniform distribution of sensitivity. The effect and practicability of the method were evaluated by incisor samples. Results showed that the standard deviation could be reduced a maximum of 54.8% approximately after the composite normalization, an improvement compared to results from solely tooth volume. The correlation coefficient of the dose-response curve could be improved from 0.731 to 0.986. The preliminary method provides an approach potentially useful on site after radiation accidents when dealing with the influence of variations in the tooth volume and geometry for X-band EPR in vivo dose estimations.
Collapse
Affiliation(s)
- Jierui Zou
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Junwang Guo
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Lei Ma
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Guofu Dong
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Jianbo Cong
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ye Liu
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ye Tian
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ke Wu
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China.
| |
Collapse
|
14
|
Kobayashi K, Dong R, Nicolalde RJ, Calderon P, Du G, Williams BB, Lee MCI, Swartz HM, Flood AB. Development of a novel mouth model as an alternative tool to test the effectiveness of an in vivo EPR dosimetry system. Phys Med Biol 2018; 63:165002. [PMID: 30033935 DOI: 10.1088/1361-6560/aad518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In a large-scale radiation event, thousands may be exposed to unknown amounts of radiation, some of which may be life-threatening without immediate attention. In such situations, a method to quickly and reliably estimate dose would help medical responders triage victims to receive life-saving care. We developed such a method using electron paramagnetic resonance (EPR) to make in vivo measurements of the maxillary incisors. This report provides evidence that the use of in vitro studies can provide data that are fully representative of the measurements made in vivo. This is necessary because, in order to systematically test and improve the reliability and accuracy of the dose estimates made with our EPR dosimetry system, it is important to conduct controlled studies in vitro using irradiated human teeth. Therefore, it is imperative to validate whether our in vitro models adequately simulate the measurements made in vivo, which are intended to help guide decisions on triage after a radiation event. Using a healthy volunteer with a dentition gap that allows using a partial denture, human teeth were serially irradiated in vitro and then, using a partial denture, placed in the volunteer's mouth for measurements. We compared dose estimates made using in vivo measurements made in the volunteer's mouth to measurements made on the same teeth in our complex mouth model that simulates electromagnetic and anatomic properties of the mouth. Our results demonstrate that this mouth model can be used in in vitro studies to develop the system because these measurements appropriately model in vivo conditions.
Collapse
Affiliation(s)
- Kyo Kobayashi
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg, Lebanon, NH, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zou J, Guo J, Dong G, Ma L, Cong J, Liu Y, Tian Y, Wu K. Effect of the tooth surface water on the accuracy of dose reconstructions in the X-band in vivo EPR dosimetry. Appl Radiat Isot 2018; 139:86-90. [PMID: 29729486 DOI: 10.1016/j.apradiso.2018.04.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
The X-band in vivo EPR tooth dosimetry is promising as a tool for the initial triage after a large-scale radiation accident. The dielectric losses caused by water on the tooth surface (WTS) are one of the major sources of inaccuracies in this method. The effect was studied by theoretical simulation calculations and experiments with water films of various thicknesses on teeth. The results demonstrate the possibility of sufficiently accurate measurements of the radiation-induced signal of the tooth enamel provided that the thickness of the water film on the tooth is below 60 µm. The sensitivity of the cavity decreases with increasing thickness of the water layer. The interference of WTS can be diminished by normalization of the radiation-induced signal to the signal of a reference sample permanently present in the cavity.
Collapse
Affiliation(s)
- Jierui Zou
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Junwang Guo
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Guofu Dong
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Lei Ma
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Jianbo Cong
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ye Liu
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ye Tian
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China
| | - Ke Wu
- Beijing Institute of Radiation Medicine, Beijing Key Laboratory of Radiation Biology (No. BZ0325), China.
| |
Collapse
|
16
|
Flood AB, Wood VA, Schreiber W, Williams BB, Gallez B, Swartz HM. Guidance to Transfer 'Bench-Ready' Medical Technology into Usual Clinical Practice: Case Study - Sensors and Spectrometer Used in EPR Oximetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1072:233-239. [PMID: 30178351 DOI: 10.1007/978-3-319-91287-5_37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This paper considers the critical role that academics can have in the development of clinical innovations and especially how their impact can be optimized. The focus should be on establishing the safety and efficacy of new approaches while also incorporating human factors and human use considerations into the inventions. It is very advantageous to work in concert with the end-users (operators and clinicians) to help ensure that the innovation will be useful and feasible to be incorporated into actual clinical practice as intended. This strategy enables developments to tackle real clinical needs by providing novel strategies to improve patient care while using solutions that fit into clinical practice and that are welcomed by patients and clinical staff. These principles are illustrated by a case study of the development of clinical in vivo EPR oximetry.
Collapse
Affiliation(s)
- Ann Barry Flood
- Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| | - Victoria A Wood
- Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Wilson Schreiber
- Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | | | - Bernard Gallez
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Harold M Swartz
- Radiology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.,Radiation Oncology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
17
|
Pannkuk EL, Fornace AJ, Laiakis EC. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules. Int J Radiat Biol 2017; 93:1151-1176. [PMID: 28067089 DOI: 10.1080/09553002.2016.1269218] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. CONCLUSIONS Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.
Collapse
Affiliation(s)
- Evan L Pannkuk
- a Tumor Biology Program , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA
| | - Albert J Fornace
- b Molecular Oncology , Lombardi Comprehensive Cancer Center, Georgetown University , Washington DC , USA.,c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| | - Evagelia C Laiakis
- c Department of Biochemistry and Molecular and Cellular Biology , Georgetown University , Washington DC , USA
| |
Collapse
|
18
|
Kobayashi K, Dong R, Nicolalde RJ, Williams BB, Du G, Swartz HM, Flood AB. Evolution and Optimization of Tooth Models for Testing In Vivo EPR Tooth Dosimetry. RADIATION PROTECTION DOSIMETRY 2016; 172:152-160. [PMID: 27555657 PMCID: PMC5225979 DOI: 10.1093/rpd/ncw215] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Testing and verification are an integral part of any cycle to design, manufacture and improve a novel device intended for use in humans. In the case of testing Dartmouth's electron paramagnetic resonance (EPR) in vivo tooth dosimetry device, in vitro studies are needed throughout its development to test its performance, i.e. to verify its current capability for assessing dose in individuals potentially exposed to ionizing radiation. Since the EPR device uses the enamel of human teeth to assess dose, models that include human teeth have been an integral mechanism to carry out in vitro studies during development and testing its ability to meet performance standards for its ultimate intended in vivo use. As the instrument improves over time, new demands for in vitro studies change as well. This paper describes the tooth models used to perform in vitro studies and their evolution to meet the changing demands for testing in vivo EPR tooth dosimetry.
Collapse
Affiliation(s)
- Kyo Kobayashi
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg. Lebanon, NH, USA
| | - Ruhong Dong
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg. Lebanon, NH, USA
| | | | - Benjamin B Williams
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg. Lebanon, NH, USA
- Division of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Gaixin Du
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg. Lebanon, NH, USA
| | - Harold M Swartz
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg. Lebanon, NH, USA
- Division of Radiation Oncology, Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Ann Barry Flood
- EPR Center for the Study of Viable Systems, Radiology Department, Geisel School of Medicine at Dartmouth, HB 7785, Williamson Translational Research Bldg. Lebanon, NH, USA
| |
Collapse
|
19
|
Williams BB, Flood AB, Demidenko E, Swartz HM. ROC Analysis for Evaluation of Radiation Biodosimetry Technologies. RADIATION PROTECTION DOSIMETRY 2016; 172:145-151. [PMID: 27412513 PMCID: PMC5225982 DOI: 10.1093/rpd/ncw168] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Receiver operating characteristic (ROC) analysis is a fundamental tool used for the evaluation and comparison of diagnostic systems that provides estimates of the combinations of sensitivity and specificity that can be achieved with a given technique. Along with critical considerations of practical limitations, such as throughput and time to availability of results, ROC analyses can be applied to provide meaningful assessments and comparisons of available biodosimetry methods. Accordingly, guidance from the Food and Drug Administration to evaluate biodosimetry devices recommends using ROC analysis. However, the existing literature for the numerous biodosimetry methods that have been developed to address the needs for triage either do not contain ROC analyses or present ROC analyses where the dose distributions of the study samples are not representative of the populations to be screened. The use of non-representative sample populations can result in a significant spectrum bias, where estimated performance metrics do not accurately characterize the true performance under real-world conditions. Particularly, in scenarios where a large group of people is screened because they were potentially exposed in a large-scale radiation event, directly measured population data do not exist. However, a number of complex simulations have been performed and reported in the literature that provide estimates of the required dose distributions. Based on these simulations and reported data about the output and uncertainties of biodosimetry assays, we illustrate how ROC curves can be generated that incorporate a realistic representative sample. A technique to generate ROC curves for biodosimetry data is presented along with representative ROC curves, summary statistics and discussion based on published data for triage-ready electron paramagnetic resonance in vivo tooth dosimetry, the dicentric chromosome assay and quantitative polymerase chain reaction assay. We argue that this methodology should be adopted generally to evaluate the performance of radiation biodosimetry screening assays so that they can be compared in the context of their intended use.
Collapse
Affiliation(s)
- Benjamin B Williams
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Ann Barry Flood
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Eugene Demidenko
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Harold M Swartz
- Department of Medicine, Section of Radiation Oncology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
- Department of Radiology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|
20
|
Yamaguchi I, Sato H, Kawamura H, Hamano T, Yoshii H, Suda M, Miyake M, Kunugita N. L Band EPR Tooth Dosimetry for Heavy Ion Irradiation. RADIATION PROTECTION DOSIMETRY 2016; 172:81-86. [PMID: 27542817 PMCID: PMC5225981 DOI: 10.1093/rpd/ncw236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electron Paramagnetic Resonance (EPR) tooth dosimetry is being developed as a device to rapidly assess large populations that were potentially exposed to radiation during a major radiation accident or terrorist event. While most exposures are likely to be due to fallout and therefore involve low linear energy transfer (LET) radiation, there is also a potential for exposures to high LET radiation, for which the effect on teeth has been less well characterized by EPR. Therefore, the aim of this paper is to acquire fundamental response curves for high LET radiation in tooth dosimetry using L band EPR. For this purpose, we exposed human teeth to high energy carbon ions using the heavy ion medical accelerator in Chiba at the National Institute of Radiological Sciences. The primary findings were that EPR signals for carbon ion irradiation were about one-tenth the amplitude of the response to the same dose of 150 kVp X-rays.
Collapse
Affiliation(s)
- Ichiro Yamaguchi
- Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako, Saitama 351-0197, Japan
| | - Hitoshi Sato
- Department of Radiological Sciences, School of Health Sciences, Ibaraki Prefectural University, Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Hiraku Kawamura
- Department of Radiological Sciences, School of Health Sciences, Ibaraki Prefectural University, Ami, Ami-machi, Inashiki-gun, Ibaraki 300-0394, Japan
| | - Tsuyoshi Hamano
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba 263-8555, Japan
| | - Hiroshi Yoshii
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba 263-8555, Japan
| | - Mitsuru Suda
- National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage, Chiba, Chiba 263-8555, Japan
| | - Minoru Miyake
- Oral and Maxillofacial Surgery, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa Prefecture, 761-0793, Japan
| | - Naoki Kunugita
- Department of Environmental Health, National Institute of Public Health, 2-3-6, Minami, Wako, Saitama 351-0197, Japan
| |
Collapse
|