1
|
Brobbey A, Rydz E, Fenton S, Demers PA, Ge CB, Peters CE. Characterizing occupational radon exposure greater than 100 Bq/m 3 in a highly exposed country. Sci Rep 2022; 12:21323. [PMID: 36494406 PMCID: PMC9734100 DOI: 10.1038/s41598-022-25547-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Radon is an established lung carcinogen concentrating in indoor environments with importance for many workers worldwide. However, a systematic assessment of radon levels faced by all workers, not just those with direct uranium or radon exposure, has not previously been completed. The objective of this study was to estimate the prevalence of workers exposed to radon, and the level of exposure (> 100-200 Bq/m3, 200-400 Bq/m3, 400-800 Bq/m3, and > 800 Bq/m3) in a highly exposed country (Canada). Exposures among underground workers were assessed using the CAREX Canada approach. Radon concentrations in indoor workplaces, obtained from two Canadian surveys, were modelled using lognormal distributions. Distributions were then applied to the susceptible indoor worker population to yield the number of exposed workers, by occupation, industry, province, and sex. In total, an estimated 603,000 out of Canada's 18,268,120 workers are exposed to radon in Canada. An estimated52% of exposed workers are women, even though they comprise only 48% of the labour force. The majority (68%) are exposed at a level of > 100-200 Bq/m3. Workers are primarily exposed in educational services, professional, scientific and technical services, and health care and social assistance, but workers in mining, quarrying, and oil and gas extraction have the largest number of exposed workers at high levels (> 800 Bq/m3). Overall, a significant number of workers are exposed to radon, many of whom are not adequately protected by existing guidelines. Radon surveys across multiple industries and occupations are needed to better characterize occupational exposure. These results can be used to identify exposed workers, and to support lung cancer prevention programs within these groups.
Collapse
Affiliation(s)
- A Brobbey
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - E Rydz
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S Fenton
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - P A Demers
- Occupational Cancer Research Centre, Ontario Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - C B Ge
- TNO, The Hague, The Netherlands
| | - C E Peters
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC, Canada.
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
- BCCDC, Vancouver, BC, Canada.
- BC Cancer, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Warkentin P, Curry E. Canadian radon initiatives—collaboration across public and private sectors. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07938-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Kojo K, Laine JP, Turtiainen T, Kurttio P. Radon in Finnish underground mines 2011-2019. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:619-627. [PMID: 34098543 DOI: 10.1088/1361-6498/ac08f0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 06/07/2021] [Indexed: 06/12/2023]
Abstract
Radon measurements in Finnish underground mines were started in 1972. Since 1992, regular radon inspections by the competent authority have been carried out in all underground mines. During these inspections, several grab samples are taken from the air, which are later measured in the laboratory. This is a follow-up survey of radon concentrations in the air of the underground mines. The average radon concentrations in the mines between the years 2011 and 2019 varied from 90 to 1100 Bq m-3. Overall, the occupational radon exposure in the Finnish underground mines has remained at a low level from the 1990s onwards. In recent years, high radon concentrations have been observed only in those mines where active mining has ceased. Compared to other recent studies in mines in other countries, radon concentrations in Finnish mines are approximately at the same level. Uncertainties relating to infrequent grab sampling have been recognised and the authority is now testing personal radon detectors that may be used for the exposure assessment in the future.
Collapse
Affiliation(s)
- Katja Kojo
- Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Jussi-Pekka Laine
- Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Tuukka Turtiainen
- Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland
| | - Päivi Kurttio
- Environmental Radiation Surveillance, Radiation and Nuclear Safety Authority, Helsinki, Finland
| |
Collapse
|
4
|
Chen J. A discussion on the potential impact of residential radon exposure on the quality of exposure and risk assessment for former uranium miners. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:1-7. [PMID: 33030687 PMCID: PMC7902573 DOI: 10.1007/s00411-020-00875-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Epidemiological evidence of lung cancer risk from radon is based mainly on studies of underground miners where occupational exposures were, historically, relatively high in comparison to residential indoor exposure. However, radiation protection measures have caused radon levels in uranium mines to decrease significantly in more recent periods. Miners' occupational exposure is limited to their working years while they are exposed to environmental radon at home over their entire lifetime. Even during their limited working years, workers spend much more time at home than in workplaces. The biological effect of radon in mines cannot be distinguished from the biological effect of residential radon. Therefore, for an exposure-risk relationship study of former uranium miners, excess radon-induced lung cancer cases should be related to the combined radon exposure cumulated in workplaces and at homes in excess of the radon exposure of the reference population. This is especially important when residential radon levels differ or vary significantly between miners and the reference population over the course of extended follow-up years. This paper reviews some recent studies on former uranium miners, shares what seems controversial to the author and wonders whether lifetime exposure at home to widely varying radon concentrations can actually impact the quality of exposure assessment, and hence impact the results of the exposure-risk relationship.
Collapse
Affiliation(s)
- Jing Chen
- Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, ON, K1A 1C1, Canada.
| |
Collapse
|
5
|
Chen J. Evaluation of occupational radon exposure and comparison with residential radon exposure in Canada-a population-level assessment. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2021; 41:1-20. [PMID: 33197907 DOI: 10.1088/1361-6498/abcae4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Radon is a naturally occurring radioactive gas and presents everywhere on the Earth at varying concentration in workplaces and at homes. With Canadian labour statistics, time statistics and more than 7600 long-term radon measurements in workplaces, occupational radon exposure is evaluated for all 20 job categories based on North American Industry Classification System. Results are compared with residential radon exposure based on more than 22 000 long-term radon tests conducted in Canadian homes. The average annual effective dose due to radon exposure in workplaces is 0.21 mSv, which is lower than the average annual effective dose of 1.8 mSv from radon exposure at home by a factor of eight. Due to relatively higher radon concentration in residential homes and longer time spent indoors at home, exposure at home contributes to 90% of workers' total radon exposure (on average 1692 h in workplaces and 5852 h at homes). The analysis presented here is based on province-wide average radon exposures in various indoor and outdoor environments. Since the risk of developing lung cancer increases proportionally with increasing radon exposure, this evaluation indicates that on average reduction of radon levels in homes is very important and an effective way to reduce radon-induced lung cancers in Canada.
Collapse
Affiliation(s)
- Jing Chen
- Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa K1A 1C1, Canada
| |
Collapse
|
6
|
Ćujić M, Janković Mandić L, Petrović J, Dragović R, Đorđević M, Đokić M, Dragović S. Radon-222: environmental behavior and impact to (human and non-human) biota. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:69-83. [PMID: 31955264 DOI: 10.1007/s00484-020-01860-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
As an inert radioactive gas, 222Rn could be easily transported to the atmosphere via emanation, migration, or exhalation. Research measurements pointed out that 222Rn activity concentration changes during the winter and summer months, as well as during wet and dry season periods. Changes in radon concentration can affect the atmospheric electric field. At the boundary layer near the ground, short-lived daughters of 222Rn can be used as natural tracers in the atmosphere. In this work, factors controlling 222Rn pathways in the environment and its levels in soil gas and outdoor air are summarized. 222Rn has a short half-life of 3.82 days, but the dose rate due to radon and its radioactive progeny could be significant to the living beings. Epidemiological studies on humans pointed out that up to 14% of lung cancers are induced by exposure to low and moderate concentrations of radon. Animals that breed in ground holes have been exposed to the higher doses due to radiation present in soil air. During the years, different dose-effect models are developed for risk assessment on human and non-human biota. In this work are reviewed research results of 222Rn exposure of human and non-human biota.
Collapse
Affiliation(s)
- Mirjana Ćujić
- University of Belgrade, Vinča Institute of Nuclear Sciences, POB 522, Belgrade, Serbia.
| | | | - Jelena Petrović
- University of Belgrade, Vinča Institute of Nuclear Sciences, POB 522, Belgrade, Serbia
| | - Ranko Dragović
- Department of Geography, University of Niš, Faculty of Sciences and Mathematics, POB 224, Niš, Serbia
| | - Milan Đorđević
- Department of Geography, University of Niš, Faculty of Sciences and Mathematics, POB 224, Niš, Serbia
| | - Mrđan Đokić
- Department of Geography, University of Niš, Faculty of Sciences and Mathematics, POB 224, Niš, Serbia
| | - Snežana Dragović
- University of Belgrade, Vinča Institute of Nuclear Sciences, POB 522, Belgrade, Serbia
| |
Collapse
|
7
|
Semenova Y, Pivina L, Zhunussov Y, Zhanaspayev M, Chirumbolo S, Muzdubayeva Z, Bjørklund G. Radiation-related health hazards to uranium miners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34808-34822. [PMID: 32638305 DOI: 10.1007/s11356-020-09590-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Concerns on health effects from uranium (U) mining still represent a major issue of debate. Any typology of active job in U mines is associated with exposure to U and its decay products, such as radon (Rn), thorium (Th), and radium (Ra) and its decay products with alpha-emission and gamma radiation. Health effects in U miners have been investigated in several cohort studies in the USA, Canada, Germany, the Czech Republic, and France. While public opinion is particularly addressed to pay attention to the safety of nuclear facilities, health hazard associated with mining is poorly debated. According to the many findings from cohort studies, the most significant positive dose-response relationship was found between occupational U exposure and lung cancer. Other types of tumors associated with occupational U exposure are leukemia and lymphoid cancers. Furthermore, it was found increased but not statistically significant death risk in U miners due to cancers in the liver, stomach, and kidneys. So far, there has not been found a significant association between U exposure and increased cardiovascular mortality in U miners. This review tries to address the current state of the art of these studies.
Collapse
Affiliation(s)
- Yuliya Semenova
- Semey Medical University, Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | | | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific, Verona, Italy
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
8
|
Chen J. RISK ASSESSMENT FOR RADON EXPOSURE IN VARIOUS INDOOR ENVIRONMENTS. RADIATION PROTECTION DOSIMETRY 2019; 185:143-150. [PMID: 30624757 PMCID: PMC6926919 DOI: 10.1093/rpd/ncy284] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Using data from a number of radon surveys, it was assessed that on average, radon progeny concentrations in Canadian homes are about three times higher than in school buildings, 4.7 times higher than in public buildings and indoor workplaces, and 12 times higher than in outdoor air. Canadian statistics show that most Canadians spend ~70% of their time indoors at home, 20% indoors away from home and 10% in outdoors. Due to relatively higher radon concentration in residential homes and longer time spent indoors at home, the exposure at home contributes to 90% of the radon-induced lung-cancer risk.
Collapse
Affiliation(s)
- Jing Chen
- Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, Ontario, Canada
| |
Collapse
|